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Stochastic Optimization Subsystem of a 
Network-Level Bridge Management 
System 

WILLIAM V. HARPER, JENNY LAM, ABDULAZIZ AL-SALLOUM, SAAD AL

SAYYARI, SAUD AL-THENEYAN, GEORGE lLVES, AND KAMRAN MAJIDZADEH 

The prediction and stochastic optimi7.:ition modules nre two of 
seven modules that make up a stochastic network-level bridge 
management system which is under development. An overview 
of major portions of the bridge management system is provided. 
The prediction model of structural degradation generates initial 
estimates of transition probabilities (tp values). A tp value is 
defined as the probability that a bridge segment will move from 
one condition state to another within 1 year given the mainte
nance scope assigned to it. The tp values are updated with new 
survey data using a Bayesian updating procedure. Methods are 
developed to account for the fact that structural surveys may be 
performed on a multiyear basis, while yearly tp values are needed 
for the optimization models. The optimization module, which 
minimizes cost subject to top management's performance objec
tives, is a Markovian-based linear program that stratifies the bridge 
network to improve degradation predictions. Rather than using 
single ratings for a major bridge element (e.g., bridge deck), the 
program optimizes on a bridge segment level to maximize the 
use of structural condition information . The condition state of a 
segment can include selected functional deficiencies as well as 
structural condition ratings. 

A network-level bridge management system (BMS) based on 
the Markovian decision process is uncler development. Seven 
modules make up this BMS. The condition module uses sur
veyed condition-rating data to derive condition states that 
characterize the overall condition of each bridge se5ment. The 
use of this module to derive engineering-based maintenance 
solutions has been described by Harper et al. in a companion 
paper in this record. 

The maintenance and repair (M&R) scopes module con
tains 40 possible levels of M&R intensity (under the categories 
of repair, replacement, rehabilitation, and routine mainte
nance) for the condition states. Each M&R scope has a defined 
effect on each condition level, so that improvements resul
ting from the application of these scopes can be modeled. 
The M&R scopes provide input to the prediction, cost, 
optimization, packaging, and comparator modules. 

The prediction module estimates transition probabilities (tp) 
and uses Bayesian techniques to update them to predict the 
probability that a given segment will move from one condition 
state to another over time. The prediction module covers 
all M&.I:{ scopes, so that long-term segment changes can be 
predicted. 
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The cost module uses historical cost data, condition states, 
M&R scopes, and other inputs to estimate unit costs of the 
M&R scopes. This module includes a parametric equation 
that can be used to aid in the generation of user costs. 

The optimization module comist:s of three 11t:lwork optimi
zation solution models based on a Markovian decision model 
using linear programming techniques. A separate linear pro
gram is solved for each stratum. Bridges are stratified accord
ing to factors such as bridge type, climate, and functional 
class. The first year's solution (of the multiyear model) 
provides the network-level guidance used in the subsequent 
modules. 

The packaging module packages the first year of the opti
mized network solutions into individual work projects in which 
the generalized M&R scopes are made specific. In the project
level analyses by the packager, maintenance costs identified 
by the optimizer will be more accurately assessed. 

The comparator module performs a quality control role on 
the performance and implementation of the BMS and pro
vides necessary comparisons of the cost and predictive capa
bilities of the models with actual experience when the BMS 
solutions are implemented. 

BASIC UNIT OF MANAGEMENT 

Network bridge optimization can be approached in two ways 
in terms of the basic uuil i.Jei11g mout:led. Either the bridge 
or a subset thereof can be the fundamental unit for the optimi
zation model. This BMS can work on bridge segments as this 
subset. A segment is defined as one superstructure span with 
a unit of substructure (either a pier or an abutment). 

The difficulty in using the bridge as the unit of optimization 
is that many M&R activities will apply only to a given seg
ment, and not to the entire structure. Although tasks for a 
particular bridge can be determined given the survey infor
mation, it would be extremely difficult to predict future bridge 
maintenance needs without subdividing the structure into 
smaller units. Also, better cost estimations are possible when 
segments are the basic unit. 

