
TRANSPORTATION RESEARCH RECORD 1277 153

Development of an Expert System for
Preliminary Selection of Pile Foundation

C. H. JuANG AND M. L. ULSHAFER

The development f an expert system for election of pile type
for design of a pile foundation i documented. The expert ystem
Pile Selection vcr ion l.O (P 1), incorporntes many unique fea­
tures. Among them are approximate rea oning with fuzzy logic,
the blackboard architecture, and the em ulated parallel processing
of fuzzy productio11 rules. An example using P l for pile election
is presented, and possible enhancement of the system is discussed.

Preliminary selection of pile type is an important step in the
design and construction of pile foundation. Proper initial
selection can shorten the design process and reduce the proj­
ect cost. For experienced engineers, this initial task of choos­
ing one or more piles for further design consideration may
not be a problem. However, it may be quite challenging for
persons with less experience because there are numerous
uncertainties involved in several areas, including loading
requirement, subsurface soil conditions, pile material prop­
erties , methods of construction, nuisance driving effects, and
space and time constraints. An expert system that can provide
a consistent and reliable selection of pile foundation , taking
into account these factors, would certainly be very useful.
This is the motivation for developing the system Pile Selection
version 1 (PSl) .

The PSl system was written in FLOPS, a Fuzzy LOgic
Production System created by Siler and Tucker (1). This paper
will briefly describe FLOPS, followed by detailed discussion
of the development of PSl.

FLOPS FEATURES

FLOPS is an expert system shell written in C language for
use in the Microsoft Disk Operating System (MS-DOS) or
compatible DOS environment on microcomputers. FLOPS
has several unique features that provide a great deal of power
and flexibility. A brief summary of the FLOPS features
follows.

Approximate Reasoning with Fuzzy Logic

FLOPS uses fuzzy logic invented by Zadeh (2,3). Fuzzy sets
and logic allow for a better model of an expert's reasoning

Civil Engineering Department, Clemson University, Clemson, S.C.
29634.

process. The subject of civil engineering applications of fuzzy
sets is beyond the scope of this paper and has been
documented elsewhere (4-9).

Deductive and Inductive Reasoning

FLOPS is a production system and as such its basic element
is a " rule." The deductive logic implemented in FLOPS is no
different than most expert systems. It fires the production
rules sequentially . If the data permits more than one rule to
be "fireable," deductive systems select one rule for firing;
other fireable rules are stacked for backtracking later. FLOPS,
however, also implements inductive reasoning that considers
many possible outcomes at once. FLOPS' parallel rule firing
scheme for implementing the inductive reasoning is rather
unique. All fireable rules are fired concurrently, and thus no
rule remains to be stacked for backtracking. FLOPS adopts
a weakly monotonic fuzzy logic for its truth maintenance to
resolve the memory conflict problem. When applicable, the
inductive mode of FLOPS is much faster than the deductive
mode to reach a conclusion.

Blackboard Architecture

FLOPS employs a relational structure for data stored on a
blackboard, a disk on microcomputers in the context of this
paper. The ability of one FLOPS program to call another and
to exchange data through the blackboard could overcome the
memory limitations of small microcomputers.

Expert knowledge is divided into two classes in FLOPS.
One is factual knowledge , which belongs in a data base. The
other is expert skills , which belong in rules . One of these
expert skills knows how to use the expert factual knowledge.
The programmer-written rules can generate the production
rules based on the factual knowledge during the program
execution.

Two methods of communicating with external programs are
available in FLOPS using a call command. One type of call
transmits a command string to the called program in the DOS
environment. The other is a call by reference to a C program
and thus must follow calling convention used in the C lan­
guage. Details of the above features as well as others can be
found in FLOPS manual (1).

154

FACTORS AFFECTING SELECTION OF PILE
TYPE

To arrive at the optimum pile foundation solution, the engi­
neer must have thorough information and understanding of
(1) foundation loads, (2) subsurface soil and rock conditions
and properties, and (3) current practices in pile design and
construction. Based on site conditions and design require­
ments, the designer may select two or more alternatives for
further consideration. Analysis will be made to check out
bearing capacity and settlement requirements. Comparison
of the costs of acceptable alternatives then follows. This proc­
ess might repeat one or more times to reach the optimum
design.

Undoubtedly, the initial pile selection is an important step
in the process. However, it is often not given proper coverage
in the formal college engineering education. Years of appren­
ticeship seem to be the only way to acquire the needed expe­
rience for mastering this task. To bridge this gap, PSl was
created to assist the designers with various backgrounds on
this very task of preliminary pile selection.

The selection of appropriate pile type for any given set of
circumstances depends upon many variables. In particular,
the type of subsoil, the groundwater condition, the topog­
raphy of the site, the design loads, the construction concerns,
•·u.,,rl tha 1..-.,.,.rit-inn .n.f thco c1t.:::io 1n ,..,,,.1-:it-i"n tA n111canroi::> .::::offi=i.Ph:o
U.lJ.U L..l.l\.I J.V'-'UL..lV.lJ. VJ. L.J.J.V ~.11..'-' J..lJ. .l'"'.&U.L.J.V.l.J. I..'-' J.J.~J...,U.J.J....,V ...,.L.L...,..,L.._,,

availability of pile material, and transportation costs are all
of importance.

