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Comparative Evaluation of Three 
Estimators of Log Pearson Type 3 
Distribution 

BABAK NAGHAVI, JAMES F. CRUISE, AND KISHORE ARORA 

Three moment-based estimation procedures for log Pearson Type 
3 (LP3) param ters w r compared u ing observed stream data 
samples from Louisiana and its neighboring states .. The methods 
of direct moments, log-transformed moments, and mixed moments 
were compared in descriptive capabilities on the basis of com­
puted root mean square deviation (RMSD) and mean absolute 
deviation (MAD) of the standardized variate. Using these perfor­
mance indices , the most robust estimation method was sought. 
In many cases, depending on sample skewness, significant dif­
ferences existed between the descriptive capabilities of these 
methods. However, no method performed in a clearly superior 
manner across the entire range of data. These results can be used 
in conjunction with previous Monte Carlo studies focusing on th.e 
predictive ability of these procedures to determme the most reli­
able moment-based estimation procedures. 

The log Pearson Type 3 (LP3) distribution is one of the most 
widely used distributions in hydrology, particularly in flood 
frequency analysis, as recommended by many governmental 
agencies in the United States. Many highway drainage struc­
tures are designed under the assumption that flood discharges 
follow this distribution. The LP3 distribution was first rec­
ommended by the U .S. Water Resources Council (WRC) in 
1967 as the base method of flood frequency analysis in the 
United States. Since then, a great deal of interest has been 
generated in this distribution. The LP3 distribution has been 
extensively discussed by Bobee (1), Bobee and Robitaille (2), 
Condie (3), Rao (4), and many others. 

Much attention has been focused on parameter estimation. 
Bobee (1) suggested an estimation method that was based on 
the first three moments of raw data, the method of direct 
moments (MDM), whereas the WRC (5) recommended an 
estimation method that was based on the corresponding 
moments of the log-transformed data. Condie (3) proposed 
an estimation method that was based on maximum likelihood 
estimation (MLE) theory. Rao (4) proposed the method of 
mixed moments (MIX), which uses sample estimates of the 
means of the raw and log-transformed data and the standard 
deviation of the raw data in estimating the parameters. Singh 
and Singh (6) used the principle of maximum entropy (POME) 
to estimate the parameters for the LP3 distribution. Arora 
and Singh (7) and Ashkar and Bobee (8), among others, 
compared performance of various methods of parameter esti-
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mation via Monte Carlo simulation. In terms of root mean 
square error (RMSE) and bias, Arora and Singh (7) found 
that the MIX and MDM methods were clearly superior to the 
WRC method for simulated LP3 samples. Ashkar and Bobee 
(8) compared four versions of the method of moments and 
observed that the MDM method performed better than the 
other three. More recently, Bo bee and Ashkar (9) studied 
several variations of the method of moments and concluded 
that different versions of the methodology could result in 
significantly different fits to the data series. They also con­
cluded that no one version of moment-based methods can be 
considered best for all applications. 

MLE of the LP3 parameters has been found to be com­
putationally difficult and results in multiple roots of the loca­
tion parameter (10). Arora and Singh (10) also found that 
MLE performed poorly in terms of RMSE and bias in com­
parison with moment-based methods on the basis of small 
Monte Carlo-generated samples. A large amount of CPU 
time was required by the search routines for MLE estimation 
of LP3 parameters. Thus, MLE techniques do not appear to 
be well suited to the estimation of parameters of the LP3 
distribution. In the case of the LP3 distribution, the maximum 
entropy procedure and the MIX method lead to the same 
parameter estimation equations (11). Therefore, moment-based 
methods may be the most practical and computationally effi­
cient procedures for estimating LP3 parameters and quantiles. 

The MDM estimates the parameters of the LP3 distribution 
directly from the untransformed data. In this method, the 
observed data are equally weighted in the estimation of the 
parameters. Thus, this procedure maintains the significance 
of the larger sample values because the spatial relationship 
among the real data is preserved. 

Conversely, the WRC method weights the logarithms of 
the observed data equally in parameter estimation. Therefore, 
in this method, the larger sample values are given less sig­
nificance because of the transformation into log space before 
the sample statistics were computed. The WRC method has 
been criticized because of the sampling properties of the coef­
ficient of skewness. This statistic has been shown to be sig­
nificantly downward biased (12) and algebraically bounded 
(13) and possesses a large sampling variability (14). Studies 
by Wallis and Wood (15), Arora and Singh (7), and Ashkar 
and Bobee (8) have reported the poor performance of the 
WRC method on the basis of Monte Carlo analyses . The 
method of direct moments also requires the estimation of the 
third moment from the data sample. 



104 

The MIX method combines the moment equations in real 
and log-transformed space in parameter estimation. MIX avoids 
the use of sample statistics (such as skew) based on third­
moment estimates that are susceptible to large sampling errors. 