Each bridge segment is categorized by its condition state 
and the strata to which it is assigned. Core condition states 
are developed on the basis of the structural condition ratings. 
The core condition state assigns a condition level of good, 
fair, poor, or critical to the major bridge elements, the deck, 
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superstructure, and substructure. This level is based on the 
detailed ratings of the individual components that comprise 
each element. Supplementing the core condition state param
eters are user-defined parameters, such as element age, or 
various functional deficiency parameters, such as insufficient 
deck width. 

Strata have been created in this BMS for two reasons. The 
first is to develop groups of bridges that exhibit similar deg
radation patterns. The second is to form groups that have 
approximately the same costs for the various M&R scopes. 
Subject to the desired performance goals in the optimization 
module, the interaction of cost and transition probabilities 
determines the optimal policy. User-defined stratifying vari
ables may include such items as bridge type, climate, and 
functional class. 

PREDICTION MODULE 

The prediction module is based on a Bayesian updating of tp 
values. These tp values are estimates of the probability of a 
segment moving from one condition state to another for the 
various M&R scopes. In the following paragraphs, the devel
opment of initial tp values is followed by a brief description 
of a direct Bayesian updating of the tp matrices that are gen
erated for later input to the Markovian-based optimization 
models. 

A Bayesian updating of the tp values necessitates assigning 
a prior probability distribution. This approach uses the mul
tivariate Dirichlet distribution (J). Given the current condi
tion state, the tp values for moving from that state to all 
possible states in the next year must add up to 1. The survey 
data updating the tp values is multinomial. The Dirichlet dis
tribution is a conjugate prior for the multinomial and may be 
considered a multivariate generalization of the beta distribu
tion, as the multinomial is a generalization of the binomial 
distribution. The Dirichlet distribution simultaneously updates 
each individual tp value for a given initial state and ensures 
that the resulting sum is 1. A separate Dirichlet distribution 
is used for each row of a given tp matrix. 

Each prior tp estimate can be treated as coming from a 
beta distribution when a Dirichlet multivariate prior distribu
tion is assumed for a given set of tp values. The beta prior 
distributions can be handled individually, and the probabilistic 
aspects of the posterior tp values are preserved (the sum of 
tp values for any row in the tp matrix equals 1). 

Given a Dirichlet prior distribution and multinomial observed 
data, the resulting posterior distribution is a Dirichlet distribu
tion. The tp values needed may be easily determined from 
the Bayesian updated matrix once all the new data have been 
used in the updating procedure (2). 

INITIAL DEVELOPMENT OF TRANSITION 
PROBABILITIES 

To develop initial tp values for each stratum is necessary. 
These tp values will provide the first prior distributions for 
the initial Bayesian updating. After implementation of the 
BMS, the Bayesian updating will result in self-adjustment 
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of the tp values to the specific conditions for each stratum. 
However, during the first years of its operation the initial tp 
values will still influence the operation of the Markovian 
decision-based optimization models. 

Expert opinion has been used to estimate the remaining 
useful life (RUL) of the deck, superstructure, and substruc
ture for different bridge types on the basis of current condition 
ratings. This information is used to develop the initial tp val
ues, which are updated annually with the actual survey data 
using Bayesian statistical methods. The initial tp matrix is 
made specific for each stratum. If sufficient historical data 
exist, they should be used to develop the initial tp values. 

The following example generates the initial tp values for a 
bridge deck changing condition levels from good to the pos
sible condition levels good, fair, poor, or critical in 1 year 
under routine maintenance. The same procedure will be used 
to develop the tp values for both superstructure and substruc
ture. These tp values include adjustment for the dependence 
of the elements. The initial core tp matrix (based on element 
condition ratings) results from multiplication of the associated 
individual-element tp value. 

Using the results of the analyzed expert opinion, the esti
mated RUL for an average deck in good condition results in 
a good RULoeck of 30 years (2). Similarly, the expected RUL 
for a top-of-the-range fair deck, (Top of fair RULoeck) equals 
22 years. The difference between the expected RUL for a 
typical good deck and the top of the fair deck level results in 
an expected difference [Delta(RUL)] of 8 years. 

