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Bearing Capacity Prediction from Pile 
Dynamics 

M.A. SATTER 

A new method of predicting static bearing capacity of a pile 
foundation is presented. The method utilizes the dynamic behav
ior of the pile. In particular, the pile velocity, the displacement, 
and the driving force records are the necessary parameters. The 
analysis is conducted through a nonlinear differential equation 
that originates from the assumption that the soil reaction to the 
pile is a nonlinear function of the pile displacement. Examples 
hased on data of four impact-driven field piles are presented. In 
these cases, since the driving forcing functions are not regular, it 
was necessary to resort to numerical solution of the governing 
equation by using the "continuous analytic continuation" method. 
The predicted static bearing capacity results of the piles have 
good agreement with those obtained from the field tests. 

Prediction of static bearing capacity of an embedded pile is 
of great importance in pile foundation engineering. The con
ventional method of estimating static bearing capacity through 
static load tests is often difficult and expensive. It is therefore 
highly desirable to look for an easy and cheap alternative 
method of estimating pile bearing capacity. There have been 
several attempts (1-11) over the recent past to determine 
bearing capacity through dynamic tests, which are considered 
to be relatively easy and cheap. The dynamic response of a 
pile can be obtained by suitable instrumentation while the 
pile is being installed by vibrations or impacts, thereby elim
inating separate test arrangement as is the case with static 
load tests. 

Dynamic response of an embedded pile depends on the 
driving force, the physical properties of the pile, and the 
characteristics of the soil resistance. By measuring the pile 
response it is possible to obtain information about soil reac
tion, which then leads to determination of pile bearing capac
ity. Since soil remolding can occur during and after pile driv
ing, soil reaction (resistance) will vary depending on the stage 
at which the pile is being tested. Dynamic tests can take into 
account the soil characteristics prevailing at the time of the 
tests. The level of complexity of the dynamic response analysis 
and the accuracy of the predicted results depends, among 
others, on the assumed pile-soil model. Scanlan and Tomko 
(J) in their study on impact-driven piles employed a rigid
elastic pile model with soil resistance (reaction) acting along 
the sides of the piles, the tip resistance being negligible. In 
computing the results from the governing equations, four 
parameters were chosen and adjusted to obtain a best match 
between the predicted and measured results. It was stated 
that the soil resistance was negligible or small until the pile 
velocity reached about the maximum. Here it had a constant 
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value, which in principle was the static bearing capacity of 
the pile just after driving. The study also indicated that a long 
pile "compresses up" initially and then "descends into the 
soil more or less like a rigid body". For a short pile, "the 
rigid body action is the principal one, with only a relatively 
small elastic effect exhibiting oscillations about a mean much 
nearer to zero". 

Rauche, Moses, and Goble (2) undertook a study to predict 
pile static bearing capacity by using a concept of "measured 
delta curve" that gave a measure of pile bearing capacity. 
The delta curve is obtained from the following consideration. 
Two identical piles, one free and the other embedded, are 
tested for identical input forces. First, the force level at the 
top of the free pile is computed, which acts as the reference 
force. Then, the force level at the top of the embedded pile 
is measured. The difference betvveen the force levels of the 
free pile and the embedded pile is the force due to the soil 
resistance and is defined as the "delta curve". 

Both the aforementioned studies (J,2) utilize wave equa
tions and have met with varying degrees of success in pre
dicting pile static bearing capacity. 

The present study attempts to predict pile static bearing 
capacity just after driving through a new concept of "dynamic 
soil resistance" that was developed from laboratory tests on 
model piles (3). The soil used in the laboratory tests was Shiraz 
brown subangular sand corresponding to No. 16/40 sieve size. 
According to this concept, the soil imparts an impactive resis
tance (reaction) at certain stages of the pile motion. By mea
suring the pile response, it is possible to estimate the dynamic 
soil resistance, from which it is possible to derive information 
about static bearing capacity at the time of driving or soon 
after. The impactive soil reaction resembles the "delta curve" 
(2) and in some respects is similar to the type of soil resistance 
mentioned by Scanlan and Tomko (J). Their field test results 
were obtained for silty soil with silt content varying from 56 
to 82 percent, clay from 42 to 14 percent, and fine sand from 
2 to 4 percent. The piles were of steel pipe construction and 
were impact driven. Static load capacities were determined 
by both ML and CRP tests (J). 

