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Modeling Fatigue Loads for Steel Bridges 

A.G. TALLIN AND T. PETRESHOCK 

Histograms of the gross vehicle weight (G VW) of trucks obtained 
from weigh-in-motion data for seven states are analyzed. These 
histograms are modeled by two bimodal distributions consisting 
of mixed pair of lognormal di tributions and a lognormal and a 
Type 111 largest extrem value distribution . Fatigue lifetimes for 
AASHTO categories A B C, and details are calculated from 
these models of the distribution of GVW by approximating the 
Miner's stress as a linear function of the mth root of the mth 
expected moment of the GVW. The lifetimes ba ed on the two 
models are compared with each other and with the results obtained 
by assuming a single lognormal distribution. Th results show 
that the lifetimes estimated using the bimod:1I distributi ns differ 
little from each other but are significantly shorter than the life­
times estimated from the single lognormal distribution. It was 
also noted that there are large differences between the estimated 
lifetimes of different AASHTO categories. 

Load models appropriate for the estimation of bridge relia­
bility due to fatigue life are different from those that are 
appropriate for the estimation of bridge reliability due to 
overloads. Although the occurrence of a single extraordinary 
load is important in the analysis of the ultimate capacity of a 
bridge, metal fatigue is concerned with the cumulative effect 
of loading at lower stress levels. As a result, a good fatigue 
model must be rich enough to model cumulative load effects. 

The problem of modeling traffic loads for fatigue analysis 
has been studied by a number of researchers (1-3). Several 
fatigue load models developed from weigh-in-motion data 
compiled by Snyder et al. ( 4) are discussed and the conse­
quences of assuming different models of the estimated lifetime 
of steel bridge components subject to fatigue loads due to 
trucks are examined. 

Two distinct methods are used to estimate fatigue lifetimes 
(5). The first is the S-N approach, in which the lifetime in 
terms of stress cycles N is related to the mth power of the 
stress range S: 

N = As-m (1) 

The second is the linear elastic fracture mechanics (LEFM) 
approach, in which the lifetime of a component is estimated 
from the relationship between the mth power of the stress 
intensity range 11K and the rate of crack growth da/dN: 

da 
dN 

C[Y(a)"'S"'] 

(2a) 

(2b) 

In Equations 1 and 2 the exponent m and factors A and C 
are material constants. In Equations 2, Y(a) is a function of 
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the crack length a. Because of its simplicity, the first approach 
is used extensively for design calculations, for example, in the 
AASHTO specifications ( 6). 

Whenever the stress range or stress intensity range cannot 
be assumed to be constant, the value for the stress range S 
in Equations 1 and 2 is modified to compensate for the time­
varying loads. This is usually done by using an equivalent 
constant stress range such as the Miner's stress SM, which has 
the form 

( 
1 i ~ N ) l /m 

SM= - 2: Sj 
N 1 ~ 1 

(3) 

where S, is the stress range at the ith cycle and m is the 
exponent used in Equations 1 and 2. Because the number of 
cycles in fatigue problems is large and the stress range in each 
cycle is randomly distributed, the Miner 's stress will approach 
the mth root of the mth expected moment of the underlying 
probability distribution for the stress range, or [E(S"')]1'"'. 

LOAD MODELS 

The data analyzed here were collected by Snyder et al. ( 4) 
from weigh-in-motion studies performed in eight states in 
which calibrated highway bridges were used as scales. Each 
data set ranges from 1,377 to 6,547 observations, with a total 
of 24,179 observations. Figure 1 is a typical histogram of the 
gross vehicle weight (GVW) arbitrarily normalized so that a 
GVW of 1.0 is the weight of the AASHTO HS-20 design 
vehicle (72 kips). No information concerning the number of 
axles corresponding to the individual truck weights was included 
in the results of this study. The distribution of GVW is char­
acterized by the two peaks or modes, which are a consequence 
of the distribution between heavier loaded trucks and lighter 
unloaded trucks. Although the lower mode appears to have 
a relatively wide peak, the upper mode is narrow and seems 
to have the shape characteristic of a negatively skewed dis­
tribution. 

If one assumes that the mechanism for the dual peaks is 
due to two separate populations, loaded and unloaded trucks, 
an appropriate model for the GVW should be a mixed distrib­
ution with a probability density function (pdf) of the form 

(4) 

where fL(w) and f H( w) are the partial pd f's of light and heavy 
trucks, respectively, and pis the probability that an individual 
truck is a member of the light-truck population. 