Previous comparisons were based on Monte Carlo simu­
lations in which the data were generated from known distribu­
tions, typically the LP3. However, in real-world situations, 
the population distributions are unknown. Therefore, a com­
parison of the most popular parameter estimation procedures 
using real data seems timely . Although it is recognized that 
a good fit to observed data is not a sufficient reason for accept­
ing a particular method, an adequate fit to the observed data 
is a necessary condition for the acceptance of a procedure. 
Cunnane (16) compares the relative importance of predictive 
and descriptive abilities of flood prediction techniques. He 
concludes that neither attribute is more important than the 
other; indeed, the two characteristics are complementary. In 
order for a particular technique to be useful, it must possess 
both predictive and descriptive abilities. Predictive capabili­
ties are usually determined from Monte Carlo studies of a 
particular method or distribution, whereas descriptive capa­
bilities can be determined from analyses based on real-world 
data, with the added advantage of unknown population dis­
tributions. Thus, studies such as the one reported here can 
be used in conjunction with the Monte Carlo studies previ­
ously reported to aid in the selection of the most reliable 
estimation technique for LP3 parameters and quantiles. If 
events of small recurrence intervals (T::; 25 years) are to be 
estimated, the method with the superior descriptive capability 
may be preferred, because events of this magnitude will usu­
ally already be recorded in the systematic record. In highway 
drainage work, many times structures are designed for small 
recurrence intervals whose quantiles may alreal.ly have beeu 
recorded. In these cases, the interpretive ability of the method 
may be of paramount importance. However, if events of larger 
recurrence intervals are to be estimated, then some descrip­
tive ability may be sacrificed to obtain improved predictive 
ability. In this study, three moment-based methods (WRC, 
MIX, and MDM) are compared, using gauge stations in Lou­
isiana (87 stations) and its neighboring states (6 stations) with 
unknown flood distributions. 

PROPERTIES OF LOG PEARSON TYPE 3 (LP3) 
DISTRIBUTION 

The probability density of the LP3 is 

1 In (x - c) 
[ ]

b - 1 

f(x) = la lxr(b) a 

[ 
In (x - c)] 

exp - a 

where 

x = raw (untransformed) flood data, 
a = LP3 scale parameter , 
b = LP3 shape parameter, and 
c = LP3 location parameter. 

(1) 

The parameter b is always positive and f is the gamma func­
tion. LP3 density function is flexible and can take many dif-
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fererit forms. The mean , variance, and skewness coefficient 
of the variate y = In (x) are given by 

Mean 

µ = c + ab (2) 

Variance 

a 2 = ba2 (3) 

Skew 

(4) 

The moments of x about the origin are given by (1) 

exp (re) µ/ = --'--"'---.:.... 
' (1 - ra)b 

1 - ra > 0, r = 1, 2, and 3 (5) 

If a > 0, then 'Yy > O; therefore y must be positively skewed 
such that f(y) is lower bounded ( c ::; y < + 00). In this case, 
x must also be positively skewed, thus x also possesses a lower 
bound [exp (c) ::; x < +oo] (4). When a < 0, then 'Yy < 0 
such that y is negatively skewed and upper bounded, that is, 
-oo < y::; c. In this case, x either can be positively or neg­
atively skewed, depending on the values of the parameters a 
and b, but x is upper bounded [O < x < exp (c)J. For this 
case, the density functionf(x) may be defined as zero at x = 
0 (4). 

The overall geometric shape of the LP3 distribution is gov­
erned by the parameters a and b (1,4). The LP3 distribution 
degenerates to the log normal distribution when the param­
eters a and b approach zero and infinity, respectively . 

Fitting the LP3 Distribution by the Method of 
Logarithmic Moments (WRC) 

This method estimates a, b, and c by applying the method of 
moments to the log-transformed data. Equations 2-4 are used 
for estimating the parameters where µ, a 2

, and -y are substi­
tuted by the mean, variance, and skewness coefficient esti­
mates of the log-transformed sample. 

Fitting the LP3 Distribution by the MIX Method 

Rao (4) proposed the MIX method for LP3 with the objective 
of avoiding use of the sample skewness coefficient in param­
eter estimation. The MIX melhol.l prese1 ves lhe sample mean 
and variance of raw data (x, SD and sample mean of the log­
transformed data (.Y). The MIX parameter estimation equa­
tions are 

y= c + ab (6) 

x= 
exp (c) 

(1 - a)b 
(7) 

exp (2c) 
r 1 

1 a)2b] s; l(l - 2a)b (1 
(8) 
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A method of solution of Equations 6-8 has been devised by 
Arora and Singh (7) . 

Eliminating c by combining Equations 6 and 7, 

y - In (:X) = b[a + In (1 - a)] (9) 

Again, c can be eliminated by combining Equations 7 and 8. 