A structural dependency table is then used to adjust the 
Delta(RUL), if necessary, to account for the condition of the 
structural elements. This procedure results in an Adj
Delta(RUL). Assuming the other elements are in good con
dition, this adjustment results in an AdjDelta(RUL) that is 
still 8 years. The resulting tp value for a deck going from good 
to fair, when the other elements are in good condition, may 
be estimated as Vs, which equals 0.125. The general formula 
for converting an AdjDelta(RUL) to a tp value is as follows: 

tp [AdjDelta(RUL)J- 1 (1) 

This formulation results in the correct expected transition 
times from one level to another. In the development of the 
initial tp matrix, an additional assumption is made that under 
normal conditions, a structural element will not degrade more 
than one level in a 1-year time period. Thus, the tp values 
for a deck transitioning from good to each of the four levels 
(when the other elements are in good condition) are calculated 
as follows: 

To Condition Level 

Good 
Fair 
Poor 
Critical 

Ip Value 

1.0 - 0.125 = 0.875 
1.0/(30 - 22) = 0.125 
0.0 
0.0 

Using the same approach, the other deck tp values may be 
calculated. In a similar manner, the tp values will be calculated 
for superstructure and substructure. These tp values are com
bined to give the initial joint tp values for the core condition 
states under routine maintenance. From this tp matrix, all 
other M&R scope tp matrices are generated. 
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BAYESIAN UPDATING USING MUL TIYEAR 
SURVEYS 

The initial tp values are I-year probabilities. Surveys per
formed in a given year may only cover part of the structures 
each year. The resulting data then reflect multiyear tp values 
instead of the needed 1-year tp values. Thus, the survey will 
represent different periods of time (k = 1, 2, ... , years) 
since the last survey on various structures. In this section, the 
methodology is introduced for using the multiyear data to 
generate 1-year tp values. If all bridges are surveyed each 
year, these steps are not necessary. 

After each year's survey, the prior tp values can easily be 
converted from 1-year tp value estimates to k-year (where k 
is a positive integer) tp value estimates by multiplying the tp 
matrix by itself as follows: 

(2) 

where 

T<k) k-year tp matrix, 
T 1-year tp matrix, and 

Tk = T multiplied by itself k times. 

Using the matrix T<kl, the Bayesian updating algorithm 
presented in B&SMS Conceptual Framework (2) may be applied 
using Year k survey data (k years since last survey). Thus T<kl 
represents the prior tp matrix that will be updated with the 
Year k survey data. A prior tp matrix is needed for each Year 
k that the current survey represents. For each Year k, there 
is a Bayesian updating step. Year k = 1 survey data will be 
used first, then Year k = 2 survey data, and so forth until 
all the survey data have been used in the tp updating. For 
example, if current survey data are available for bridges that 
were last surveyed 1, 2, 3, and 5 years ago, the mathematical 
process will generate the needed prior tp matrix for ~;ir.h nf 
the 4 years represented in the survey. 

The resulting updated tp values are k-year tp values. These 
tp values then need to be converted to (k + 1)-year tp values 
so that Year (k + 1) survey data can be used for updating 
purposes. Afle1 all llie ~u1 vey data have been used, the final 
conversion to 1-year tp values is used for the Markovian deci
sion line<ir prngrnm process. Tn the following, B1c represents 
the posterior k-year tp matrix (resulting matrix after the Baye
sian updating using Year k data), and Ak represents the pos
terior 1-year tp matrix after updating with Year k data. The 
mathematics for this is as follows: 

where 

Bk = k-year updated (posterior) tp matrix, 
Uk = eigenvector matrix of Bk, and 
Dk = diagonal matrix with eigenvalues on diagonal. 

Then, 

(3) 
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where 

Ak annual (or 1-year) updated tp matrix after updating 
with Year k data, 

Uk eigenvector matrix of Bk, and 
DJ:k = diagonal matrix Dk replaced with kth roots of its 

diagonals. 

It is easily seen that 

(5) 

After all the survey data have been used, the desired Baye
sian, updated, 1-year tp values are in the final tp matrix AP 
There is a separate matnx AF for each stratum . This posterior 
matrix AF becomes the prior tp matrix T in the subsequent 
year. This approat:h using eigenvalues also eliminates the need 
to multiply the matrix T by itself k times to generate the matrix 
T<kl. Similarly, the steps can be reduced by moving directly 
from a posterior k-year tp matrix to a prior (k + 1)-year tp 
matrix without having to create an intermediate posterior 
1-year tp matrix after each Year k Bayesian updating. 

