
TRANSPORTATION RESEARCH RECORD 1282 81

ODEPSI: An Experimental Object
Oriented Data Base Management System

JAE-JUN KIM AND C. WILLIAM IBBS

ODEPSI is an experimental object-oriented data base manage
ment system. Developed as an extension to Smallt~lk-SO'm, ODEPSI
is currently designed for the management of design and construc
tion project data. ODEPSI represents and manages data items
on the basis of the object-oriented paradigm; all data items are
in objects, and each object has a set of properties a~d related
procedures. The current vers10n of the sy~tem em~has1zes auto
matic constraint enforcement and semantic modelmg. ODEPSI
provides facilities for defining and maintaining constraints on
property values, object types, and object relationship~. Sem~n
tics, which imply the meaning of the real-world sub1ect be1.ng
modeled, are represented through the use of object properties
and interobject relationships. Major system components of the
current version include a data definition language and a data
manipulation language.

Data base technology is an ideal tool for integrating various
design and construction process functions (1-3). Its ability to
store, retrieve, sort, analyze, update, delete, and trace data of
various kinds, which are generated through all phases of the
building cycle, provides a crucial foundation for integration.

A data base is developed with a certain structure that defines
the relationships among its entities or record types (4). This
structure is called a data model. Notable data models in use
are the network, hierarchical, and relational forms. Software
that implements one of these data models is called a data base
management system (DBMS) and is used for the creation,
manipulation, and maintenance of a data base.

The relational data base management system (RDBMS),
which is based on the relational data model, is the most favored
DBMS in construction today. The RDBMS gained popularity
over other data base systems for its simplicity and ease of use.
Many construction organizations now use data bases as integral
parts of their project control systems.

The problem with the relational data model is that it lacks
semantic expressiveness, which is an ability to convey the
meaning of a real-world subject through the represented data
elements. Dynamics of construction projects are not properly
depicted in current relational data bases.

The object-oriented data model is an alternative to the
traditional pure relational data model for managing construc
tion project data. An experimental object-oriented data base
management system (OODBMS) called ODEPSI has been
developed. ODEPSI is an acronym for Qbject-oriented data
base management system for DEsign and f_roject Planning
and Control §_ystem !ntegration. The benefit of this approach
to project and construction managers is a homogeneous envi-

Department of Civil Engineering, University of California, Berkeley,
Calif. 94720.

ronment for programming and data base that allows better
representation of the semantics involved in their projects.

OBJECT-ORIENTED DATA MODELING

Object-oriented data bases are a data modeling and manip
ulation concept that is based on the concept of an object.
Although this concept originated in the 1960s with the SIM
ULA effort (5), it was not fully appreciated until several years
later, during the Smalltalk research project at Xerox Palo
Alto Research Center. The principal conceptual and func
tional elements of an object-oriented data base that distin
guish it from other data base types are objects, data abstraction,
and inheritance.

All data items in an object-oriented data base are treated
as objects. Each object is uniquely identified by the system.
Any real-world entity, either conceptual or physical, can be
represented as an object. Each object can carry and determine
its own behavior. This concept of object is an important one,
and its benefits will be explained using construction project
data.

The existence of an object suggests an interesting compar
ison from the modeling perspective. In any conventional data
base approach, a typical construction project may represent
the concept of Activity with a set of data items. Application
programs then manipulate this data set to get a meaning of
Activity. Because this manipulation process is varied by or
within the application programs, careful coordination between
the data base and the application programs is needed. How
ever, in an object-oriented data base environment, this exter
nal coordination problem no longer exists. The conceptual
entity Activity is explicitly represented as an object and its
operational behaviors, such as calculating its progress or
determining float time, are included within itself.

Other important modeling advantages of an object-oriented
data base are its data abstraction and inheritance capabilities.
These capabilities are important because they bring efficiency
and integrity into the data representation task. Consider a
data base storing a structural configuration of a building. Scores
of walls may be included. These walls may have instances of
two types-exterior and interior. Each wall may have various
properties to be described, such as identification, size, mate
rial, schedule, cost, and location. One efficient way of organ
izing these wall data is to make an abstract data object called
Wall and to use that object to describe those characteristics
common to all walls. Then, this Wall object can be further
specialized to differentiate exterior and interior walls
ExteriorWall and InteriorWall. Properties, including behav-

82

ior, common to these two wall types are defined in the Wall
object and inherited to its specializations. Only the necessary
characteristics of the two wall types are carried to the lower
level.

From this example, the two important concepts of inter
object relationships-generalization and specialization-can
be observed. Through the data abstraction process of pro
ducing a Wall object, a generalization relationship is estab
lished. Through the process of subdividing the object into
ExteriorWall and InteriorWall objects, a specialization rela
tionship is established. As indicated from this example, one
is the mirror image of the other.

In general, the semantics of a real-world subject includes
two more concepts of interobject relationships-aggregation
and association. In current object-oriented data base envi
ronments, these relationships are not explicitly represented.
However, using the generalization and specialization concepts
as a foundation for object classification, the other relations
between objects, aggregation and association, can be repre
sented and maintained.