(~ + 12) 
In _.. x,i = 2b In (1 - a) - b In (1 - 2a) 

Combining Equations 9 and 10, 

2 In (1 - a) - In (1 - 2a) = p 
In (1 - a) + a 

(10) 

(11) 

where P can be found from sample estimates of x, y, and 
s;: 

In l(.5; + :f2)fXZ] 
P = (Ji - In x) (12) 

The left-hand side of Equation 11 is defined for a < V2. There­
fore , values of a can be found using a trial-and-error search 
method or by tbe Newton-Raph · n iteration . Alternative ly 
a can be determined from interpolation of the ti - P table given 
by Arora and Singh (1) . Parame ters b and c can rhen be 
estimated from Equations 9 and 6, respectively. 

Fitting the LP3 Distribution by the MDM 

The MDM applie the method of moments directly to the raw 
data to determine parameter a b, and c. ubstituting the 
fir l lhre sample moment e timate in E quation 5 yields three 
simultaneou. equa tion : 

In µ; = c - b In (1 - a) 

In µ~ = 2c - b In (1 - 2a) 

In µ~ = 3c - b In (1 - 3a) 

(13) 

(14) 

(15) 

These equations are solved in a manner given in Arora and 
Singh (7) that is similar to the me thod proposed by Bobee 
(J). Equations 13-15 can be rearranged to give 

In µ~ - 3 In µ ; 3 In (1 a} - In (1 - 311) 
~---''--~___,___~~-'--~~~ 

In µ~ - 2 In µ; 2 In (1 a) - In (1 - 2a) (16) 

The right-hand side of Equation 16 is defined for a < VJ . In 
practice, B is obtained from the sample estimates of the first 
three moments about the origin: 

B = In µi - 3 In µ; 
Inµ; - 2 ln µ ; 

With B calculated, the value of a follows from Equation 16 
using a trial-and-error search method, Newton-Raphson iter­
ation, or interpolation of the a-B table given by Bobee (J) 
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or Arora and Singh (7) . Parameters b and c can then be 
estimated from Equations 13 and 14. 

COMPARATIVE EVALUATION OF THE THREE 
METHODS 

A total of 114 gauge stations with 20 years or more of record 
were initially available for use in this comparative study. Anal­
ysis of these data revealed that the records of 10 gauge stations 
were contaminated by diversions, regulation, backwater, etc., 
and thus were eliminated from further analysis. The pertinent 
data for the 93 remaining stations are presented in Table 1. 
Sample skew of the untransformed data varied from - 0.40 
to 6.18 , and sample coefficient of variation varied from 0.29 
to 1.75. This range represents a fairly broad range in the 
statistical characteristics of the available data samples . Although 
all of the data are drawn from one region of the United States , 
because of the range in skewness of the data base the results 
may hold significance for other regions . 

Grubbs and Beck outlier analysis (17) at 10 percent signif­
icance level (o: = 0.10) was conducted, and 10 stations with 
single outliers were identified. Data with and without the 
outlier were analyzed for these sites. The performance of 
the three methods was evaluated using performance indices 
similar to those used by Singh and Singh (6), among others. 
These are standardized root mean square deviation (SRMSD) 
given by 

[ 

N ( )2]112 1 .~; - x, 
SRMSD = - L -_-

N . ~ 1 x 
(17) 

and standardized mean absolute deviation (SMAD) given by 

SMAD = -2: ~ 1 Nix - xi 
N • ~ 1 x 

(18) 

where N is the sample size (x1, x2 , ••• , xN), 

and i ; is an estimate of x, obtained from F- 1[p(x;)] ; p(x;) is 
approximated by the Weibull plotting position: p(x,) = m,I 
(N + 1), where m1 is the rank of x, in descending order . The 
Weibull is an unbiased empirical estimate of the quantile 
probability and is the most widely used plotting position for­
mula in hydrology. In this analysis, F- 1 values were approx­
imated numerically, and LP3 quantiles were obtained using 
a routine that translates the LP3 to a chi-squared random 
variate . 

The performance indices used here are different from those 
used in the previous references in that the deviations between 
the predicted and observed variate are standardized by the 
sample mean rather than the observed value itself. In this 
way, every observed value of the variate is given equal weight 
in the computation of the performance index. Results of per­
formance evaluation using SRMSD and SMAD are presented 
in Tables 2 and 3, respectively. The maximum percent dif­
ferences were obtained from the differences between the 