There are basically two routes to acquire expert knowledge.
One is to work directly with an expert or a group of experts
by conducting interviews necessary to extract expert knowl­
edge. The other is to conduct an extensive literature review
to extract rules of thumb and knowledge. The latter route
was taken in this study. Extensive review of the literature on
pile foundation was made during the course of this study.
Major references on which PSl was based are listed below
(10-28). It is expected that the strength of the knowledge
base will continue to grow as PSl continues to evolve. Thus,
the structure of PSl was arranged in such a way that new or
better expert opinions can be easily incorporated without any
significant change in PSl.

DEVELOPMENT OF PSI

General Program Structure of PSI

The expert system PSl was written in FLOPS, and as such it
is often referred to as a FLOPS program in this paper. A
FLOPS program may be grouped into three sections:

1. the declaration section, similar to that of C or PASCAL
language;

2. the rules section, where the actual rules appear; and
3. the input section, in which actual values are assigned to

the attributes described in the declaration section.

The basic structure of PSl closely follows that of RMC, an
expert system developed for rock mass classifications by Juang
and Lee (29). Figure 1 shows its general architecture. PSl
first reads external "factual knowledge" files, which are referred

TRANSPORTATION RESEARCH RECORD 1277

Declare Ele9ents

~
Read Knovledqe File

!
(Database) ~ DL.kb, SC.~

PL.kb, NE. kb
VE.kb, LE.kb
AON.kb

Generate Produclluo Rul~a

Obtain Proble•~Specif ic Data ~ GETDATA

i
Parallel Processing of Production Rules

(Inductive Reasoninql

l
Consolidate Preliminary Conclusions ~ COMBINE

l
Conclusion

FIGURE I Overall structure of PSI.

to herein as knowledge data bases or simply data bases. The
knowledge data bases required by PSl include DL.kb (design
load knowledge base), PL.kb (pile length knowledge base),
SC.kb (soil condition knowledge base), NE.kb (noise effect
knowledge base), VE.kb (vibration effects knowledge base),
AOM.kb (availability of material knowledge base), and LE.kb
(local experience knowledge base). Using this knowledge and
some "meta-rules," PSl can generate all needed production
rules. Depending upon the sizes of these knowledge data
bases, a total of several hundred rules may be generated with
a few user-written rules.

After the rules are generated, the program will begin to
ask for user input data by calling an external program GET­
DAT A. The program GETDAT A was written in C language
and compiled with Microsoft C 5.1 compiler (30). It serves
as a user interface that allows for the problem-specific data
to enter PSl. Execution of GETDATA will create a data file
called user.dat to store these user inputs. The user.dat file is
then transferred to PSl and matched with generated rules for
determining rule fireability. (When input matches the premise
of a generated rule, it makes that rule fireable.) Execution
of the production rules then begins, which produces several
preliminary conclusions. These conclusions are stored in a file
named pile_type.dat. This new file serves as an input to
COMBINE, another external program called by PSl. COM­
BINE, also written in the C language, consolidates the pre­
liminary conclusions reached earlier. Result of the final
conclusion reached is then reported to PSl.

It is noted that the expert system PSl was written in parallel
FLOPS. Thus, it does not involve backtracking of the rules.
Instead, at any stage of rule firing, all fireable rules are fired
at the same time. The problem of possible memory conflicts
was resolved using weakly monotonic logic, a type of fuzzy
logic in which the value of a datum may be replaced by a new

Juang and Ulshafer

value if the confidence in the new value is greater than or
equal' to the old confidence (1). However, the preliminar,Y
conclusions reached at different stages were treated as evi­
dences, each based on a particular knowledge source. They
were not combined with the weakly monotonic logic. Instead,
an external program COMBINE was used to consolidate these
evidences.

To use PSl, the user needs to have an idea of the design
loads to be supported, subsurface soil condition, pile length
requirement, availability of material, local contractor expe­
rience, and noise or vibration constraints. The interactive,
menu-driven program GETDATA will direct the user through
the creation of a user-supplied file, user.dat, which is required
by PSl. On-line explanation features are provided in GET­
DATA to assure its user-friendly style. Also, the program
GEIDATA can be run as part of PSl, or it can be run sep­
arately before execution of PSl. This feature allows for max­
imum flexibility on the part of the user when consulting PSl.

Detailed Comments on PSI

As mentioned earlier, there are three major sections in a
FLOPS program. Detailed comments on each section of PSl
follow.

