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Visual Appearance of Surface Distress in 
PCC Pavements: I. Crack Luminance 

TAHAR EL-KORCHI AND NORMAN WITTELS 

Visual examination is widely used for evaluating the extent and 
severity of pavement distress. The visually assessed pavement 
surface condition is combined with structural information to rnte 
the pavement on the basis of scoring systems that have been 
developed by the state transportation agencies to evaluate which 
pavement sections require regular maintenance, overlay, or com
plete reconstruction. Although scoring is often computerized, the 
raw data are usually collected by slow, laborious manual and 
visual methods during site inspections by trained field personnel 
and they are input into the computer manually. These methods 
are expensive and prone to subjectivity, e11u1 , aml 11umepeata
bi li ly. Automated surrac distress evaluation has not developed 
rapidly because the accuracy of automated systems has not been 
sufficient to inspire confidence among the pavement engineers 
who have to rely on the evaluation results. System accuracy can 
be enhanced by using better engineering methods and data in 
designing the image acquisition and image processing portions of 
automated inspection systems. The visual signal-the apparent 
luminance of cracks in portland cement concrete (PCC) pave
ments and the contrast that they exhibit compared to surrounding 
pavement surfaces-is the input to the automated inspection sys
tem. The luminance depends on the reflectivities of the paving 
materials. Reflectivity measurement methods are specified and 
data are tabulated. In a companion paper in this Record computer 
modeling methods for determining and analyzing crack luminance 
are reported. The methods and data presented in these papers 
are useful for designing automated pavement inspection systems. 

The deterioration of transportation systems in the United 
States is a problem of major concern to local, state, and 
federal agencies and to the public. Highways in the United 
States are deteriorating at an alarming rate due to normal 
aging processes and to traffic loads that exceed design limits. 
The nation's economic growth is critically dependent on a 
sound highway pavement system. The projected cost for main
tenance through the year 2000 is estimated to be hundreds of 
billions of dollars, a problem compounded by decreases in 
available funding for restoration of this vital element of the 
infrastructure. Financial improvements are not expected, as 
maintenance and construction costs increase due to inflation 
in material and labor costs and as revenues decline. 

This discouraging picture has prompted development and 
utilization of more efficient and systematic procedures to assist 
transportation agencies with their pavement management sys
tems (PMSs) (1). An increasing number of state transporta
tion agencies are utilizing PMSs to provide current and accu
rate assessment of the condition of highway pavements and 
to allocate available funds efficiently for pavement restoration 
(2-6). A PMS is generally used for evaluation of statewide 

T. El-Korchi, Civil Engineering Department, N. Wittels, Electrical 
Engineering Department, Worcester Polytechnic Institute, Worces
ter, Mass. 01609. 

pavement surface condition, analysis and evaluation of struc
tural adequacy, development of alternative maintenance and 
construction strategies , and selection of an optimal pavement 
management strategy . Surface evaluation provides the data 
necessary to judge the service adequacy of existing pavement, 
to determine if structural evaluation is necessary, to determine 
the probable causes of surface distress, and to estimate needs 
and priorities for preventative and corrective maintenance (3). 

Evaluating the extent and severity of surface distress requires 
the acquisition of large amounts of visual data, typically obtained 
by on-site inspection. The pavement surface condition is rated 
using a pavement distress index based on scoring systems that 
have been developed by the state transportation agencies to 
determine if a pavement section requires maintenance, over
lay, or reconstruction . The scoring systems are customized 
for the different pavement construction and maintenance 
practices used by the respective agencies. Although the com
putation process is usually computerized, the raw data are 
still input manually, a laborious and expensive task, in addi
tion to the slow and laborious manual and visual data collec
tion during site inspections by trained field personnel. These 
methods are inefficient and can lead to a high degree of sub
jectivity, error, and nonrepeatability in the measurements. 

Thus, the need for an automated visual pavement surface 
distress system is increasingly evident. A number of research 
and development projects have been carried out by national 
and state transportation agencies and private companies; to 
date, these projects have displayed only limited success . How
ever, the effort to understand the nature of the problems and 
to develop pertinent research and engineering methods and 
data will make future attempts more successful. 