TABLE 1 PERTINENT DATA OF WATERSHEDS 

Gage Area No. of Skew Coefficient of 
Station km' Obs. Coefficient Variation 

02491500 2,564 66 2.12 0.75 
02492000 3,139 50 3.13 0.85 
07344450 207 31 2.38 1. 05 
07348700 1,566 30 2.23 0.93 
07349500 1,413 49 1. 53 0.68 
07351500 171 49 2.28 0.91 
07352000 399 47 1.60 0.85 
07351000 205 43 1.17 o. 72 
07366200 538 32 2.86 1. 07 
07371500 919 49 1. 61 0.77 
07372200 4,914 30 2.33 0.88 
07373000 132 46 1. 92 1.11 
07375000 267 44 1. 92 0.96 
07375500 1,672 49 2.15 0.82 
07376000 639 47 1. 39 0.75 
07376500 207 44 1. 20 0.59 
07377000 1,501 39 0.80 0.73 
07377500 375 45 0.70 0.70 
07378000 735 44 1. 22 0 . 57 
07378500 3,313 49 1. 57 o. 71 
07381800 176 33 1. 26 0.78 
07382000 621 50 6.18 1. 75 

*07382000 621 49 2 . 89 0.70 
08010000 339 49 0.77 0 . 49 
08012000 l,364 49 2.53 0.72 

*08012000 1,364 48 2.47 0.63 
08013000 1,291 44 1. 62 0.75 
08013500 1,949 49 2.21 0.72 
08014500 1,320 48 4.83 1. 30 

*08014500 1,320 47 1. 30 0.74 
08015500 4,399 49 3.43 0.84 

*08015500 4,399 48 1. 34 0.59 
08014000 443 27 2.10 0.90 
08025500 383 31 2.03 1.16 
08028000 945 36 1. 91 1.1!) 
02490105 188 22 1. 30 0.82 
07375222 119 22 -0.18 0.56 
07380160 52 33 0.40 0.48 
07375170 228 20 1.18 0.63 
07377300 2,290 35 1. 27 0.61 
07376600 36 32 0.07 0.37 
07375480 236 20 1. 61 0.85 
02491700 114 20 1. 56 0.95 
02491350 109 21 1. 39 0.85 
07375800 232 32 2.62 1.11 
07375307 135 22 1. 61 1. 06 
07373500 91 21 0.73 0.61 
07364300 702 24 2.18 0.94 
07369500 800 52 0.05 0.29 
07386500 49 28 0.80 0.43 
08011800 114 24 1. 21 0.67 
08014200 244 37 3.39 1. 06 
07353500 122 26 1. 73 1.11 
07372500 238 31 4.16 1. 20 

*07372500 238 30 1.46 0.64 
07370750 123 30 2.28 0.86 
07372110 62 23 2.24 1.22 
07372000 1,694 42 0.92 0.67 
07370500 702 30 1. 32 0.80 
07370000 2,025 60 0.49 0.40 
07367250 23 20 1. 88 1.10 
07366403 1 22 1. 95 1. 03 
07366420 293 22 3.16 1. 20 
07365000 919 28 1. 68 0.80 
07364870 122 22 1.47 0.74 
07365500 461 30 4.02 1. 26 

TABLE 1 (continued on next page) 
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TABLE 1 (continued) 

Gage Area No. of 
Station km' Obs. 

*07365500 461 29 
07366000 1,197 43 
07364700 365 22 
08016600 213 38 
08028700 34 26 

*08028700 34 25 
08014600 68 20 
08013800 27 21 
08013610 1 22 
07354000 55 30 
07353990 97 22 
08016800 458 31 
08016400 383 39 
08015000 616 31 
07352500 1,096 43 
02490000 31 20 
07348725 86 22 
07348800 173 24 
07347000 300 25 

*07347000 300 24 
07362100 997 49 
07364190 3,030 45 
07365800 466 29 

*07365800 466 28 
07373550 1 30 
08014800 311 24 
08025850 25 20 
08024060 8 24 
08023000 250 28 
07351700 50 26 

*07351700 50 25 
07368500 109 28 
07364500 4,260 52 
02492360 453 21 
08031000 216 34 
08030000 179 32 
08029500 332 36 

*Run without the outliers. 

methods with the largest and smallest SRMSD (Table 2) and 
SMAD (Table 3) . 

DISCUSSION OF RES UL TS 

The most robust estimation technique in terms of descriptive 
ability was determined from among the moment-based pro­
cedures. The robust procedure is that which performs best 
across all variation in sample statistics. Kuczera (18) discusses 
two possible measures of robustness : minimax RMSD and 
minimum average RMSD. Based on the minimax criterion, 
the preferred estimator is the one whose maximum RMSD 
for all cases is minimum . The minimum average criterion is 
to select the estimator whose RMSD average over the test 
cases is minimum. 