Instruments and techniques of pile response measurement 
have been studied by several authors (12,13). Accurate mea
surement of pile response is essential for proper evaluation 
of the pile static bearing capacity from dynamic tests. A 
sophisticated computer program, CAPW AP, has been devel
oped hased on the stress-wave theory of the elastic pile model 
to predict bearing capacity from dynamic tests (14). Although 
the new concept can be applied to an elastic pile model, the 
present investigation is restricted to a rigid body model. The 
agreement between the predicted and the field test results is 
remarkable, and justifies the assumptions. 
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REVIEW OF SOME SIMPLE METHODS 

For the purpose of comparing the existing simplified methods 
and the theoretical method to be presented later, it is nec
essary to quote the equations that are currently used to predict 
pile static bearing capacity. The methods have been used 
extensively in the past in the field. These methods are based 
on rigid body pile models. The equation for the static bearing 
capacity, R0 , is given by 

Ro = F(to) - Mf(to) 

where 

t0 = the time of zero velocity; 
M = mass of pile; 

F(t0 ) = pile force at time t0 ; and 
f(t0 ) = acceleration at time t0 • 

(1) 

Equation 1 does not provide very satisfactory results. To 
improve this, an average value of the acceleration is added 
to Equation 1, which becomes 

M f," R0 = F(t0 ) - -- f(t)dt 
t1 - t2 ,, 

(2) 

where t1 is the time of maximum force and t2 equals t0 • Using 
the concept of stress wave travelling time, Equation 2 can be 
improved further: 

_ F(t1) + F(t1 + 21/c) _ Mc f,'1 + (21/c) 
Ro -

2 2
l 

11 
f(t)dt (3) 

Again, t1 is set equal to t0 , c equals stress wave propagation 
velocity in the pile material, and l equals pile length. It should 
be noted that Equations 1-3 use input force and acceleration 
records of the pile for evaluating the static bearing capacity. 

THEORETICAL CONCEPTS 

The present theoretical concept arises from an investigation 
of driving a low frequency vibropile, the details of which 
appear elsewhere (3). It was found during the driving of the 
vibropile that a pile under a certain static surcharge required 
a certain input power, called optimum power level, to achieve 
a certain maximum depth of penetration. If the input power 
is increased beyond the optimum level without changing the 
static surcharge, the pile will not penetrate the soil further, 
but it will undergo steady state vibration. It will also induce 
impactive reaction from the soil. The present theory is pro
posed for the postoptimum pile condition, and it assumes that 
the soil resistance is proportional to the cube of the pile dynamic 
displacement. The pile is assumed to be rigid, an assumption 
that is certainly valid for low-frequency vibropile driving and 
also valid to a large extent for impact pile driving (J). In order 
to elucidate the theory, it is first developed for a pile driven 
by a low-frequency vibratory force; later a more general 
forcing function is included in the theory. 

The equation of motion of the pile during low-frequency 
steady state vibration is (3) 

Mx" + R[H(t - t1) - H(t - t2)}x3 

= S + F0 sin wt ( 4) 
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where 

S = static surcharge; 
F0 , w = amplitude and frequency, respectively, of the 

forcing function; 
R = unknown soil constant; and 

H(t, t') = filter function. 

The filter function (15) is introduced to ensure that R has a 
certain magnitude (R > 0) during pile-soil interaction; other
wise R is assumed to be zero. The pile-soil interaction takes 
place in the time interval, (t2 - t1), during the downward 
stroke of the pile. 