BACKGROUND 

There are two major steps in automated pavement inspec
tion-an image acquisition system obtains images of pave
ments, and an image processing system evaluates those images 
to assess the severity and extent of surface distress . In this 
section, the approaches that have been attempted, the diffi
culties encountered, and the engineering methods and data 
that can facilitate further automated inspection efforts are 
discussed. 

Image Acquisition 

The image acquisition system that looks at the pavement com
prises the camera, the lens, and the computer hardware . Dis
tinguishing between distressed and sound pavement surfaces 
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is easy for a human but difficult for a machine vision system. 
Whereas the human retina contains nerve tissue specifically 
dedicated to the task of detecting thin , discontinuous features 
such as cracks in images, a machine vision camera contains 
no such specialized receptors. Its output, a voltage propor
tional to the amount of light falling on the sensor, is sampled 
by a frame grabber to produce a digital image made of picture 
elements (pixels) that are laid out in a grid-like pattern across 
the image of the pavement. The digital image is just a matrix 
of numbers, each of which represents the amount of light 
from a discrete area on the pavement surface that is imaged 
into the corresponding pixel. These numbers are called "gray 
levels"; the higher a number, the lighter the corresponding 
shade of gray in a pixel. The goal of the image processing 
system is to identify various types of surface distress from the 
matrices of gray level numbers that represent images of pave
ment surfaces. Finding cracks in digital images happens during 
the image processing step. 

The image acquisition system must acquire information that 
is adequate to meet highway maintenance needs . A reason
able acquisition specification is that the system observe 100 
percent of the road surface and that it be able to detect cracks 
1
1 16 in. (1.5 mm) wide within a 12-ft (3. 7-m) lane from a vehicle 
traveling at 55 mph (90 km/h) . Successful detection means 
that the probability that crack gray levels are distinguishable 
from surface gray levels is acceptably high-an acceptable 
percentage of false positives , apparent cracks that are only 
artifacts of the image acquisition system, and false negatives, 
cracks that escape detection, are usually included in the acqui
sition specification . There are two problems with designing 
an acquisition system capable of meeting such a specifica
tion-resolution and data bandwidth. 

The specification implies the ability to resolve cracks only 
1/2,400 of the lane width. Although such resolution is com
parable to the capabilities of the human eye (7), it greatly 
exceeds the resolution of commercially available television 
cameras , which typically have only about 500 pixels per line. 
Even that number is an overestimate of the camera's reso
lution. When the image of a crack is less than two pixels in 
width, the image contrast (the relative difference in the video 
signal between the light and dark image areas) is greatly 
reduced. The only way to ensure that small cracks do not 
escape detection is to ensure that the image acquisition system 
has an equivalent pixel count of at least 4,800 in the direction 
transverse to the lane. The actual pixel count may have to be 
higher because the apparent crack width can be foreshortened 
by perspective projection through the camera lens and a crack 
can appear as much as 30 percent narrower than it actually 
is, depending on how close it lies to the edges of the lane and 
the camera's height above the pavement surface. 

The bandwidth problem concerns the rate at which image 
data are generated . The acquisition specification under dis
cussion requires a video bandwidth of greater than 30 MHz. 
If video signals are stored digitally, this rate corresponds to 
greater than 240 Mbaud, assuming 8-bit gray levels. Com
mercial video cameras and recorders typically have band
widths in the 4- to 6-MHz range, a factor by at least five too 
low. Thus, image acquisition systems based on the RS-170 
(8) commercial video standard generally have insufficient sig
nal bandwidth for pavement inspection, unless multiple cam
eras are used or unless one or more of the constraints on 
speed, coverage, or minimum crack size are reduced. 
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Several approaches have been used in the past to acquire 
video images for automated pavement inspection . The system 
developed at the University of Waterloo (9) uses an RS- 170 
camera and has a resolution of only about Y4 in . (6.5 mm) . 
Even systems with multiple cameras have not yet achieved 
sufficient resolution and coverage (10). Nonstandard systems 
with line-scanning arrays (11-13) can solve the resolution 
problem, but still require the processing of enormous amounts 
of data , also true for pavement inspection systems that analyze 
films exposed to photologging equipment. One technique for 
solving the data rate problem is real-time data analysis: only 
summaries of the data are retained. The system built by Ektron 
for FHW A uses analog signal processing to identify pavement 
distress signatures in signals obtained with custom cameras. 
That system has reduced data rates but it may not be suffi
ciently reliable for general pavement evaluation use. Another 
disadvantage is that it destroys the raw video data, which can 
be important to a pavement engineer assessing the nature of 
the distress in making maintenance decisions. Finally, image 
compression is a useful technique for greatly reducing the 
amount of visual data that must be processed or stored (14,15); 
however, developing compression algorithms suitable for 
pavement images would require a better understanding of the 
nature of the visual information than is now available . No 
digital image acquisition system that is capable of meeting the 
acquisition specification under discussion is presently known. 