Table 4 presents the results of robustness studies using the 
two performance indices SRMSD and SMAD from Equations 
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Skew Coefficient of 
Coefficient Variation 

1.47 0.70 
3.37 1.11 
2.59 1.43 
1. 03 0.63 
2.87 o. 70 
1. 26 0.46 
1. 63 0.88 
1.46 o. 77 

-0.40 0.30 
0.39 0.49 
1. 54 1. 01 
2.69 0.81 
1. 62 0.73 
1. 66 0.97 
1. 08 0.70 
1. 90 1. 01 
0.70 0.63 
2.02 0.88 
2.37 0.50 
0.79 0.34 
3.01 1. 03 

-0.36 0.35 
3.89 1. 68 
4.02 1.17 
0.61 o. 41 
1. 50 0.74 
2.30 0.98 
0.09 0.43 
1.39 0.74 
4.60 l. 53 
0.02 0.54 
0.42 0.34 
0.06 o. 36 
0.95 0.61 
1. 31 0.68 
1.55 0.64 
2.55 1.15 

17 and 18. The table shows the minimum, average, and max­
imum values of each performance index both for with and 
without (parenthesis) outlier cases . The results indicate that 
if the SRMSD index is preferred , the MDM is superior both 
under the average SRMSD and minimax SRMSD criteria. If 
the SMAD index is used , however, then the WRC method 
is the most robust estimator under both criteria. The table 
also shows that removal of the outliers has a large effect on 
the maximum values of the two indices, some effect on the 
averages, and of course, no effect on the minimum values. 

From Table 2, in most cases when outliers were removed, 
the WRC method performed better than MDM and MIX by 
the SRMSD index. This result implies that the WRC method 
may be more sensitive to the presence of outliers than the 
other methods within the range of skewness characteristic of 
the data base. 

Further analyses were performed by examining the per­
formance of the different methods within particular ranges of 



TABLE 2 SRMSD TEST RESULTS FOR THE THREE LP3 FITTING METHODS 

SRMSD 
Gage Method(s) Max. Oiff. 

Station with % 
WRC MIX MOM Min. SRMSD 

02491500 0.208 0.210 0.211 WRC 1.4 
02492000 0.307 0.296 0.296 MIX/MOM 3.7 
07344450 0.328 0.354 0.326 MOM 8.6 
07348700 0.250 0.281 0.272 WRC 12.4 
07349500 0.135 0.141 0.144 WRC 6.7 
07351500 0.200 0.137 0.137 MIX/MOM 46.0 
07352000 0.100 0.138 0.135 WRC 38.0 
07351000 0.142 0.124 0.126 MIX 14.5 
07366200 0.446 0.437 0.423 MOM 5.4 
07371500 0.233 0.198 0.200 MIX 17.7 
07372200 0.253 0.260 0.261 WRC 3.2 
07373000 0.178 0.208 0.187 WRC 16.9 
07375000 0.155 0.202 0.198 WRC 30.3 
07375500 0.182 0.199 0.201 WRC 10.4 
07376000 0.107 0.126 0.126 WRC 17.8 
07376500 0.080 0.093 0.095 WRC 18.8 
07377000 0.148 0.113 0.104 MOM 42.3 
07377500 0.178 0.115 0.089 MOM 100.0 
07378000 0.104 0.104 0.107 WRC/MIX 2.9 
07378500 0.122 0.139 0.141 WRC 15.6 
07381800 0.106 0.130 0.121 WRC 22.6 
07382000 1.096 1.150 1. 004 MOM 14.5 

*07382000 0.199 0.223 0.226 WRC 13.6 
08010000 0.087 0.065 0.067 MIX 33.8 
08012000 0.208 0.235 0.235 WRC 13.0 

*08012000 0.185 0.199 0.203 WRC 9.7 
08013000 0.144 0.151 0.156 WRC 8.3 
08013500 0.181 0.178 0.182 MIX 2.2 
08014500 0.664 0.640 0.613 MOM 8.3 

*08014500 0.086 0.106 0.110 WRC 27.9 
08015500 0.336 0.317 0.319 MIX 6.0 

*08015500 0.121 0.126 0.127 WRC 5.0 
08014000 0.278 0.302 0.292 WRC 8.6 
08025500 0.328 0.383 0.293 MOM 30.7 
08028000 0.252 0.288 0.214 MOM 34.6 
02490105 0.197 0.218 0.188 MOM 16.0 
07375222 0.179 0.137 0.095 MOM 88.4 
07380160 0.075 0.069 0.064 MOM 17.2 
07375170 0.145 0.164 0.155 WRC 13.l 
07377300 0.103 0.120 0.120 WRC 16.5 
07376600 0.046 0.048 0.048 WRC 4.3 
07375480 0.168 0.218 0.218 WRC 29.8 
02491700 0.153 0.219 0.229 WRC 49.7 
02491350 0.159 0.198 0.179 WRC 24.5 
07375800 0.259 0.349 0.326 WRC 34.7 
07375307 0.247 0.283 0.232 MOM 22.0 
07373500 0.101 0.109 0.102 WRC 7.9 
07364300 0.263 0.282 0.281 WRC 7.2 
07369500 0.030 0.030 0.028 MOM 7.1 
07386500 0.132 0.108 0.104 MOM 26.9 
08011800 0.119 0.141 0.146 WRC 22.7 
08014200 0.412 0.410 0.400 MOM 3.0 
07353500 0.164 0.234 0.214 WRC 42.7 
07372500 0.604 0.643 0.589 MOM 9.2 