As an illustration of this procedure, assume that the recent 
survey provides data for bridges that were last surveyed 1, 2, 
3, and 5 years ago. The prior matrix Twill be updated using 
the methodology in B&SMS Conceptual Framework (2) with 
the Year k = 1 data, resulting in the posterior tp matrix 8 1• 

Obviously, A1 = B,. Following the mathematics illustrated 
with matrix T, the matrix A1 becomes the prior 1-year tp 
matrix for updating with Year k = 2 data. Therefore the prior 
2-year tp matrix is A1 = A 1 •A, (or could be generated using 
the eigenvalue approach). This tp matrix is updated with the 
Year k = 2 data, resulting in the posterior 2-year tp matrix 
B2 . From this matrix, A2 is obtained, representing the pos
terior 1-year tp matrix after updating with Year k = 2 data. 
This in turn becomes the prior 1-year tp matrix for updating 
with Year k = 3 data. As a result, Mis the needed prior 3-
year tp matrix . (Another way to obtain A~ is to bypass gen
erating the 1-year posterior tp matrix and go directly from 
the Year 2 posterior tp matrix B2 to the desired prior tp matrix, 
A~. Because B2 = U2D2U2 1

, A~ = U2D~12U2 1 .) A~ is updated, 
resulting in the posterior 8 3 (3-year posterior tp matrix). After 
Year k = 3 data have been used, A3 is the 1-year posterior 
tp matrix and is then the prior 1-year tp matrix for subsequent 
updating with the Year k = 5 data. Aj is the prior 5-year tp 
matrix that is updated to give Bs, the posterior 5-year tp 
matrix. From this matrix, As is the desired 1-year tp matrix 
AF that provides the tp matrix needed for the Markov-based 
linear programs. Of course , As will be the prior 1-year tp 
matrix T in the following year. 

BMS OPTIMIZATION MODULE 

The three optimization models are the long-term (steady state) 
goal-setting model, the multiyear (short-term) planning model, 
and the financial exigency planning model. The long-term 
model is used to establish the steady state goals that provide 
targets for the multiyear and financial exigency models . The 
multiyear model addresses the year-by-year maintenance needs 
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for the planning horizon. Both the long-term and multiyear 
models solve a separate linear program for each stratum. The 
financial exigency model imposes a network-wide budget con
straint across all strata if the budget is insufficient to satisfy 
the sum of the multiyear models of the individual strata. 

The optimization models can be used to develop a set of 
maintenance plans for a bridge system over the desired plan
ning horizon. Various inputs are required to run each of the 
models. Management input, cost parameters, tp values, and 
condition survey data are necessary. This process is iterative. 
If satisfactory results are not obtained, looping backwards 
may be necessary. For example, if satisfactory budget esti
mates cannot be obtained from the short-term model, new 
performance objectives may need to be set. This would require 
running both the steady state and short-term models again . 

The following planning steps are necessary: 

Step 1. Survey the bridge system. The survey results are 
used to update the present estimates of tp values. They are 
also used to compute proportions of the bridges in each con
dition state to be used in the multiyear planning model and 
the comparator. 

Step 2. Determine realistic long-term performance goals by 
solving the long-term model until an acceptable level of annual 
expenditures is achieved. This iteration may involve lowering 
performance objectives to obtain a satisfactory budget level. 
The final result becomes a goal to be reached in the final year 
of the planning horizon for the multiyear optimization. 

Step 3. Determine performance objectives to be achieved 
for each year of the planning horizon. The present surveyed 
condition states describe the present performance level, and 
the long-term model solution indicates the performance 
objectives for the final year of the planning horizon. 

Step 4. Solve the multiyear model to determine the optimal 
maintenance policy for each year in the planning horizon and 
to develop the expected expenditures. If budgeting require
ments are too high between the first and last years of the 
planning horizon, the performance objectives can be revised. 

Step 5. If the multi year solution is satisfactory, the first
year maintenance policy is packaged into actual projects using 
the packager module. If the result is not satisfactory, Step 6 
is required. 