What information would allow the designer of image acqui
sition systems to meet the specification? Cracks are visible 
because they are darker or lighter than the surrounding pave
ment surface . The image contrast depends on the depth and 
width of the crack, the reflectivity of the paving materials, 
the alignment of the crack with the light source, and the 
viewing direction. Carefully matching the image contrast, 
camera optics, and the camera sensor characteristics can ensure 
that there is sufficient image contrast for the image processing 
system to meet its specification reliably (16,17). Therefore , 
understanding and characterizing the inherent crack contrast 
in pavement images is a first engineering step in designing an 
image acquisition system. That understanding, which is also 
necessary to the design of image analysis and compression 
algorithms, is universally applicable to the design and analysis 
of all automated pavement inspection systems. 

Image Processing 

Once supplied with images of sufficient contrast to assure that 
cracks are detectable, the next step is to use image processing, 
a sequence of mathematical operations or algorithms per
formed on a digital image, to detect those cracks. There are 
hundreds of image processing algorithms available to the vision 
system engineer (18-27). Traditionally , image processing 
algorithm selection has been a heuristic process with few 
numerical measures of success; algorithm effectiveness is often 
demonstrated by before and after images . Successful pave
ment surface distress detection requires selecting a sequence 
of algorithms that reliably locates pavement distress and that 
fits within the available computing assets . (Some algorithms 
take considerably more computing power than others.) The 
methods and data presented in this paper can provide a basis 
for evaluating the algorithms objectively on the basis of the 
probability of detection. 
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The rows and columns of the digirnl image are typically 
aligned with the tran verse and longitudinal directions of the 
iane; the initial image processing aigorithms are intended to 
determine which r w and c lumn inters ctions c ntain gray 
levels that indicate cracks or patch edges at the c rrc ponding 
points on the pavement. The e algorithms are local operntor 
because they operate locally to determine whether or not each 
pixel is part of a crack. A second class of algorithms, global 
operators, string toge ther adjacent pixels of the same type to 
determine the ize and orientat ion of each crack or patch. 
Thes are lhe algorithms that clas ify and mea ur pavement 
urface distres from Lhe locations of crack and patch edg 

pixels. Global algorithms fail if the local algorithms do not 
provide the correct information. Hence, in this paper the 
nature of the data that the local algorithms analyze is 
emphasized. 

Many factors contribute in making the data difficult for 
local algori thm, to interprel correctly. Lighting on the pave
ment changes with the time of day amount of cloud cover, 
and presence of shadows of fixed and moving objects on or 
near the road . Aggregate in th paving material make · up a 
much larger portion of the informatim1 in a paveme1ll image 
than d es surfac , distress. (The characterization of aggregate 
appearance on lhe pavement ·urface i beyond the scope of 
thi paper but it i required f r a complete understanding of 
the visual appearance of di t·re , ed pavement.} Th reflectiv
ity characleristic. of the pavement urface change with wear 
and with weather conditions. Other marking r objects on 
the road, su h a. oil stains, skid marks. lane marking dirt, 
and debri can confu:e the di tre s detection and classification 
process. Understanding and characterizing of all of these effects 
is a nece ary prelude to algori thm election. 

A class of local algorithms that is very u. efu l for detecting 
surface distress is the edge finder. These algorithms locate 
edge pixels by searching for distinguishing characteristics in 
the digital image. One typical algorithm, the thresholding 
algorithm, labels any pixel darker than some preset value or 
that has a gradient higher than some preset value as belonging 
to a crack. Because they are fast and easy to implement, 
thresholding algorithms are frequently used for locating 
pavement cracks (9-12,28,29). 