Declaration Section

Elements declaration is the only task in the declaration sec­
tion. Figure 2 shows an example of element declaration. The
command literalize declares a memory element, xdata, with
28 attributes of the types atm and flt. In FLOPS, the data
type atm is for character string, and the data types flt and int
are for floating point and integer, respectively . The syntax
for declaration is very similar to that of a structure in C or
PASCAL language. An attribute is analogous to a variable
in C or PASCAL. Notice that a semicolon is only needed at
the end of the entire literalize command, and that separation
of the literalize command into several lines is a programming
style for ease of reading and maintaining of the code.

Element xdata is needed to store the user-supplied data.
Other elements are declared to store factual knowledge data.
Figure 3 shows another example of the element declaration .
Element pile_type has seven attributes, criterionl throug,h
criterion?, that are declared to be of data type fzset, which
stands for fuzzy set. The fuzzy set data type in FLOPS is

:comment - user supplied (proble•-specific} data

literalize xdata
desigu_load flt avail_PC at• exp_PC atm
soil_type at• avail_PSC at• exp_PSC atm
strength at• avail_CIPM at• exp_CIPM at•
negative_friction at• avail_CIP at• exp_CIP atm
boulder at• avail_STL at• exp_STL atm
pile_length flt avail_TM at• exp_TM atm
noise at• avail_ CPI at• exp_CPI at•
vibration at• avail_ CPS at• exp_CPS atm

avail_PIC at• exp_PIC atm
avail_BP atm exp_BP at•

FIGURE 2 Declaration of element xdata for PSI.

155

:co .. ent - pile type selection according to each criterion

literalize pile_type
criterion! fzset (PC PSC CIPM CIP STL Tl! CPW CPS PIC BP)
criterion2 fzset (PC PSC CIPM CIP STL Tl! CPW CPS PIC BP)
criterion) fzset (PC PSC CIPH CIP STL Tl! CPW CPS PIC BP)
criterion4 fzset (PC PSC CIPN CIP STL TM CPW CPS PIC BP)
criterion5 fzset (PC PSC CIPH CIP STL Tl! CPW CPS PIC BP)
criterion6 fzset (PC PSC CIPH CIP STL TM CPW CPS PIC BP)
criterion7 fzset (PC PSC CIPM CIP STL TH CPW CPS PIC BP)

FIGURE 3 Declaration of element pile_ type for PSI.

unique. In common fuzzy set notation, using criterionl as an
example, it may be expressed as

criterionl = {ml/PC, m2/PSC, m3/CIPM,

m4/CIP, m5/STL, m6/TM,

m7/CPW, m8/CPS, m9/PIC, mlO/BP}

where ml through mlO are the membership grades for the
corresponding members PC through BP , respectively, which
in turn are abbreviations for the following:

PC = precast concrete;
PSC = prestressed concrete;

CIPM = cast-in-place concrete with mandrel;
CIP = cast-in-place concrete without mandrel;
STL = steel pile (H, I section);
TM= timber;

CPW = composite wood-concrete;
CPS = composite steel-concrete;
PIC = pressure-injected concrete; and
BP = bored.

In FLOPS, these membership grades appear in the form of
a confidence level. The confidence level is a unique data type ,
which is u ed to store the confidence toward a member of a
fuzzy et. The attribute criterion I is created to store the pre­
liminary conclusion of pile selection based on design loads.
The attributes criterion2 through criterion? are declared in
the same way, each based on a different pile selection factor
incorporated in PSl. Although these seven attributes look
alike, use of different attributes is necessary to preserve mul­
tiple preliminary conclusions reached at different stages in the
inductive reasoning process in PSl. Otherwise, FLOPS' weakly
monotonic logic could eliminate the desired membership
values of these fuzzy set members before they can be com­
bined.

Rule Section

For the PSl system n was determined that a parallel (induc­
tive) FLOPS program is more effective than a sequential
(deductive) one. It was al o decided to set up a block firing
control, starting from block 0, to en ·ure the equential firing
of each block of rules. Within each block, however, the par­
allel processing ensures all rules that are fireable are fired at
once.

The PSl system starts with reading of expert knowledge
files in block 0. With this knowledge , part or all of the block

156

0 rules become fireable and are fired at once . The actions of
firing these rules generate the rules of blocks 2 through 8. It
is noted that, without proper initiation of data , no rules can
actually be fired.

As an example to explain how rules are generated , focus
on rule rO, shown in Figure 4. The expert factual knowledge
was stored in a file named DL.kb. As soon as it is transferred
to the system (using the command open , explained below),
the left hand side (LHS) of rule rU will be satisfied. In other
words, rule rO becomes fireable; and when it is fired, the right
hand side (RHS) of rule rO will be executed. It is noted that
LHS is generally referred to as premise part of a rule, while
RHS is the action part of the rule.

For convenience of the further discussion, an example of
the content of knowledge file DL.kb is shown in Figure 5. It
basically consists of a set of make commands . The make com­
mand initiates a memory element and assigns values to its
attributes. For example, when the file DL.kb is open, the
first make command assigns the following data:

' Jowerl
' upperl

'fsmember
' confidence

O· ,
20;
CIPM;
600.