Two mixed distribution models were developed for each of 
the eight data sets. The first model (LN-LN) assumed that 
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both the light and heavy trucks were distributed according to 
a lognormal distribution with a pdf of the form 

1 
y(2n)'ll8y 

x exp {- 112 [L ln(y/my)r} y ~ o (5) 

where mv is the median of Y and 8} is the variance of In Y. 
In an attempt to model the left skewness of the distribution 

of the heavier trucks, the second model (LN-ET3) used a 
lognormal distribution for the light trucks and a Type III 
largest extreme value distribution for the heavy trucks with 
a pdf of the form 

fv(Y) - k (w - y)k-1 
W - U IV - U 

x exp[ - (:~ = ~rJ y s w (6) 

where k is the shape factor, u is the location parameter, and 
w is the upper limit of possible values . 
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The mean-squared error between the measured and mixed 
distributions LN-LN and LN-ET3 was used to measure good­
ness of fit: 

2:[f(w;0) - f,,,(w)J2 (7) 

where fm(w) is the measured density and 0 is the vector of 
five or six parameters involved in the LN-LN and LN-ET3 
models, (p , my" Bv., my,, Oy2) and (p, my., Oy" k , u, w), re­
spectively. Powell unconstrained optimization (7) was used 
for each set of data to find the optimal set 0 resulting in the 
minimum of Equation 7. 

The resulting parameters and the mean-squared errors are 
given in Tables 1 and 2 for the LN-LN and LN-ET3 models , 
respectively, for the distributions of normalized GVW for 
seven states tabulated by Snyder et al. The mean-squared 
errors associated with the LN-ET3 model are lower than those 
for the LN-LN model. 

COMPARISON 

To compare the effects of assuming each of the two postulated 
models, estimated lifetimes for AASHTO A, B, C, and E 
category details were calculated . Each detail was assumed to 
be designed for fatigue at the AASHTO maximum allowable 
stress range for the category. It is assumed that the stress 
range experienced by a detail is a linear function of the GVW 
of the truck causing the stress . If the fatigue criterion governs, 
the maximum allowable design fatigue stress range corre­
sponds to the design truck weight and to the normalized truck 
weight of 1.0. 

Using Equation 1 with the stress range equal to the Miner's 
stress= [E(S"')J1'"', the lifetime in years can be approximated 
by 

AF0m/E(W"') 
L = ADTT x 365 (S) 

where 

A and m = material properties, 
ADTT = average daily truck traffic, 

L = detail life in years , and 
F0 = fatigue design stress. 