Unfortunately, thresholding algorithms are not particularly 
reliable edge finders. Figure 1 shows a photograph taken in 
direct sunlight of alligator cracking in an asphaltic concrete 
pavement. The resolution of the 35-mm film used to produce 
this photograph exceeds that of any commercially available 
machine vision camera and the film's usable contrast range is 
greater than that of a camera's sensor. In a digital image of 
distress acquired on a sunny day with a· commercial, solid 
state, RS-170 video camera (Figure 2), camera limitations 
reduce crack sharpness and contrast. The top half of the figure 
shows a photograph of the digital image. The white horizontal 
line denotes a typical pixel row in the image. In the bottom 
half of the figure, a graph of the gray levels in a typical matrix 
row indicates the difficulty in designing an edge finder suitable 
for detecting pavement distress. (High values in the graph 
correspond to light pixels; low values are dark.) Extrema in 
both the gray-level signal and in its derivative can be found 
at the edges of both cracks and aggregate, making it difficult 
to distinguish between them. In other words, some pieces of 
aggregate are as dark as the cracks, and some aggregate edges 
are as sharp as the edges of cracks. 
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FIGURE 1 Photograph of alligator cracking in an asphaltic 
concrete taken with a 35-mm camera. 

FIGURE 2 Digital image of alligator cracking. 

Other edge finding algorithms also have difficulty with 
pavement images (10). No edge finding algorithms are known 
that can reliably detect cracks in images of this quality nor is 
any way known to design acquisition systems in whose digital 
images cracks can always be distinguished from aggregate by 
simple edge finders. 

These figures also show the differences in the way cracks 
appear to humans and to machine vision cameras. In the 
photograph (Figure 1), narrow cracks are as dark as wide 
cracks. In the digital image (Figure 2), the narrow cracks have 
significantly reduced contrast and can even disappear com
pletely. The fact that a crack is readily apparent to the eye is 
no guarantee that a camera can see it; the human eye is a 
poor substitute for objective measurement in evaluating image 
processing algorithms. 
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Probability of Detection 

What are objective measures for evaluating image acquisition 
systems and image processing algorithms? How are crack 
luminances used in these evaluations? One criterion is crack 
detection probability. To meet a minimum crack detectability 
contrast specification, the gray level of a crack pixel, in com
bination with the gray levels of surrounding pixels, must be 
different enough from the gray levels of sound pavement pix
els for the crack to be detected. Although the methods for 
calculating this minimum gray level difference for any specific 
machine vision system are beyond the scope of this paper, 
such a value exists and forms the upper bound to actual system 
performance; any real edge finder will degrade this value and 
hence produce more errors than the theoretically calculated 
error rate. 

In judging whether a machine vision system, in principle, 
can reliably detect cracks, the machine vision system design 
engineer calculates the minimum acceptable image crack con
trast using crack luminance values, camera models, and other 
system design parameters. This parameter must exceed the 
minimum crack detectability contrast, which is calculated from 
minimum crack size and detectability values in the image 
acquisition specification. In testing algorithms, digital images 
can be altered to replace crack pixel gray levels by the min
imum detectability values to create worst case images. These 
images can be used to ensure that the algorithms operate 
effectively. Crack luminance values are useful because they 
characterize pavement images during both design and testing 
of both parts of the image acquisition system. In the next 
section, why cracks appear to have the luminances they do is 
explained. 

CRACK LUMINANCE 

In the last section, it was established that the crack luminance 
(the fraction of light reflected into the camera from each 
portion along the bottom and side walls of a crack) determines 
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the apparent crack contrast, which is used in the design of 
image acquisition and image processing systems. In this sec
tion, the factors that determine crack luminance are discussed. 

Reflectivities of Paving Materials 

Pavements are visible because they reflect light. The lumi
nance of each visible surface, including crack sidewalls and 
bottom, is proportional to the total amount of illuminance 
they receive and their reflectivities. In this section, the results 
of reflectivity measurements made on paving materials and 
the conclusions that can be drawn for crack detection are 
discussed. In a later section on reflectivity measurements, 
details of light reflection from paving materials are described 
and the equipment and techniques used to make measure
ments of the reflectivity are outlined. It is this reflectivity 
value that is used to characterize a surface. 