Notice the 'is the symbol used in FLOPS for the value of the
attribute. Once these values are transferred to the system ,
the variables in the LHS of the rule rO take on the following
values :

(LB)
(UB)

(FSM)
(CONF)

O· ,
20;
CIPM; and
600.

: comaot - rule rO to generate bloc Jc 2 rules

rule 1000 (DL "loverl = <LB> ·opperl ~ <118> ·1-er = <FSll>

~confidence = <CONF>)

-->

rule <COllF> 2 (xdata "deoign_load >= <LB> "design_load <= <DB>)

(pile_ type ·criterion. <FSll> = O)
-->

-ity 2 ·criterion!. <FSll> ;

FIGURE 4 The content of rule rO of PSI.

:c~nt -- DL = design load (lone)

make DL ·1overl o. . upperl 20. "fsaellber "CIPll"
·confidence 600;

make DL "loverl o. ·upperl 20. "fsaellber "Tit"
·confidence 1000;

FIGURES Partial list of contents of file DL.kb of PSI.

TRANSPORTATION RESEARCH RECORD 1277

When rule rO is fired, the action part (i.e . , the RHS) of the
rule yields a new rule, as shown in Figure 6. Whether the new
rule is fireable depends on the actual attribute values in the
elements xdata and pile_type. Notice how a membership grade
of a member in a fuzzy set is represented . The term, 'crite­
rion.CIPM, represents the confidence level (membership grade)
toward the member CIPM of the fuzzy-set attribute criterionl.

Separation of factual knowledge data from the main part
of PS1 is convenient for maintaining the system. When expert
opinions change, we need only to change the content of the
knowledge data file. We may even create a user interface to
facilitate the editing of the knowledge data base. Figure 7
gives another example of knowledge data base that concerns
soil conditions. Further discussion on the knowledge data
bases will be presented later.

As a final note on rules in FLOPS, observe the first rule
command of rule rO (shown in Figure 4). A number , 1,000,
appears immediately after the key word rule. This number is
referred to as the priority of the rule or the prior confidence
level of the rule . In FLOPS, the confidence level is encoded
as an integer with a maximum value of 1,000, which actually
means a confidence of 100 percent. When the LHS is eval­
uated, it also returns a confidence value . The smaller of the
two confidence values is taken as the posterior confidence
level. All actions involving memory updating in the RHS of
that rule are assigned this posterior confidence value.

The PSl system utilizes this feature to assign the member­
ship grade of a member of a fuzzy set. The modify command
in Figure 6 is an example. The generated rule shown in Figure
6 has a prior confidence level of 600. If the evaluation of LHS
based on actual user input data returns a confidence of, say,
1,000, then the smaller of the two values would be 600, and
this value is assigned to the fuzzy set member ' criterion.CIPM
as its membership grade. The prior confidence level of the

rule 600 2 (xdata "design_load ->= (O. 0, 0)

"deeign_load -<= (20, 2, 0.1))

(pile_type ·criterionl.CIPll = 0)

--)

aodify 2 ·criterionl.CIPll;

FIGURE 6 An example of a rule generated by rule
rO.

~nts
factorl = soil type (cohesive, cobeeionlese)
factor2 :::i atrength of beilring ooil (low, •ediu, high)
factorl = negative skin friction (likely, unlikely)
factor4 = presence of boulders (yea, no)

•ke SOIL ·tactorl "cohesive" "factor2 •1ow" ·1actorl "unlikely"

·tactor4 "no" ·tsaeabe[' "PC" ·confidence 900;

aake SOIL '"'factor! "cohesive" '"'factor2 "lov" ·iactor3 "unlikely"

· factoc4 "no" · 1smeUer "STL" ·confidence 500;

FIGURE 7 Partial list of contents of file SC.kb of PSI.

Juang and Ulshafer

generated rule does not have to be 1,000. In the real world
there often exists some essential knowledge that is less certain
than other knowledge. It may be desirable to include this less­
certain knowledge in the reasoning process. PSl incorporates
this desired feature by embedding the uncertainty (confidence
value) in the knowledge data base.

The confidence (or uncertainty) of a piece of knowledge
reflects an expert's opinion on that piece of knowledge. For
a system to be efficient, it is necessary to set up a cutoff
confidence value that determines whether a particular piece
of uncertain knowledge should be incorporated into the sys­
tem. If no prior experience exists, a sensitivity study should
be conducted. This approach was taken in the·development
of PSl.

It is noted that the second rule command in Figure 4 has a
number 2 beside 1,000. This is referred to as a block number.
When that number does not appear, as in the case of the first
rule command, the system assigns a number of 0. The block
numbers are generally used to group rules for some rule firing
control. It is a useful feature, especially for inductive
reasoning in the FLOPS environment.

Input Section

The input section basically consists of at least a make com­
mand. The make command is used for noninteractive input
or initiation of the elements and their attributes. The run
command, although it can be issued from anywhere in FLOPS
environment, is usually placed in the input section. This com­
mand causes execution of the rule section. The input section
may include other FLOPS commands for specific purposes.
All commands are executed sequentially in the input section.