*07372500 0.196 0.205 0.199 WRC 4.6 
07370750 0.233 0.274 0.258 WRC 17.6 
07372110 0.378 0.451 0.346 MOM 30.3 
07372000 0.089 0.090 0.089 WRC/MOM 1.1 
07370500 0.149 0.141 0.147 MIX 5.7 
07370000 0.090 0.090 0.086 MOM 4.7 
07367250 0.430 0.453 0.357 MOM 26.9 
07366403 0.263 0.326 0.265 WRC 24.0 
07366420 0.488 0.537 0.502 WRC 10.0 
07365000 0.180 0.191 0.189 WRC 6.1 

TABLE 2 (continued on next page) 
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TABLE 2 (continued) 

SRMSO 
Gage 

Station 
WRC MIX 

07364870 0.223 0.193 
07365500 0.596 0.651 

*07365500 0.157 0.181 
07366000 0.485 0.471 
07364700 0.706 0.732 
08016600 0.166 0.157 
08028700 0.268 0.279 

*08028700 0.115 0.116 
08014600 0.252 0.284 
08013800 0.161 0.173 
08013610 0.084 0.081 
07354000 0.063 0.066 
07353990 0.216 0.259 
08016800 0.308 0.300 
08016400 0.139 0.164 
08015000 0.178 0.220 
07352500 0.159 0.143 
02490000 0.235 0.290 
07348725 0.157 0.136 
07348800 0.205 0.245 
07347000 0.178 0.174 

*07347000 0.078 0.072 
07362100 0.298 0.311 
07364190 0.089 0.085 
07365800 0.915 0.937 

*07365800 0.641 0.623 
07373550 0.067 0.068 
08014800 0.145 0.173 
08025850 0.334 0.384 
08024060 0.092 0.088 
08023000 0.130 0.158 
07351700 0.976 0.967 

*07351700 0.146 0.107 
07368500 0.054 0.056 
07364500 0.108 0.095 
02492360 0.104 0.122 
08031000 0.147 0.157 
08030000 0.155 0.157 
08029500 0.337 0.414 

*Run without the outliers. 

the skewness of the data samples. Tables 2 and 3 indicate that 
for the three samples that exhibit a negative skew coefficient, 
MDM is the preferred estimator by a significant amount in 
two of the three cases where MIX and WRC performed com­
parably. For the 19 cases that exhibit skew coefficients in the 
range 0 to 1.0, MDM is superior in 7 cases (by SRMSD) by 
a significant margin; WRC and MIX are preferred by a sig­
nificant amount in one case each; whereas the methods per­
form about equally well in the other cases. These results are 
approximately mirrored in the SMAD cases as well. Most of 
the data samples in this study exhibit skew coefficients that 
lie in the range 1 to 3. Of the 68 samples in this moderate 
range of skewness, over two-thirds were better fitted by the 
WRC method. Of the samples that were better fitted by the 
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Method(s) Max. Oiff. 
with % 

MOM Min. SRMSO 

0.195 MIX 15.5 
0.593 MOM 9.8 
0.174 WRC 15.3 
0.453 MOM 7.1 
0.566 MOM 29.3 
0.145 MOM 14.5 
0.276 WRC 4.1 
0.120 WRC 4.4 
0.256 WRC 12.7 
0.171 WRC 7.5 
0.064 MOM 31. 3 
0.063 WRC/MOM 4.8 
0.207 MOM 25.l 
0.298 MOM 3.4 
0.160 WRC 18.0 
0.201 WRC 23.6 
0.125 MOM 27.2 
0.295 WRC 25.5 
0.128 MOM 22.7 
0.235 WRC 19.5 
0.177 MIX 2.3 
0.075 MIX 8.3 
0.306 WRC 4.4 
0.081 MOM 9.9 
0.802 MOM 16.8 
0.612 MOM 4.7 
0.071 WRC 6.0 
0.178 WRC 22.8 
0.334 WRC/MOM 15.0 
0.089 MIX 4.5 
0.161 WRC 23.8 
0.895 MOM 9.1 
0.102 MOM 43.l 
0.057 WRC 5.6 
0.083 MOM 30.l 
0.114 WRC 17.3 
0.151 WRC 6.8 
0.160 WRC 3.2 
0.350 WRC 22.8 

WRC method, two-thirds exhibited maximum SRMSD and 
SMAD difference ?: 10 percent. On the other hand, of the 
13 samples that exhibited skew coefficients greater than 3.0, 
MDM and MIX were the preferred estimators in terms of 
SRMSD in 11 cases. However, in these cases the SRMSD 
differences were less than 10 percent in all but two instances. 
Thus, it appears that the WRC method is superior in descrip­
tive ability when the data samples exhibit moderate skewness 
(1 :s 'Y :s 3), whereas for the samples of small skewness ('Y 
< 1.0), MDM or MIX may be superior. This result is partic­
ularly evident in the small number of cases that exhibited 
negative skewness in the raw data. For the cases of large 
skewness ('Y > 3.0) there was no significant difference in the 
performance of the methods. However, the performance of 



TABLE 3 SMAD TEST RESULTS FOR THE THREE LP3 FITTING METHODS 

SMAD 
Gage Method(s) Max. Oiff. 