The solution of Equation 4 is assumed to be of the form, 
x = a sin wt, where the amplitude, a, is unknown. 
Substituting for x, we obtain 

S {F0 3Ra
3 

} . x" + w2x = - + - + w2a - --[H(t t')J smwt 
M M 4M ' 

Ra3 

+ 
4
M[H(t,t')Jsin3wt (5) 

In order to avoid the secular term, we must impose the 
condition 

F. 3Ra3 

~ + w2a -
4
M [H(t,t')J = 0 (6) 

For simplicity, the filter function may be dropped, but the 
fact that it is associated with R must be remembered. Equation 
6 may then be written as 

R = 4(F0 + Mw2a)/3a3 (7a) 

or 

Ra3 = 4(F0 + Mw2a)/3 (7b) 

Equation 7a is very significant, because it relates the two 
unknown quantities, a and R. If the amplitude, a, is measured, 
R can be evaluated from Equation 7a. 

Returning to Equation 5, deleting the secular term reduces 
the equation to 

S Ra3 

x" + w2x = M + 
4

M [H(t,t')] sin 3wt (8) 

Assuming that, at t = T/4, where Tis the periodic time, x(t) 
= a and x'(t) = 0, the solution of Equation 8 is (3) 

x(t) = :w2 + (a - M~2) sin wt 

Ra3 (. . 3 ) - 32Mw2 sm wt + sm wt (9) 

Equation 4 is formulated for a rigid pile that is driven by 
a low-frequency vibratory force. The formulation may be gen
eralized by introducing a general forcing function, including 
impacts, and a damping term. As mentioned earlier, the pile 
may be considered rigid even for impactive loads without great 
loss of accuracy (1). Soil damping is, of course, complicated. 
In several analyses (7-10) the damping is considered to be 



122 

viscous-an assumption that is also adapted here. Thus, 
Equation 4 may be reformulated as 

Mx" + Cx' + Rx3 = S + F(t) (10) 

Equation 10 is evidently nonlinear; its solution depends on 
the complexity of F(t). For Equation 4, F(t) = F0 sin wt and 
C = 0, so its solution is given by Equation 9. But for a 
complicated F(t), a reasonable analytical solution rnfly not he 
obtainable. For field problems in which F(t) may not be 
expressed analytically, Equation 10 should be solved through 
numerical integration. 

One such numerical method is known as "continuous ana
lytic continuation" (16). This method is simple to program 
and provides fairly good accuracy. Two equations expressing 
instantaneous displacement and velocity are used: 

x(t) = X0 + x~ilt + ~ (ilt)2 + ~ (.:it) 

and 

x~·J 
+ .... + -

1 
(.:it)" + R,, 

n. 

I ( ) ' " A X~ (A )2 
X t = x0 + x0 ul + 2! ut + 

x~I) I ,'\_ 

+ (11 - 1)! lil!)" + R;, 

where 

R
11 

= x~n + 1l (.:it)"+ 1/(n + 1)!; 
R~ = x~· + t) (ilt)"/n!; and 

tP = t0 + 0(.:it), for 0 :S 0 :S 1. 

(11) 

(12) 

Using the initial conditions, the values of x and x' for the 
first point at t = 10 + ill are computed. The computed point 
is considered as an initial point for computing the values of 
x and x' at t = t0 + 2.:it. The procedure is repeated such that 
the values of x and x' obtained for each point serve as the 
initial conditions for the successive point. 

APPLICATION OF THE THEORY 

The theory is applied below to a problem taken from Scanlan 
and Tomko (1). The driving forces for four different piles 
have been reproduced graphically in Figure 1. The pile data 
and the dynamic records are shown in Figures 2-5. From the 
driving force records, it is clear the forces may not be repre
sented by simple analytical functions, and thus the numerical 
method outlined earlier must be used. The initial condition 
at t = 0 are x0 - 0 and x~ = 0. Denoting the derivatives of 

. h b dx ' d2x ,, . x wit respect to I y dt = x , dt 2 = x , etc., we rewnte 

Equation 10 as 

c 
x" + -- x' 

M 
+ R x3 = .§.._ I- F(t) 

M M M 

OT 

x" = [S + F(t) - Cx' - Rx3 ]/M (13) 
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FIGURE 1 Pile input forcing records (source: ASCE). 