As mentioned earlier, all production rules are grouped into
blocks. By controlling the block firing sequence, the rules
may be fired in some planned order. However, no particular
order is set for the rules within a block. In fact, with parallel
processing, all fireable rules will be fired at once, regardless
their order of appearance.

The program structure shown in Figure 2 was implemented
in this input section. First, the system reads in the knowledge
data files with open command. It then sets up a control mech­
anism to execute each block of rules sequentially. The system
begins with execution of block 0 under the command run
The rules in block 0 generate all possible production rules.
The system then executes block 1, which gathers problem­
specific data by calling the external program GETDATA.
Actions taken in block 1 also make blocks 2 through 8 fireable.
These blocks are then fired sequentially under the next run
command. An external data file, which contains the prelim­
inary conclusions reached by PSl, is created after firing of
these blocks. The last run command in the input section causes
execution of block 9. This block calls an external program
COMBINE to consolidate the preliminary conclusions. The
final conclusion is then reported and the program stops.

Binary Logic vs. Fuzzy Logic

Notice that with the implemented structure described above,
a rule will be actually fired if and only if all of the following
conditions are met:

157

1. the block in which the rule resides is switched on;
2. the elements used in the LHS of the rule have been

initiated with proper make commands; and
3. the LHS of the rule is evaluated to be "true."

The evaluation of the LHS of the rule begins with each indi­
vidual comparison implemented in the LHS. Each comparison
returns a truth value, which in binary logic takes the value of
0 (for false) or 1 (for true). The smallest of all values returned
by the comparisons is taken as the confidence level of the
LHS. In traditional comparison based on binary logic, this
value will be either 0 or 1. In other words, the term "true"
in the third condition stated above requires a confidence value
of 1 (or in PSI notion, 1,000/1,000 or simply 1,000).

The necessity of including uncertain but essential knowl­
edge into the data base was discussed above. In a similar
manner, PSl adopts the fuzzy comparison feature whenever
appropriate. T he rule sh wn in Figure 6 provides an example
of its potential advantage. The LI-I consists of comparis n ·
in two objects (elements), design_load and pile_type. The
comparison in this rule is binary; it will return either 0 (false)
or 1,000 (true). If a given datum of design_load is, say, 21,
the comparison would return a value of 0 and the rule won't
be fireable. On the other hand, a given datum of design_load
of 19, although not much different from the value of 21, will
return a value of 1,000 from the comparison. Such drastic
change is a drawback of the binary logic, in which a
proposition must be either true or false.

When fuzzy comparison is desired, the rule shown in Figure
6 may be revised into the one shown in Figure 8. A fuzzy
comparison will return a value of between 1,000 (true) and 0
(false). In other words, a proposition can be partially true.
Note that a fuzzy operation indicator, - , preceding the com­
parison operators, such as< and :s;, was used in the new rule.
This indicator tells the program to make a fuzzy comparison.
Also notice that for fuzzy comparison on two scalar numbers,
FLOPS requires two additional data: an absolute uncertainty
and a relative uncertainty. For example, the second fuzzy
comparison in the LHS of the rule shown in Figure 8 is to be
carried out using an absolute uncertainty of 2 and a relative
uncertainty of 0.1. The confidence returned by this fuzzy com­
parison is calculated in the manner described in the next par­
agraph.

FLOPS as ume that the attribute-in this case, the de ign
load-is a normal variate with a mean value of 20 and a
standard deviation that is determined as follows:

s = [A2 + (Rm)2p12

where

s = standard deviation,

rule 600 2 (xdata "design_load >= o. "desiqn_load <= 20. J

(pile_type "criterion!. CIPll = 0)

--)

.OOify 2 "criterionl.CIPll;

FIGURE 8 An example of generated rule with fuzzy
comparison.

158

A
R
m

absolute uncertainty = 2 in this example,
relative uncertainty = 0.1 in this example, and
mean value = 20 in this example.

The confidence value resulting from such fuzzy comparison
then becomes a simple matter of determining a probability.
For a design load of much larger than 20, the value will be
very close to O; for a design load of about 20, the value will
be about 0.5 (500/1,000); for a design load of much smaller
than 20, the value will be very close to 1 (1,000/1,000).

EXTERNAL PROGRAMS OF PSI

External programs used in the PSl system are treated as com­
mands in the DOS environment and, as such, they commu­
nicated with the FLOPS program through a call command,
with name of the executable program as the only argument.
For example, the RHS of the rule shown in Figure 9 consists
of two calls to the DOS commands. One is an executable
program GETDATA, treated as a command. The other is a
true DOS command pause. Although FLOPS allows for a
direct call by reference (address) to a program written in C,
it is considered to be advantageous to adopt the former method
for this particular expert system.

The two external programs used are GETDATA and
COMBINE, both written in C language and compiled by using
Microsoft C 5.1 compiler (30) for use in the DOS environ­
ment. It should be noted that any DOS-based C compiler may
be used for compiling. Once the program is compiled, it can
run without the presence of the compiler.