Station with % 
WRC MIX MOM Min. SMAO 

02491500 0.101 0.102 0.107 WRC 5.9 
02492000 0.109 0.109 0.109 WRC/MIX/MOM o.o 
07344450 0.150 0.159 0.190 WRC 26.7 
07348700 0.116 0.122 0.128 WRC 10.3 
07349500 0.067 0.067 0.069 WRC/MIX 3.0 
07351500 0.086 0.062 0.063 MIX 38.7 
07352000 0.067 0.081 0.075 WRC 20.9 
07351000 0.064 0.065 0.069 WRC 7.8 
07366200 0.190 0.186 0.217 MIX 16.7 
07371500 0.090 0.078 0.081 MIX 15.4 
07372200 0.087 0.090 0.089 WRC 3.4 
07373000 0.112 0.119 0.099 MOM 20.2 
07375000 0.091 0.094 0.083 MOM 13.2 
07375500 0.084 0.086 0.084 WRC/MOM 2.4 
07376000 0.067 0.078 0.081 WRC 20.9 
07376500 0.050 0.055 0.059 WRC 18.0 
07377000 0.103 0.086 0.080 MOM 28.8 
07377500 0.121 0.096 0.072 MOM 68.l 
07378000 0.052 0.052 0.053 WRC/MIX 1. 9 
07378500 0.064 0.069 0.067 WRC 7.8 
07381800 0.073 0.090 0.085 WRC 23.3 
07382000 0.211 0.281 0.464 WRC 119.9 

*07382000 0.085 0.092 0.121 WRC 42.4 
08010000 0.057 0.044 0.044 MIX/MOM 29.5 
08012000 0.098 0.115 0.159 WRC 62.2 

*08012000 0.079 0.086 0.117 WRC 48.l 
08013000 0.092 0.093 0.094 WRC 2.2 
08013500 0.079 0.081 0.080 WRC 2.5 
08014500 0.156 0.154 0.210 MIX 36.4 

*08014500 0.057 0.070 0.073 WRC 28.l 
08015500 0.117 0.122 0.122 WRC 4.3 

*08015500 0.069 0.069 0.069 WRC/MIX/MOM o.o 
08014000 0.136 0.146 0.160 WRC 17.6 
08025500 0.184 0.246 0.230 WRC 33.7 
08028000 0.154 0.168 0.132 MOM 27.3 
02490105 0.096 0.122 0.128 WRC 33.3 
07375222 0.134 0.116 0.083 MOM 61.4 
07380160 0.067 0.059 0.049 MOM 36.7 
07375170 0.111 0.123 0.115 WRC 10.8 
07377300 0.080 0.085 0.080 WRC/MOM 6.3 
07376600 0.041 0.042 0.039 MOM 7.7 
07375480 0.112 0.116 0.110 MOM 5.5 
02491700 0.126 0.153 0.155 WRC 23.0 
02491350 0.125 0.128 0.104 MOM 23.l 
07375800 0.121 0.136 0.116 MOM 17.2 
07375307 0.138 0.140 0.123 MOM 13.8 
07373500 0.071 0.076 0.070 MOM 8.6 
07364300 0.119 0.125 0.121 WRC 5.0 
07369500 0.025 0.026 0.023 MOM 13.0 
07386500 0.075 0.068 0.062 MDM 21. 0 
08011800 0.095 0.097 0.096 WRC 2.1 
08014200 0.119 0.119 0.133 WRC/MIX 11.8 
07353500 0.125 0.136 0.116 MDM 17.2 
07372500 0.180 0.203 0.268 WRC 48.9 

*07372500 0.111 0.120 0.132 WRC 18.9 
07370750 0.095 0.114 0.135 WRC 42.l 
07372110 0.192 0.227 0.196 WRC 18.2 
07372000 0.055 0.053 0.055 MIX 3.8 
07370500 0.097 0.091 0.090 MOM 7.8 
07370000 0.066 0.066 0.068 WRC/MIX 3.0 
07367250 0.202 0.262 0.268 WRC 32.7 
07366403 0.140 0.173 0.154 WRC 23.6 
07366420 0.181 0.188 0.200 WRC 10.5 
07365000 0.093 0.095 0.100 WRC 7.5 

TABLE 3 (conlinued on next page) 
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TABLE 3 (conlinued) 