The third, fourth, and fifth derivatives of x are 

x"' = [F'(t) - Cx" - 3Rx2x']IM (14) 

x•v = { F"(t) - Cx"' - 3R[2x(x')2 + x2x"] }M (15) 

xv = { F"'(t) - Cx;v - 3R[2(x')3 

+ 6xx'x" + x2x"'] }1M (16) 

The derivatives of the forcing functions were obtained by 
numerical differentiation, assuming that each derivative is a 
linear function of time, t. Thus, 

F' (t) = {F(t + ill) - F(t)}I .:it, 
F"(t) = {F'(t + flt) - F'(t)}IM, and 
F111(t) = {F"(t + flt) - F"(t)}lllt. 

At t = 0, F~(t) = F~(t) = F~(t) = 0. 
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FIGURE 2 Measured dynamic response of Pile 1 (source: 
ASCE). 
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FIGURE 3 Measured dynamic response of Pile 2 (source: 
ASCE). 
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FIGURE 4 Measured dynamic response of Pile 3 (source: 
ASCE). 
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The mass of the pile may be calculated easily from the pile 
data. The constant, R, which is related to the soil properties, 
may also be evaluated from Equation 7a, provided an estimate 
of the dynamic displacement, a, and the level of pile accel
eration are obtained from the measured records. Care must 
be taken in evaluating the numerical value of the dynamic 
displacement, a, from the pile displacement record. Its numer
ical value should be chosen so that Xmax given by Equation 11 
matches the experimentally obtained maximum displacement 
value. A good estimate for the dynamic displacement has been 
found to be the simple average value of the displacement 
record over the interval bounded by the maximum and sub
sequent zero velocities. This procedure ensures that Xmax cal
culated from Equation 11 will match approximately and 
will not exceed the maximum displacement obtained 
experimentally. 

According to Equation 7a, the mean acceleration level over 
the interval bounded by the maximum and the subsequent 
zero velocities is also required. The mean value of the accel
eration must be evaluated from the acceleration records, 
although care should be taken to separate the acceleration 
due to elastic response of the pile. For a preliminary estimate 
of the value of R, the mean acceleration level may be con
sidered negligible and then improved by the method explained 
below. The value of the forcing function, F, may be taken at 
the instant at which the measured instantaneous displacement 
equals the average value mentioned above. Hence, the con
stant R may be evaluated from Equation 7a and this will lead 
to the numerical solution of Equation 10. 

In order to evaluate the pile static bearing capacity, it is 
necessary to plot the curves of dynamic soil resistance (Rx3

) 

and the pile velocity. The dynamic soil resistance at the point 
where the pile velocity passes through the maximum repre
sents the static bearing capacity. Scanlan and Tomko (1) also 
evaluated the static bearing capacity at around the maximum 
velocity measured at the pile top. The records of displace
ment, velocity, and dynamic soil resistance (Rx3

) obtained 
from Equations 11 and 12 for the four piles are shown in 
Figures 6-9. The results are summarized in Table 1. 

As mentioned earlier, the value of the constant, R, was 
calculated from Equation 7a by considering the pile de
celeration to be negligible. This was because of the difficulty 
of distinguishing the elastic and rigid body parts of deceler
ation from the measured acceleration records. The calcula
tions for approximate values of the static bearing capacity of 
various piles reported in Table 1 utilize the values of R cal
culated by considering the pile deceleration to be negligible. 
It has been found that the bearing capacity values may be 
improved significantly without resorting to the measured 
acceleration curve. To improve the results, it is necessary to 
calculate the pile maximum displacement for a range of R 
while keeping the average dynamic displacement constant. 
The value of R that yields the maximum displacement equal 
to that obtained from measurements on the pile concerned is 
to be accepted as the improved value. Then, the static bearing 
capacity is calculated simply by multiplying the improved value 
of R with the cubic power of displacement at (or just after) 
the instant the pile achieves the maximum velocity. The pre
dicted improved values of static bearing capacities for various 
piles are also shown in Table 1. 