The program GETDATA is used for gathering problem­
specific data on a particular project. GETDATA is itself a
complete program and can be run separately in the DOS
environment. In fact, it is often run separately to create the
data file to be used in PSl. The program GETDATA essen­
tially serves as a user interface to the PSl system. A segment
of the screen output when running GETDATA is shown in
Figure 10 to give the flavor of the program.

The program COMBINE is used for consolidating the pre­
liminary conclusions reached by the PSl system. The data
needed for running the program COMBINE are created by
the system and stored in an external file called pile_type.dat,
which is an ASCII stream file. The data in file pile_type.dat
represent the preliminary conclusions reached by the PSI sys­
tem. These data are the degrees of confidence toward each
member of the fuzzy set attributes. As defined in the PSl

:ca..ents
:block 11 - for gathering proble•-specific data fr011 the user
:rule r27

rule 1000 1 (start)
--)

write '\n****************************•***************\n',
write • Begin to gather the proble•_specific data. \n',
write '*****************************•-*************\n',
call GETDATA,
transfer xdata fro• user.dat,
write '\nUser-supplied data bave been loaded to PSl.\n',
call pause,
make pile_type;

FIGURE 9 An example of calling DOS commands from PSI.

TRANSPORTATION RESEARCH R ECORD 1277

Use previously-created data file ("user.dat")? (y/n)
D

ANSWER ALL QUESTIONS ASKED ...

Is data OD DESIGN LOAD PER PILE known
or can be esti•ated? (y/n)
y

Esti•ated or required design load per pile (tons) ;?
25

llbicb one of the descriptions is •ore-or-less tbe most
accurate OD SUBSURFACE SOIL PROFILE?

1) very deep soft layer, 2) soft layer underlain by
•edium to stiff layer, 3) soft layer underlain by bard
stratum, 4) why?

(Enter 1, 2, 3, or 4):
2

What is tbe contidence ot your answer on last question?
1) absolutely sure, 2) very sure, 3) sure

(Enter 1, 2, or 3):
1

FIGURE 10 Segment of a screen output when running
GETDATA.

system, the members of these attributes are PC, PSC, CIPM,
CIP, STL, TM, CPW, CPS, PIC, and BP, as defined above .
Each preliminary conclusion is reached based on each and
every one of the seven factors (criteria) employed. An
example of a possible conclusion is as follows:

criterionl = {0.6/PC, 0.6/PSC, 0.95/CIPM, 0.5/CIP,

0.1/STL, 0.5/TM, 0.95/CPW, 0.9/CPS,

0.1/PIC, 0.2/BP}

where the values are the confidences toward the individual
members. (In FLOPS notation, the value 0.6 is stored as 600,
1.0 as 1,000, and so on.) In the above example, it may be
interpreted that the PSl system strongly supports the selection
of CIPM, CPW, and CPS piles; it gives moderate support to
selection of PC, PSC, CIP, and TM piles, and almost no
support to the others.

The algorithm implemented in the current version of the
program COMBINE for consolidating the preliminary con­
clusions is a simple weighted average method. During the
development of the PSl system, other algorithms such as
FLOPS' weakly monotonic logic, weighted fuzzy union, and
fuzzy weighted average (8,9) were considered. It was decided
to implement the above algorithm on this version of COM­
IlINE for its simplicity. It was found that PSl is working
properly with this algorithm. Future versions of COMBINE
might adopt other algorithms.

KNOWLEDGE DATA BASES OF PSI

The subject of extracting knowledge from experts is beyond
the scope of this paper. However a brief overview is in order
for interested readers.

As mentioned earlier, knowledge may be extracted from
relevant literature or through interviews with experts. In gen-

Juang and Ulshafer

era!, the former may be used for fast prototyping of the desired
system. It is generally done with intention to upgrade the
knowledge data base later. This route is particularly suitable
for cases where the system framework is more or less depen­
dent on the knowledge data base. The system designer is also
acting as a domain expert to determine what knowledge to
incorporate, to what degree of certainty (or uncertainty) a
piece of knowledge can become useful, and how to represent
the knowledge (rule-based, frame-based, or others). This is
the route taken in the development of PSI.

On the other hand, knowledge may be extracted from an
expert or a group of experts. There are obvious advantages
taking this route. For one, any system developed will perform
only as well as the knowledge stored in it . This route requires
very thorough planning and skillful interviews. There are some
common methods in practice, but discussion of the subject is
beyond the scope of this paper.

A comprehensive review of pile foundation literature was
conducted during the development of PSl. It was decided that
the first version of the system would deal only with the pre­
liminary selection of pile type, and that the capacity to do
design analysis and to make cost comparison will follow later.
Findings of that review were documented in detail elsewhere
(31). A summary is presented in the paragraphs that follow.