TABLE 1 ESTIMATED PARAMETERS FOR LN-LN MODEL 

Lognormal 1 Lognormal 2 
State llly, liy, p 1lly? 6Y? m. s.e 

Arkansas 0.4491 0 . 313 .~ 0 ' 4?91 0.8981 0 .1323 1.552 

California 0.3947 0.2638 0.5671 0.9660 0.1868 0.564 

Georgia 0.3906 0 . 2551 0.5976 0 . 8383 0.1718 0.3478 

Illinois 0.5236 0.3551 0. 5077 0.9485 0.1935 0.1405 

New York 0.4137 0.3129 0.6329 0.9654 0.1529 0.3187 

Ohio 0.5038 0.3055 0.5792 1.0015 0.1255 0.2572 

Texai; 0.11265 0 . 3122 0.5290 1. 0288 0 . 1857 0.5231 



TABLE 2 ESTIMATED PARAMETERS FOR LN-ET3 MODEL 

Lognormal Type III 
State mY1 0

Y1 
p w u k m.s.e 

Arkansas 0.5354 0.5404 0 . 6391 1.0578 0. 8813 2 .4144 0.9043 

California 0.3808 0.2229 0.4798 1. 2194 0.8054 1. 6182 0.213 

Georgia 0 . 3689 0.1601 0.3150 1.1520 0 . 5696 1.9122 0 . 07381 

Illinois 0.4353 0.2449 0 . 2448 1. 3958 0 . 7702 2.5764 0.07652 

New York 0.3899 0.2587 0.5178 1.1728 0.7989 1. 5873 0.1805 

Ohio 0 . 4849 0.2759 0 . 5321 1. 2504 0. 9292 2 . 2981 0.1657 

Texas 0.3908 0.1754 0 . 2622 1. 2441 0.6717 1. 3520 0.3285 

TABLE 3 COMPARISON OF PREDICTED LIFETIMES 

Fatigue Sensitive Detai l 
Proper t y A B c E 

FD 24 . 0 16.0 11.0 5.0 
m 9 2 . 31 2.55 3.10 2 . 80 

A (xlO ) 6 .07 3 . 72 12.17 1.04 
State Load Lifetime in Years 

Model A B c E 

Arkansas LN-LN 19.53 16.55 40.19 61.42 

LN-ET3 17.97 14. 77 32.49 52.58 

LN 23.59 21.12 58 . 99 83.53 

California LN-LN 20.85 17.34 39. 92 62.90 

LN-ET3 23.26 19.70 47.37 72.85 

LN 27.97 25.40 72. 99 85.37 

Georgia LN-LN 30.27 26.44 68.36 101. 21 

LN-ET3 31. 29 27.37 70.82 104.77 

LN 35.07 32.66 99.75 134.68 

Illinois LN-LN 16.66 13 .81 31. 75 50.00 

LN-ET3 17 . 67 14.79 34.82 54.14 

LN 18.96 16.60 43.95 64.03 

New York LN-LN 23.15 19.53 46.44 71.89 

LN-ET3 25.34 21. 70 53.42 81.12 

LN 27. 92 25.34 72. 90 101. 67 

Ohio LN-LN 17.95 14. 99 35.01 54.66 

LN-ET3 18.96 15.95 37.97 58.66 

LN 19.64 17.26 46.05 66.79 

Texas LN-LN 16.41 13 .40 29 . 59 47.64 

LN-ET3 29.26 24.49 37.64 73.40 

LN 21. 86 19.32 51. 59 75.12 
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The quantity E(W"') is the mth expected moment of the nor­
malized GVW distribution. 

(9) 

The fatigue design stress FD is a function of the detail type 
ranging from 2.0 ksi for cover plate terminus (Category E) 
rn 24.Q ksi at web flange connections in rolled beams ~Cat­
egory A). 

Shown in Table 3 are the estimated lifetimes based on the 
two double-mode models LN-LN and LN-ETI developed here. 
For comparison purposes, lifetimes based on a single LN stress 
range distribution are also included in Table 3. For each of 
the seven states the lifetimes are estimated for four AASHTO 
detail categories A, B, C, and E. The ADTI was assumed 
to be 1,000 vehicles per day and the material constants are 
those tabulated by Nolan and Albrecht (8) from tests of a 
large number of typical fatigue-sensitive details in which run­
out effects were ignored. 

CONCLlJSIONS 

The results show that, except for the data set from Texas, the 
estimated lifetimes are insensitive to which double-mode stress 
range model was used. In the case of Texas , the low central 
value for fH in the LN-ET3 model, u = 0.67, compared with 
the high median for fH in the LN-LN model, myi = 1.03, 
results in large differences in the estimated lifetimes. How­
ever , in all other states the estimated lifetimes differ by less 
than 10 percent , which, in light of the precision of such meth­
ods, is insignificant. On the other hand, estimated lifetimes 
based on the single-mode distribution are all longer than the 
estimates based on the LN-LN and LN-ET3 stress range models. 
The greatest difference was for Category C details, which have 
the steepest S-N relationship, with m = 3.1. 

The estimated lifetimes are highly sensitive to design stresses 
and material properties. Although the S-N curves are signif­
icantly higher for Category A details than for Category E 
details, the use of significantly lower design stresses for Cat­
egory E details causes estimated lifetimes for Category E 
details to be much longer than those for Category A details. 
The results in Table 3 ignore any run-out or fatigue limit 
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effects, and as a result, all stress cycles cause damage. This 
may account for short lifetime estimates and possibly the large 
differences in the estirn;iterl lifetimes between details. How­
ever , the results point to possible large discrepancies between 
the fatigue lifetimes for various categories. 

The results presented here suggest that there are discrep­
ancies between the lifetimes estimated from single-mode stress 
distributions and those estimated from the double-mode models 
p1upu~ed here . The results aiso suggest thac more reaiiscic 
modeling of the stress range may be even more important for 
richer fatigue models such as S-N curves combined with fatigue 
limits or Paris crack growth relations with threshold stress 
intensity ranges. 
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