Step 6. If the multiyear solution does not provide satisfac
tory results because of inadequate fund availability for the 
first year, the financial exigency model is solved. This solution 
indicates the optimal first-year maintenance policy that stays 
within the first-year budget while computing the additional 
expenditures needed to successfully achieve the performance 
objectives for the remaining years in the planning horizon. 
Management must then decide whether this additional cost is 
excessive. If not, the solution may be considered as the plan 
for the entire planning horizon, and Step 5 is executed. If the 
additional cost is considered excessive, two options are (a) to 
request supplemental funds for the first year to relax the 
budget constraint, or (b) to reduce performance objectives 
(and subsequent costs) for succeeding years. As with the mul
tiyear model, the financial exigency model may be used iter
atively to revise performance objectives or to justify supple
mental budget requests. Once an acceptable solution is 
found, Step 5 is performed. The final step is to implement the 
packaged projects. 
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The linear programs for each of the three network models 
minimize cost subject to meeting the desired performance 
goals of top management. The Markovian-based linear pro
grams optimize the M&R scopes for bridge segments instead 
of the entire bridge, because this allows a more in-depth use 
of the available information. The system accommodates man
datory projects (in which specific actions are mandated for a 
given bridge) that have been determined on the basis of engi
neering or policy decisions. The mathematical structures of 
the linear programs are provided in the following section. 
More detailed explanation of all three optimization models 
are given in B&SMS Conceptual Framework (2). Modifying 
these models to include additional performance constraints is 
not difficult. 

LONG-TERM OPTIMIZATION MODEL 

The parameters of the long-term (or steady-state) model are 
defined as follows: 

Input Parameters 

I= index set (1, 2, ... , n) of condition states; 
D = index set (i1, i2 , ••• , ig) of desirable condition states; 
U = index set (i 1, i2 , • •• , ib) of undesirable condition 

states; 
S = index set (1, 2, ... , m) of bridge strata; 

M; = index set (a 1 , a2 , ..• , am) of feasible maintenance 
scopes a for bridge segments in condition state i; 

C;a(s) = average cost of maintenance scope a applied to one 
bridge segment in stratum s and condition state i; 

P;.is) = the probability that a segment in stratum sand con
dition state i that has scope a applied to it will tran
sition into condition state j in 1 year; 

p(s) maximum proportion of segments in stratum s that 
is allowed in an undesirable condition state; 

p(s) minimum proportion of segments in stratum s that 
should be in a desirable condition state; and 

N(s) number of segments in stratum s. 

Output Parameters (Decision Variables) 

w,.(s) = proportion of the segments in stratum s that are in 
condition state i and should receive maintenance 
scope a; and 

C(s) expected maintenance cost per segment in stratum 
s. 

The long-term optimization model for stratum s requires 
minimizing the expression 

(6) 

subject to 

for all a in M; and i in I (7) 

(8) 

0 for all j in I (9) 
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(10) 

.2; .2; w;a(s) s p(s) (11) 
ieU aeM; 

Minimizing the objective function of Equation 6 minimizes 
the average cost per segment in stratum s. To get the total 
expected long-term cost for the stratum, the solution C(s) 
must be multiplied by N(s), the number of segments in the 
stratum. Constraints 7 and 8 ensure that solutions satisfy the 
probability axioms. The w;a(s) functions may be thought of 
as the elements of a discrete joint probability distribution. 
Constraint 7 ensures the nonnegativity of each individual ele
ment in this joint probability distribution, and Constraint 8 
forces its sum over the possible sample space to equal 1. 
Constraint 9 provides the steady state equations for a Mar
kovian process (forcing the proportion of the network in con
dition state i to remain fixed, i.e., at a steady state). Con
straints 10 and 11 enforce the lower bound on the proportion 
of segments in desirable condition states and the upper bound 
on the proportion in undesirable states, respectively. Addi
tional constraints to satisfy particular functional deficiencies 
can be easily added as desired. 