For the intended system, it was decided that 10 load-bearing
piles will be covered. These pile types were listed above. The
focus of the review is to determine under what circumstances
a pile will be considered suitable for the project. Based on
overall evaluation, seven factors (criteria) were identified as
"knowledge" important to the preliminary selection. They
are design load requirements, soil parameters, approximate
pile length requirement, availability of pile material, local
construction experience, vibration and noise effects. Obviously,
on a given project these factors might weigh differently. It
was decided that the weight will be handled in the system
rather than in the knowledge data base. The current version
of PSl allows for the user to select the default setting or input
these weights at run time. This feature makes a sensitivity
study, if desired, easy to conduct.

Selection of pile type is based on the seven factors (criteria)
mentioned above . Users of the developed system need only
to input the required information concerning these factors
through an interactive, menu-driven program. The rating scale
for each criterion is stored in the knowledge base in terms of
confidence level. Determination of the confidence level was
based on "averaged opinions" obtained from literature review.
A "preference rating" for each pile is obtained for a given
set of site and design information according to each criterion.
With the preference rating based on each criterion determined
and weights among the seven criteria selected, the overall
preference rating (in terms of a numerical index ranging from
0 to l) can be computed for selecting each of the pile can­
didates considered for a given set of conditions. The user then
has an option to print out the overall preference ratings of
top three pile selections or all piles considered.

Among the seven factors adopted, the subsurface soil
parameter is perhaps the most complicated one. Many soil
characteristics might affect the selection of a pile, and indeed
most of them were seriously considered for inclusion in the
system. The current version of PSI, however, adopts only
four general subfact rs under this category: soil type, strength

159

description, possibility of negative skin friction, and possi­
bility of undesired conditions (such as presence of boulders).
For other factors incorporated in the system , the situation is
simpler. Only a rating scale, qualitative or quantitative, is
needed.

Having established the system framework, it was decided
that the factual knowledge will be coded in a data base like
the one shown in Figure 5. The next task was to assign the
confidence value for selecting each pile based on each factor
under a given circumstance. It was decided any entry with a
confidence value of less than 0.3 should be discarded. Also,
the uncertainty associated with fuzzy comparison of the rules
in PSl was arbitrarily taken as a uniform 15 percent variation,
although this datum could be directly included in the data
base. Following the above general principles, a total of seven
data bases were created as part of the PSl system.

EXAMPLE

As a hypothetical example, consider a site consisting of a deep
layer of loose sand overlying a deep layer of dense sand. Site
investigation reveals no boulders in the ground. The design
load per pile is estimated to be 25 tons. The length of pile is
estimated to be 40 to 50 ft . There is no noise constraint, but
a vibration constraint is present. The local contractor is knowl­
edgeable in most types of piling construction except for auger­
placed concrete piling, composite wood-concrete piling, and
pressure-injected piling. No particular emphasis is placed on
any pile selection criterion (factor).

With the above information input through the execution of
GETDATA, the PSl system began its internal reasoning
process and reached a conclusion. The top selections rec­
ommended were a cast-in-place pile with mandrel and a tim­
ber pile. For this rather general description of the site, how­
ever, the support for other piles is also strong.

Although not shown in the paper, many examples were
worked out with PSl and the results were reasonable (31).
For a preliminary pile selection, PSI seems to be able to make
right choice.

CONCLUDING REMARKS

The paper has documented details of the development of the
expert system PSl. In particular, rule generation, inductive
reasoning, combination of preliminary conclusions, and treat­
ment of fuzzy comparison were discussed in depth. The expe­
rience gained and presented in this paper should be helpful
to interested readers. Departing from the original intent because
of space limit, the entire PSl system and the screen output
during its execution are not listed in this paper. However, the
system can be obtained from the authors.

PSl is working properly and is able to reach reasonable
conclusions. However, further examination and calibration
by experts is needed before it can be claimed as a reliable
expert system. For that reason , the authors consider it at
present a prototype of the intended system. Planned improve­
ments to the system include additional quantitative soil
parameters for the pile selection, as well as the design and
cost analyses .

160

ACKNOWLEDGMENT

The writers wish to express their gratitude to the reviewers
of this paper, whose comments have made it a better one .

REFERENCES

1. W. Siler and IJ . Tucker. FLOPS Program and User Manual,
Version 1.2c. Kemp-Carraway Heart Institute, Birmingham, Ala.,
1986.

2. L.A. Zadeh. Fuzzy Sets. Information and Control, Vol. 8, 1965 ,
pp. 338- 353. .

3. L. A. Zadeh. Outline of A New Approach to the Analysis of
Complex Systems imd Decision Process. IEEE Transactions on
S11stem " Mmr mu/ ybeme1ics Slvl X-3 , 1973, Pl). 28-44.

4. ·. Brown . /\ Puzzy Safety Measure . Journal of £11gi11eering and
Mechanics ASCE Vol. 105, No. EMS, 1979, pp. 855-872.

5. C. Brown ~nd J. T'. P. Yao. Fuzzy Sets in Structural Engineering.
Journal of Structural Engineering, ASCE, Vol. 109, No. 5, 1983,
pp. 121 1- 1225.