The reflectivities of mortar, isolated aggregates, and port
land cement concretes are measured using the equipment and 
methods described in a later section. Mortar has a reflectivity 
of 0.30 to 0.35 for both freshly prepared surfaces and for cut 
or fractured surfaces; that means between 30 and 35 percent 
of all of the incident light is reflected back from its surface. 
Although the aggregate materials measured were chosen with 
mindful regard that their availability, price, and structural 
properties be compatible with their use in PCC pavements, 
a primary selection criterion was that materials were wanted 
with as wide a range of reflectivities as possible. Figure 3 
shows a photograph of some of the aggregate samples mea
sured. The materials, clockwise from top left, are schist, feld
spar, chert, marble, basalt diabase, basalt, and organic shale. 
As shown in Figure 4, the least reflective materials (organic 
shales and magnetites) have reflectivities as low as 0.05, and 
the most reflective material (marble) has reflectivity above 
0.65 and as high as 0.90. These values are only representative; 
measurements should be made on the specific aggregates used 
in any pavement being analyzed. The reflectivity range shown 
in Figure 4 is enormous-it is comparable to the range spanned 

FIGURE 3 Photograph of typical aggregate samples used in the reflectivity 
measurements and a step wedge reflectance standard (with reflectivity ratio 
between adjacent steps of V2 = 1.414). 
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FIGURE 4 Reflectivities of some aggregate materials chosen for the maximum reflectivity 
range. 

by the least and most highly reflective household materials, 
black velvet and white paper, and it exceeds the contrast 
ranges of almost all commercially available cameras. 

It was also of concern that weathered and worn PCC pave
ments might differ in appearance from the freshly prepared 
pavement samples measured. On material removed from old 
PCC pavements, the reflectivity of the road surfaces and of 
both cracked and cut cross sections was measured. The cut 
and cracked surfaces have reflectivities almost identical to 
those of freshly prepared portland cement mortar. In general, 
the worn pavement surface is visually similar to freshly pre
pared pavement except that the reflectivities of all materials , 
mortar and aggregate alike, are reduced by a factor of about 
two (see Figure 4). The most significant difference is that 
worn pavements exhibit more specular reflection than freshly 
prepared pavements at glancing angles of illumination and 
observation, conditions that are unattractive for automated 
inspection purposes. Thus, the effects of wear and residue 
can be simulated by viewing a freshly prepared pavement 
sample through a neutral-density filter or by applying a low
gloss varnish of the appropriate darkness to the sample sur
face; both methods have been used with success, although the 
results obtained with varnishes have been less consistent. The 
ability to simulate the visual effects of wear and aging on 
pavements is important if the results of laboratory measure
ments on new samples are to be applicable to analyzing images 
obtained from old highway pavements. 

Luminance Measurements 

Luminance of reflecting objects is usually measured by means 
of a spot photometer, a type of imaging light meter with better 
spatial resolution and light measurement accuracy than the 
vision system camera. In measuring the luminance of pave
ment surfaces, two questions were addressed. First, were the 

aggregates adequate to explain the luminance of those mate
rials in PCC pavements? Second, can luminance values that 
are calculated from material reflectivities adequately explain 
and predict the luminance of both sound and distressed pave
ments under all conditions of lighting? 

To answer the first question, PCC samples were prepared 
using a 3:1 weight ratio of uniform quartz sand and portland 
cement with a water-cement ratio of 0.3. Course aggregate 
was hand-selected from batches of material whose reflectiv
ities had been characterized. Using simulated sunlight, the 
luminance was measured on mortar and aggregate on both 
the prepared pavement surface and on cut and cracked cross 
sections through the samples. In summary, the luminance 
values of the mortar and the aggregates in concrete are iden
tical to the values predicted from reflectivity measurements 
on the parent materials, within the measurement errors of 
about ± 5 percent. In other words, reflectivity measureme nts 
on the components of a pavement can be used to predict the 
appearance of the pavement surface. The reflectivities of other 
materials found on pavement surfaces-paint, lane markers , 
patch materials , joint fillers, debris , etc. -have not been mea
sured, but including them in calculations of the luminance of 
pavement surfaces should be straightforward. 