SMAO 
Gage 

station 
WRC MIX 

07364870 0.151 0.131 
07365500 o.188 0.196 

*07365500 0.124 0.130 
07366000 o.186 0.181 
07364700 0.294 0.369 
08016600 o.114 0.120 
08028700 o.116 0.118 

*08028700 0.080 0.077 
08014600 0.160 0.181 
08013800 0.085 0.090 
08013610 0.072 0.071 
07354000 0.051 0.053 
07353990 0.110 0.142 
08016800 o.145 0.140 
08016400 0.000 0.093 
08015000 0.109 0.130 
07352500 0.094 0.092 
02490000 o.159 0.175 
07348725 0.124 0.113 
07348800 0.084 0.100 
07347000 0.081 0.076 

*07347000 0.054 0.047 
07362100 0.097 0.100 
07364190 0.067 0.065 
07365800 0.344 0.353 

*07365800 0.246 0.254 
07373550 0.053 0.053 
08014800 0.109 0.119 
08025850 0.112 0.199 
08024060 0.079 0.073 
08023000 0.098 0.105 
07351700 0.355 o. 355 

*07351700 0.124 0.088 
07368500 0.038 0.039 
07364500 0.068 0.062 
02492360 0.077 0.091 
08031000 0.089 0.093 
08030000 0.087 0.086 
08029500 o.162 0.197 

*Run without the outliers. 

all three methods decreased significantly as the skew coeffi­
cient increased. The average SRMSD for the MDM of the 
five samples with the smallest skew coefficients is 0.074, whereas 
the average SRMSD for the MDM of the five samples with 
the largest skew coefficients is 0.739. This result represents a 
deterioration in SRMSD performance of 892 percent. The 
MDM resulted in the better fit in all 10 of these extreme 
cases. 

CONCLUSION 

The results of this study demonstrate that in many cases there 
is a significant difference, depending on sample skewness, 
between the descriptive capability of these three moment-
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Method(s) Max. Oiff. 
with % 

MOM Min. SMAO 

0.121 MOM 24.8 
0.227 WRC 17.2 
0.118 MOM 10.2 
0.231 MIX 27.6 
0.366 WRC 25.5 
0.120 WRC 5.0 
0.136 WRC 17.2 
0.082 MIX 6.5 
0.188 WRC 17.5 
o. 092 WRC 8.2 
0.053 MOM 35.8 
0.053 WRC 3.9 
0.141 WRC 29.l 
0.155 MIX 10.7 
0.102 WRC 27.5 
0.114 WRC 19.3 
0.097 MIX 5.4 
0.177 WRC 11. 3 
0.105 MOM 18.l 
0.091 WRC 19.0 
0.081 MIX 6.6 
0.049 MIX 14.9 
0.111 WRC 14.4 
0.063 MOM 6.3 
0.427 WRC 24.1 
0.264 WRC 7.3 
0.055 WRC/MIX 3.8 
0.115 WRC 9.2 
0.210 WRC 22.l 
0.073 MIX/MOM 8.2 
0.099 WRC 7.1 
0.446 WRC/MIX 25.6 
0.076 MOM 63.2 
0.039 WRC 2.6 
0.054 MOM 25.9 
0.083 WRC 18.2 
0.103 WRC 15.7 
0.093 MIX 8.1 
0.208 WRC 28.4 

based methods. However, no method demonstrated clear 
superiority across all samples. For samples that exhibit skew 
coefficients greater than 1.0, the WRC method performs com­
paratively well in terms of both performance indices. For 
samples that exhibit skew coefficients of less than 1.0, the 
WRC method is clearly inferior to MDM and MIX, on the 
basis of the limited number of samples in this range. Previous 
Monte Carlo studies (7,8) that compared the relative predic­
tive ability of these methods were based on samples generated 
from known populations and generally concluded that WRC 
did not perform as well as MDM and MIX in this regard. 
However, the results of the Monte Carlo studies may not 
translate to the real-world situations wherein the populations 
are unknown. 
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TABLE 4 COMPARISON OF ROBUSTNESS 

Method Min Average Max 

SRMSO 

WRC .030 .238 (.196) 1.096 (. 706) 

MIX .030 .252 (.209) 1.150 (.732) 

MOM .028 .233 (.195) 1.004 (.612) 

SMAO 

WRC .025 .114 (.105) .355 (. 294) 

MIX .026 .121 ( .111) .369 (. 369) 

MOM .023 .126 (.111) .464 (. 366) 

Note: Values in parenthesis denote performance 
indices without the outliers. 

The results may be of particular significance to engineers 
working in the area of highway drainage design. These struc­
tures are frequently designed for small recurrence intervals. 
The results demonstrate that for data with skew coefficients 
greater than 1.0, but particularly in the range 1 s -y s 3, the 
WRC method possesses superior interpretive ability. Thus, it 
appears that this method may continue to be used confidently 
by engineers engaged in the design of small drainage struc­
tures. 
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