In the absence of any reported values for piles statically 
surcharged and damping coefficient, these have been consid-
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FIGURE 6 Predicted response of Pile 1. 

ered small. Depending on the method of pile driving, these 
factors have different roles to play. In vibropile driving static 
surcharge is necessary, while in impact pile driving this may 
not be the case. Also, damping coefficient along the pile may 
be small due to a small clearance that may be created between 
the pile and the soil during driving; but after soil settlement 
has taken place, the damping coefficient may not he 
negligible. 

The numerical computations for all the example piles have 
been carried out by taking a time increment of 0.25 ms. 

DISCUSSION OF RESULTS 

The dynamic soil resistance as well as the displacement and 
velocity responses for various piles have been plotted in Fig
ures 6 through 9 using the approximate value of R and are 
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FIGURE 7 Predicted response of Pile 2. 

therefore intended to show the general trend of the pile dynamic 
behavior. It is to be noted that the main aim of this paper is 
to determine the static bearing capacities from the dynamic 
behavior of piles. The results are summarized in Table 1. 

In all cases, the displacement and the velocity curves show 
the same general trend as those of the corresponding exper
imental curves. As mentioned, it is necessary to adjust the 
value of R so that the computed maximum displacement cor
responds to the experimentally obtained maximum displace
ment. The static bearing capacity of a pile is evaluated from 
the dynamic soil resistance curve at the instant of (or just 
after) the maximum velocity. The dynamic soil resistance could 
be much higher than the static bearing capacity. 

The predicted bearing capacity for Pile 1 is 903 kN and the 
experimental value is 952 kN, showing a discrepancy of less 
than 5 percent. The discrepancy between measured and cal-
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FIGURE 8 Predicted response of Pile 3. 

culated maximum displacements is about 2.5 percent. Agree
ment between the measured and calculated static bearing 
capacity is excellent for Pile 2. The calculated bearing capacity 
is 1,115 kN as against 1,121 kN obtained from field tests; the 
discrepancy between these values is less than 1 percent. For 
Pile 3, the predicted bearing capacity is 875 kN, and the 
corresponding measured value is 908 kN. The discrepancy is 
less than 4 percent. Pile 4 is the same pile as Pile 3, but it 
was redriven after the ground had set. The predicted bearing 
capacity is 960 kN, as opposed to 1,077 kN obtained from the 
field tests. The discrepancy in this case is about 11 percent, 
which is relatively high. The cause of the discrepancy is prob
ably ground settlement, which has a damping effect on the 
sides of the pile. To account for damping, further computa
tions were carried out with an assumed value of 87.6 kN s/m 
for the damping coefficient in Equation 10. The new bearing 
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capacity improved to 1,006 kN, narrowing the difference 
between the measured and predicted values to 6.5 percent 
(see Table 1). 

In all the cases cited above, the predicted bearing capacity 
is slightly lower than the corresponding field test value. Some 
discrepancy is probably due to not accounting for the damping 
coefficient, which is difficult to measure. However, prediction 
of a slightly lower value than the actual provides more con
ficlence in the construction of a pile foundation. 

Although the present method has been applied to a limited 
number of cases, it appears to predict pile static bearing capac
ity fairly accurately and appears valid just after driving for 
different kinds of soils. This is because the pile acceleration 
response that is normally measured takes into account the 
individual soil characteristics. The numerical solution is 
straightforward, requiring very little expertise in computer 
programming. Actual computation time for each pile is 
relatively small. 

CONCLUSIONS 

The study has provided a new and simple technique for pre
dicting pile bearing capacity through the use of dynamic soil 
resistance concept. The driving force and the acceleration 
response are the only quantities that must be measured. It is, 
however, necessary to obtain from the acceleration records 
the pile velocity and displacement for calculation purposes. 
The rigid-pile assumption for determination of static bearing 
capacity seems to be confirmed by the good agreement between 
the predicted and measured results. The test procedure could 
be applied to embedded piles even after soil settlement had 
taken place, but the effect of damping should be included in 
the analysis. The numerical method presented is relatively 
simple and accurate. 
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