Unfortunately , it is not so easy to predict or explain the 
luminance of internal crack surfaces, for four reasons. First, 
the crack bottom and sides can be made of mortar or aggre
gate, which often have different reflectivities. Cracks usually 
propagate through the mortar or along the interface between 
mortar and aggregate (30). Therefore, as shown in Figure 5, 
aggregate can form at most one sidewall or the crack bottom, 
so the effective reflectivity , and hence the apparent lumi
nance, of the crack will depend on the observation direction. 
When the crack involves only mortar, the surfaces are homo
geneous. In cracks that propagate along the surface of aggre
gate, one sidewall or the crack bottom can have reflectivity 
different from the rest of the crack surface. Cracks with aggre
gate along tw·o side\1valls are unlikely because they \VOuld have 
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FIGURE 5 Schematic diagrams of cracks in PCC pavements. 
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FIGURE 6 Cross-sectional view of an idealized pavement crack. 

to result from directly touching aggregate pieces that had not 
been wet by the paste or from cracks that propagated through 
aggregate; in properly prepared concrete neither case should 
obtain. The second problem has to do with the direction of 
incidence. When the light comes from a small source such as 
the sun or a lamp, one sidewall, at least part of the bottom, 
and possibly part of the second wall will be shadowed so they 
will appear to be Jess luminous. A detailed description of the 
lighting is necessary to calculate the effects of this shadowing. 
This shadowing is shown in Figure 6, which also shows the 
third problem-different angles of light incidence on the crack 
bottom and sides. The effective illumination from a small 
source varies as the cosine of the angle of incidence. The 
crack sidewalls are roughly perpendicular to the surface and 
bottom so they may receive the illumination at different angles 
of incidence. Therefore, unshadowed crack surfaces with the 
same reflectance as the surface may have different apparent 
luminances. The fourth problem is also shown in Figure 6. 
The unshadowed portion of the crack bottom is illuminated 
not only by direct illumination from the source, but also from 

indirect illumination received from light reflected off other 
nearby crack surfaces. In the example illustrated , the crack 
bottom luminance should be greater than the surface lumi
nance because of this interreflected light. 

Examples of these four difficulties are also shown in Figures 
7 and 8. A sample of PCC made with selected granite aggre
gates was cracked and placed on a mechanical slide to allow 
varying the crack width [set to 3 mm (0.12 in.) in this case]. 
Figure 7 shows a side view of the sample; the lighting has 
been adjusted so that the granite aggregate can be seen clearly 
on the cut side surface. Figure 8a shows a digital image of the 
top surface of the sample with crack width set to 1.5 mm (0.06 
in.). The sample is illuminated crosswise to the crack by sim
ulated bright sunlight at 60 degrees above the horizon. The 
crack is clearly darker than the surface, because of shadowing. 
Figure Sb shows the same crack illuminated from the same 
elevation but along the crack direction, which eliminates shad
owing on most of the bottom surface. Interreflection has now 
caused portions of the crack bottom to be more luminous than 
the pavement surface. (The brightest pixels in the image are 
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FIGURE 7 Photograph of a cracked PCC sample made with granite aggregate. 

inside the crack in the center of the figure.) Where the crack 
bottom is formed by aggregate, which is less reflective than 
the mortar, the crack bottom is less luminous than the surface, 
despite interreflection. The digital images of Figure 8 were 
used for luminance measurements so the resolution is much 
better than an automated pavement inspection system would 
display. In that case, the crack in Figure 8a would be easily 
detectable but the crack in Figure Sb would appear as dis
continuous pixels, some with gray levels higher than the sur
rounding pavement and some with lower values. Designing 
an image processing algorithm that can reliably detect the 
crack in Figure Sb is most challenging. 

Figures Sa and Sb show the same physical crack, only the 
lighting has changed. Because cracks come in all orientations, 
the same crack can have different detectability at different 
times of the day; or, some lighting conditions emphasize trans
verse over longitudinal cracks. 

In summary, the surface luminance of pavements is easy to 
understand and to predict but the crack luminance is a com
plicated function of many parameters-the reflectivities of 
all of the paving materials, illumination direction and inten
sity, and crack size and orientation. 

DISCUSSION 

In the last section, the factors that affect apparent pavement 
luminance, material reflectivities, illumination conditions, and 
crack geometry were discussed. Understanding digital images 
of PCC pavement surfaces is straightforward-contrast depends 
only on the ratios of reflectivities of the aggregate materials 
and the mortar. The values may have to be adjusted to account 
for wear and weathering of the pavement surface. Under
standing crack luminance, however, is much more difficult
small changes in crack geometry or lighting can cause major 
changes in crack contrast. 