MULTIYEAR OPTIMIZATION MODEL 

The notation for the multiyear model is defined as follows: 

Input Parameters 

I= index set (1, 2, ... , n) of condition states; 
D = index set (i1, i2 ,. •• , i8 ) of desirable condition states; 
U = index set (i1 , i2 , .•. , i,,) of undesirable condition 

states; 
S = index set (1, 2, ... , m) of bridge strata; 

M; = index set (a 1 , a2 , ••• , a,,,,) of feasible maintenance 
scopes a for bridge segments in condition state i; 

C;a(s) = average cost of applying maintenance scope a to one 
bridge segment in stratum s and condition state i; 

P;a/s) = probability that a segment in stratum sand condition 
state i that has scope a applied to it will change into 
condition state j in 1 year; 

p'(s) = maximum proportion of segments in stratum s allowed 
in an undesirable state in year t; 

p'(s) minimum proportion of segments in stratum s that 
should be in a desirable state in year t; 

w;a(s) lower bound on the proportion of segments in stra
tum s that is in condition state i and will receive 
maintenance scope a in Year 1, for mandatory proj
ects; 

q;(s) proportion of the segments in stratum sin condition 
state i at the beginning of Year 1; 

<!> = parameter for uniformly relaxing minimum desira
ble condition state standards in Year 2; 

f - parameter for uniformly relaxing maximum unde
sirable condition state standards in Year 2; 

g, h = tolerances; 
w~(s) = optimal values for the steady state (long-term) prob

lem; 
r = discount rate for computing net present value; and 
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C*(s) optimal cost per segment in stratum s from the steady 
state (long-term) model. 

Output Parameters (Decision Variable) 

wja(s) = proportion of the segments in stratum s that are in 
condition state i and should receive maintenance 
scope a in year t, 

C(s) expected net present value of cost per segment in 
stratum s of a maintenance policy, and 

E 1(s) expected expenditures in year tin stratum s. 

The finalized multiyear (short-term) optimization model for 
stratum s requires minimizing the expression 

T 

C(s) = 2:.2: .2; (1 + r) 1
-

1 wj"(s)C;"(s) (12) 
I= L iE/aeM; 

subject to 

for all i in I and a in M;, for t 

with known mandatory projects (13) 

for all i in /, a in M;, and 2 s t s T (14) 

(15) 

for all i in I (16) 

0 for all j in I 
(17) 

and 2 st s T 

(18) 

for 3 st< T (19) 

(20) 

for 3 st< T (21) 

for all i in I (22) 

for all i in I (23) 

.2: .2: wTa(s)C;a(s) s (1 + h)C*(s) 
ielae.M; 

(24) 

Minimizing the objective function of Equation 12 minimizes 
the average present cost per segment of maintenance over the 
time horizon of interest. To get the necessary (least) budget, 
E'(s), for stratum s for Year t, the following calculation is 
necessary: 

E'(s) = N(s) .2; .2; wja(s)C;a(s) 
ielae.M; 
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Constraint 13 accommodates the mandatory projects for 
Year 1 and beyond, if planned. Constraints 14 and 15 are 
based on probability and are needed to satisfy the fact that 
w~a(s) constitutes a discrete joint probability distribution. Con
straint 16 ensures that the optimal scopes associated with each 
condition state are assigned to the correct percentage of the 
network, a boundary condition that sets q;(s), the proportion 
of the network in each condition state in the first year, on the 
basis of survey results. Constraint 17 is a condition state bal
ance equation from Year t - 1 to Year t based on the use of 
the transition probabilities P;ai(s). 

Constraints 18 through 21 force the optimization to meet 
the performance objectives established by top management. 
Constraints 18 and 20 also allow a possible relaxation of the 
second-year performance objectives if desired, for instance, 
budget is insufficient. Constraints 22 and 23 allow a relaxation, 
if desired, in meeting the optimal steady state proportions. 
Constraint 24 allows a similar flexibility in meeting the optimal 
steady state average cost per segment in the last year (T) of 
the multiyear planning horizon. As with the long-term model, 
constraints can easily be added or modified to satisfy the goals 
of the organization. 