6. . H. Juang an 1 D. J. Elton. Fuzzy Logic for Estimation. o.f
arthq uakc Inte nsity Based on Bui lding Damage Records. CIVIi

£11gineeri11g Systems. Vol. 3, 1986, pp. 187- 191.
7. . H . Juang, J. L. Burati , and . . N. ~lllidindi . A Fuzzy Sysrc1~

for Biel Proposal Eval.umion U. mg Microc mputcrs. ClVll E11g1-
neering Systems, Vol. 4, 1987, pp. 124-130. .

8. C. H . Juang. Development of A Decision Support System Using
Fuzzy Sets. Journal of Microcomputers in Civil Engineering, Vol.
3, 1988, pp. 157-166. . . ~

9. P. W. Mullarkey and S. J . Fenvc.~. Fuzzy Logic Ill a Geotechmcal
Knowledge-Ba ed S stem: ONE. Proc., NSF Workshop .on .ivil
Engineering Applications of Fuzzy Sets, Purdue Umverslty,
Lafayelle, Ind., 1985, pp. 12 - 169.

10. J. E. Bowles. Foundation A11(llysis and Design, 4th ed., McGraw­
Hill , New York, 1988.

11. J. L. Briaud and L. M. Tucker. Piles in Sand: A Method Includ­
ing Residual Stresses. Journal of Geotechnical Engineering, ASCE,
Vol. 111, No. 11, 1984, pp. 1666-1680.

12. Canadian Geotechnical Society. Canadian Foundation Engineer­
ing Manual , chaps. 19-21. BiTech Publishers , Vancouver, B.C.,
Canada, 1985.

13. R. D. Chellis. Pile Foundation, 2nd ed. McGraw-Hill, New York,
1961.

14. R. S. hcncy and R. G. Chassie. Soils and Foundation · W<!rk­
shop Ma1111al . FHWA, U.S. Department of Transpon:iuon ,
Washington, D.C., 1982.

TRANSPORTATION RESEARCH RECORD 1277

15. H. M. Coyle and R. Castello. New Design Correlations for Piles
in Sand. Journal of Geotechnical Engineering Division, ASCE,
Vol. 107, No. 7, 1981 , pp. 965-986.

16. B. M. Das. Principles of Foundation Engineering, chap. 8. PWS
Engineering, Boston, 1984. . . .

17. B. H . Fellenius. Negative Skin Friction on Long Pt/es Dnven m
Clay. Report 18. Royal Swedish Academy of Engineering Sci­
ence, Stockholm, 1971.

18. F. M. Fuller. Engineering of Pile Installations. McGraw-Hill, New
York, 1983.

19. D. M. Greer and W. S. Gardner. Construction of Drilled Pier
Foundations. John Wiley and Sons, New York, 1986.

20. G. G. Meyerhof. Bearing Capncity and Seulcment of Pile Foun­
dations. Journal of Geotechnical Engineering, ASCE, Vol. 102,
No. GT3, 1976, pp. 195-228.

21. R. L. Nordlund. Bearing Capacity of Piles in Cohesionless Soils.
Journal of Soil Mechanics and Foundation, ASCE, Vol. 89, No.
3, 1963. pp . 1- 35.

22. NAVFAC De ·ign Manual, Foundations and Earth Structures, Vol.
7.2. Naval Facilities Engineering Command, U.S . Department
of Navy, Washington, D.C., 1982.

23. M. W. O'Neill. Pile Group Prediction Symposium: Summary.
FHWA, U.S. Department of Transportation, Washington, D .C.,
1987.

24. M. G. Spangler and R . L. Handy. Soil Engineering, 4th ed. Har-
per and Row, New York, 1982.

25. A. G. Thurman. Discussion of "Beanng Capacity of Piles m
Cohesionless Soils," by R. L. Nordlund. Journal of Soil Mechan­
ics and Foundation, ASCE, Vol. 90, No. 1, 1964, pp. 127-129.

26. S. N. Vanikar. Manual on Design and Construction of Driven
Pile Foundations. FHWA, U.S. Department of Transportation,
Washington, D.C., 1986. . .

27. A. S. Vesic. NCHRP Synthesis of Highway Pramce 42: Design
of Pile Foimdations TRB, National Research Council , Wash­
ington, D.C., 1977.

28. T. Whitaker. The Design of Piled Foundations. Pergamon, New
York, 1976.

29. C. H. Juang and D. H . Lee . Development of ~n Expert System
for Rock Mass Classification. Accepted for pubhcat10n by Journal
of Civil E11gineeri11g ystenr, 1989. .

30. Microsoft C Compiler, lle~sio115. I . Microsoft Corporat10n, Red­
mond, Wash., 1988.

31. C. H. Juang and M. L. Ulshafer. Development of a Fuzzy Logic
Expert System for Pile Selection. Department of Civil Engineer­
ing, Clemson University, Clemson, S.C., 1989.

Publication of this paper sponsored by Commillee on Foundations of
Bridges and Other Structures.