In testing automated pavement inspection systems, it is 
traditional to rely on field tests of the system and to compare 
with the results obtained by human observers. From looking 
at digital images of distressed PCC pavements and attempting 
to generalize luminance measurements based on them, much 
of the difficulties in past approaches to automated distress 
evaluation was understood. The fact that under some lighting 
conditions cracks are more luminous than the surrounding 
pavement was unexpected; careful measurements of gray lev
els in digital images of PCC pavements confirmed that cracks 
illuminated by small bright light sources can appear brighter 
than, darker than, or identical to the pavement surface. This 
result violates the basic human intuition that cracks are always 
dark and demonstrates why image processing algorithms 
designed for automated pavement inspection must be based 
on measured video signal values rather than on human notions 
of crack appearance. That fact leads into the second difficulty 
with generalizing digital pavement images-the variabilities 
due to material reflectivities, crack geometry, and lighting 
make it difficult to characterize crack luminance by merely 
collecting a large number of crack images. For example, the 
actual lighting situation is even more complicated than was 
suggested in the last section in which only a single, small 
illumination source such as the sun or a lamp was considered. 
In addition to this direct illumination, cracks usually receive 
omnidirectional ambient illumination, such as skylight. The 
ratio of ambient to direct sunlight directly affects the crack 
luminance. Multiple direct light sources, such as a bank of 
lamps, will produce even different luminance values. There 
are many other factors that can alter the crack luminance. It 
is difficult to imagine that a collection of pavement images, 
however extensive, can include all of the contrast cases that 
an inspection system will encounter on the highways. It is not 
even clear how to select, from a collection of images, the 
worst case images with which to test automated pavement 
inspection systems. In other words, exclusive use of unstruc-
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FIGURE 8 Digital images of the pavement sample shown in 
Figure 7 except that the crack width is 1.5 mm (0.06 in.) (top) 
illumination crosswise to the crack and (bottom) illumination 
along the crack. 

tured field testing of vision systems is not a good way to 
validate that the system will work reliably. 

In addition to the difficulty of validating system perfor
mance, the other problem with using collections of digital 
pavement images is that it is difficult to generalize an under
standing of how to design image acquisition and image pro
cessing systems to optimize crack detection. For example, 
even if the considerable expense and difficulty of obtaining 
and documenting an exhaustive library of pavement distress 
images were incurred, the effort would have to be duplicated 
for all combinations of cameras and other major system com
ponents that the system designer might consider using. Sim
ilarly, in deciding between natural and artificial lighting, the 
designer would need images acquired under all possible light
ing conditions. This is clearly infeasible. 

In this paper, the importance of detailed understanding of 
crack luminance in designing automated systems for evalu
ating pavement surface distress has been shown. Although 
reflectivity measurements of pavement materials can be used 
to understand the appearance of pavement surfaces, the com
plexity of the light incidence and reflection that produces 
luminance inside the cracks defies attempts to generalize an 
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understanding from measuring highway pavement images. As 
a way around this problem, Wittels and El-Korchi in a com
panion paper discuss the combination of computer simulations 
of crack luminance with pavement images as a step in design
ing and testing automated pavement distress inspection 
systems. 

REFLECTIVITY MEASUREMENTS 

This section contains detailed information about the reflec
tivity measurements. It is presented for the benefit of those 
requiring detailed knowledge of the methods, but it is placed 
at the end of the paper so as not to impede the reader who 
does not need this level of detail. 

Pavements are visible because they reflect part of the light 
they receive. That can be light received directly from the sun 
or lamps or it can be sun- or lamplight that is reflected by 
other surfaces. When the surface is a diffuse (or matte) reflec
tor, it obeys Lambert's Law-the luminance of the reflected 
light is independent of illumination direction and varies co
sinusoidally with the viewing angle, measured from the sur
face normal. This results in an apparent luminance that is 
independent of viewing angle. The opposite extreme is specular 
(mirror-like) reflection in which the angle of reflection is equal 
but opposite to the angle of incidence, relative to the surface 
normal. Most materials have reflection characteristics between 
these two extremes and characterizing them can be quite com
plicated (31). Diffuse reflection is the simplest case to model 
because the surface can be characterized completely by a 
single reflectivity, a number equal to the ratio of the total 
light out divided by the total light in, and because the apparent 
luminance is independent of the viewing angle. 