FINANCIAL EXIGENCY MODEL 

The multiyear model formulated in Equations 12 through 24 
is actually a series of identical (in mathematical structure) and 
independent models, one for each stratum. The financial exi
gency model ties all the strata models together with a common 
budget constraint and has a combined objective function. 
Constraints 13 through 24 do not change in the financial exi
gency model. This combined model is too large to solve directly 
by the simplex method used in commercial linear program
ming packages, but it may be solved using Lagrangean 
methods. The model requires minimizing the expre~sion 

T 

2:N(s)2: 2: L(l + r) 1-r W~a(s)C;a(s) 
SES iE/ aEMi I= 2 

where Sis the set of all strata indices, subject to Constraints 
13 through 24 for all s in S and the condition 

2:N(s)L 2: wfa(s)C;a(s) :5.: B (25) 
sES iEf nEMi 

where B is the available budget for the first year. 
This model seeks to minimize the present worth of the 

expected cost in Years 2 through T of the maintenance policies 
for Years 1 through T. Constraint 25 prevents expenditures 
in Year 1 from exceeding the budget. This constraint combines 
the problems of different strata into a single problem and 
destroys their independence. On the basis of work by Everett 
(3), the following modified version of the financial exigency 
model can be solved by selecting values for the Lagrange 
multiplier ex (2 ,4) that minimize the expression 

subject to Constraints 12 through 24 for all s in S. 
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Because this version has no budget constraint, it may be 
separated into the independent strata problems. Once sepa
rated, it is exactly like the original multiyear models, Equa
tions 12 through 24, except that the coefficient of the 
first-year expenditures is ex. Different values of ex will yield 
solutions that expend different amounts in Year 1. 

Everett's (3) results applied to this problem indicate that 
the amount expended in Year 1 is a monotonic, nonincreasing 
function of ex. Therefore, if, for a given ex, the solution pre
scribes a policy that expends too much money in the first year, 
a new solution can be obtained for a larger value of ex that 
will expend a smaller amount in Year 1. Everett also proves 
that if a given value of ex produces a solution in which the 
total of all first-year expenditures among the strata is equal 
to the first-year budget (B), then such a solution is a globally 
optimal solution to the original financial exigency model. The 
results of the financial exigency model are a step function for 
different values of ex. Thus the optimal solution is for the 
value of ex that either results in a sum of B or is as close as 
it can get to B. An efficient searching procedure on ex is used 
to find the requisite solution for the financial exigency model. 

PACKAGING MODULE 

The results of the optimization module are the proportions 
of the segments in a given stratum that should receive a par
ticular M&R scope. The packaging module converts these 
figures to detailed bridge-by-bridge maintenance actions for 
the entire network for the first year of the planning horizon. 
Four major processes are involved: translation, specification, 
ranking, and aggregation. The packager focuses on a project
level analysis and uses the detailed bridge-by-bridge survey 
information. 

The translation step converts the optimization output to 
specific M&R scopes for each segment in the network. The 
specification step uses the in-depth detailed survey informa
tion to further refine the M&R scopes into detailed activities 
for the entire bridge. The ranking step results in an ordered 
list of bridges that will guide the scheduling of the needed 
bridge work in the first year of the planning horizon. The 
aggregation step (if needed) consolidates all the bridge main
tenance projects for a given district, geographical area, or 
other desired subset of the network. 

COMPARATOR MODULE 

The role of the comparator module is to perform a quality 
control check on both the BMS and its implementation. The 
comparator module is a means of evaluating and monitoring 
the performance of the BMS against established practices and 
engineering judgment. 

The question of how well the BMS is performing and being 
implemented is addressed through items such as the following: 

•Differences between planned and actual M&R activities, 
• Differences between planned and actual costs, and 
• Differences between planned and actual proportion of 

segments in desirable condition. 
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The comparator module also determines the cause for these 
deviations. Many additional questions are addressed in the 
comparator module, which provides the feedback necessary 
both to improve the actual BMS mathematical models and to 
ensure that its results are being properly implemented. 

SUMMARY 

The BMS is a modular network stochastic optimization model 
that also addresses project-specific needs. It provides auto
matic updnting of the degradation models (transition proba
bilities) using Bayesian statistical procedures. If insufficient 
historical data are available, the system provides a method
ology to generate initial degradation models using ex
pert opinion. In the near future, organizations will find the ad
vantages of such BMS network models as they have with 
pavement management systems. 
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