A material's reflectivity can be measured using the reflec
tometer shown schematically in Figure 9. In this configura
tion, the light source produces controlled surface illumination 
and two cameras are used to measure the light reflected. 
Camera 1 is in line with the illumination and at the same polar 
angle with respect to the surface normal; it receives both 
specularly and diffusely reflected light. Camera 2 is at the 
same polar angle as the illumination, but 90 degrees away in 
azimuthal angle; it receives only diffusely reflected light. The 
camera signals are compared during sequential observations 
of a sample and a diffuse reflectivity standard, MgO; the ratio 
of the reflectivities is the same as the ratio of the camera 
signals. This same instrument can be used to verify that a 
sample reflects diffusely. If the sample is a diffuse reflector, 
the signals from Camera 1 and Camera 2 will be equal. If it 
has a specular reflectivity component, Camera 1 will receive 
substantially more light than Camera 2. 

In calculating crack luminances, it is useful to assume that 
paving materials reflect light diffusely and it is important to 
validate that assumption. Using the equivalent of a two
camera measurement technique, it was found, with very few 
exceptions, that the nondiffuse component of reflectivity is 
less than 0.05 (less than 5 percent of the incident light is 
reflected specularly) for most paving materials, which is less 
than the natural variation in total material reflectivities. The 
most notable exception was feldspar. When used as an aggre
gate material, the specular reflection from feldspar samples 
can overwhelm the diffuse reflection under some lighting 
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FIGURE 9 Schematic representation of a reflectometer. 

conditions. The assumption of diffuse reflection is invalid for 
wet pavements. It also breaks down on weathered pavements 
at glancing angles of illumination, as evidenced by the road 
glare when driving into the sun. That illumination condition 
produces images that emphasize unimportant variations in 
surface texture so it would not normally be used for pavement 
inspection. Therefore, the measurements support the diffuse 
reflection assumption for most paving materials and most 
observing conditions. 

Figure 9 contains only a schematic representation of a 
reflectometer. Reflectometer design is beyond the scope of 
this paper (17,32), but there are several important design 
features that should be incorporated into a reflectometer 
intended for measuring paving materials. They include the 
following: 

• Illumination and observation angles should match the actual 
conditions under which the pavement will be viewed by an 
automated surface distress evaluation system. The solid angle 
that the camera lens aperture subtends should match that of 
the automated system's lens. If directed illumination is used, 
the illumination solid angle should be matched in the reflec
tometer. These precautions ensure that both systems will mea
sure comparable quantities and will react similarly lo paw
ment materials that produce small specular glints, such as 
asphaltic pavements. 

• The reflectometer light source and sensor should have 
the same color temperature and spectral sensitivity, respec
tively, as the automated distress evaluation system. This is to 
prevent inaccuracies when using the equipment with highly 
colored paving materials. 

• The size of the measured area should be comparable to 
the minimum crack width to be detected. This ensures that 
the reflectometer measures local reflectivity variations with 
size scale comparable to the image acquisition system. 

The reflectivity measurements in Figure 4 were made under 
the following conditions: 

•The illumination cone angle was about 0.5 degree, com
parable to sunlight. The observation cone angle was about 

0.05 degree, comparable to observation with an f/2.8, 5-mm 
lens. That is the lens that images a 12-ft (3.7-m) wide lane 
on to a standard 0.35-in. (8.8-mm) video camera sensor when 
the camera is suspended about 6.8 ft (2 m) above the pave
ment surface. 

•The light source was a 3,200°K tungsten-halogen lamp 
filtered with a Kodak 80A filter to approximate sunlight and 
the sensor was a United Detector Corporation model 248 
silicon barrier detector with a photometric filter having 
approximately the spectral response of typical photometrically 
corrected commercial video cameras. 

• A sample area on the order of 0.4 in. (10 mm) in diameter 
was illuminated and the reflected light measurement was made 
a spot of diameter 0.08 in. (2 mm) centered in the illuminated 
area. 
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