The importance of this point is indicated by Figure 1, which
shows several semantic relationships between building objects.
Floor-1 contains three Room instances, Room-1, Room-2,
and Room-3. Corridor-1 is part of Floor-1 and adjacent to
the three room instances. The three semantic relationships in
this example are "contains," "isPartOf," and "isAdjacentTo."
The first two relationships, contains and isPartOf, show an
example of aggregation; Floor-1 aggregates Room-1, Room-
2, Room-3, and Corridor-1. Another relationship,
isAdjacentTo, shows an example of association; Corridor-1
is associated with Room-1, Room-2, and Room-3. The following
is a list of interobject relationships in the example:

• Floor-1 contains Room-1,
• Floor-1 contains Room-2,
• Floor-1 contains Room-3,
• Floor-1 contains Corridor-1,
• Room-1 isPartOf Floor-1,
• Room-2 isPartOf Floor-1,
• Room-3 isPartOf Floor-1,
• Corridor-1 isPartOf Floor-1,
• Corridor-1 isAdjacentTo Room-1,
• Corridor-1 isAdjacentTo Room-2, and
• Corridor-1 isAdjacentTo Room-3.

BASIC ELEMENTS OF OODBMS

The basic elements of an OODBMS, which are commonly
recognized within the context of object-oriented paradigm,
should be reviewed before ODEPSI is described. The follow
ing definitions are based on the Smalltalk-80'm-style
object-oriented programming (OOP) concept.

Object

An object is a sole data type (class) supported by OODBMS.
Other data types may only be defined as a subclass of object.
An object-oriented system, therefore, consists of objects of

TRANSPORTATION RESEARCH RECORD 1282

ConstructionObject
.L

l
jsubci:s"""illt]
i I l l

Void Floor Corridor Room ;101

FIGURE 1 Example of aggregation and association.

various kinds (including class objects and instance objects)
responsible for features that are analogous to an operating
system, program, function, or data element of conventional
systems. No clear distinction exists for an application program
and a data management system. An object is by itself a pack
age of data and related procedures that belong together. In
OOP, procedures are sometimes also called methods (6).

An object, being a combination of data and methods, allows
information hiding and data encapsulation. Information hid
ing is a concept that simplifies programming tasks by providing
minimum components necessary. It is accomplished by sur
rounding data and methods within the object. Data encap
sulation is a concept that increases programming integrity by
restricting objects' values accessed or modified only through
their methods. This idea in turn allows reduction of the effect
of any one software module's change on others. Put another
way, information hiding and data encapsulation concepts ensure
reliability, modifiability, and safety of software systems by re
ducing interdependencies between software components (7-9).

In OODBMS, each and every object is unique; a hidden,
permanent, unique identifier is assigned to each object. This
identifier is only visible to system components. If an object
is to be queried directly from objects of the same class without
comparing their values, an object's identity should be saved
explicitly as a global variable. Thus, if a variable is known
that references the object to be queried, there is no need to
query the object. It is already accessed through the variable
that references it.

For this reason, objects can be queried not only by their
values but also by their identities. Some researchers of con
ventional RDBMSs have independently arrived at the impor
tance of objects (10-12). They have expanded the traditional
value-based approach of the RDBMS by using the object
concept of OOP.

Kim and Jbbs

Classes and Instances

A class is an object that describes behaviors of similar objects
(instances) in terms of class variables, instance variables, and
methods. Class definitions are analogous to schemes of tra
ditional DBMS (and instance variables are used similarly to
the fields of relational tables), but classes differ from schemes
in that they control their own behaviors. Unlike traditional
DBMSs, which have separate programs for data manipula
tion, each OODBMS class is capable of controlling its behav
ior through the methods encapsulated within its structure.
Manipulating data stored in class and. instance variables, and
performing system-level operations such as constraint
enforcement or consistency maintenance, are possible.

Classes are organized hierarchically to facilitate system
organization and development. A new class (data type) is
created as a subclass of an existing class (which then becomes
a superclass) and shares similarities. Methods and instance
variables of the superclass are available for the subclass by
means of inheritance. A class hierarchy represents a semantic
relationship of generalization and specialization. A superclass
is a generalization of its subclasses, and a subclass is a spe
cialization of a superclass . These two semantic relationships
are complementary to each other and are sometimes described
as an is-a relationship.

Instances themselves become objects , each representing a
specific case of a class . They are analogous to tuples (records
or rows) of relational tables. An instance object's state is
captured in its instance variables, and behaviors of an instance
are controlled by the methods of its class . To be precise, those
methods that control an instance's behaviors are called instance
methods. There are other methods, namely class methods,
that only respond to classes. Each class has its class methods
and typically uses them for the creation of its instances.

Figure 2 shows an example of structural component classes
and their instances. The objects in grey bubbles are classes,
and the objects in white bubbles are instances .

FIGURE 2 Classes and instances.

83

ODEPSI

Design Philosophy: Data Base plus Programming

The formula data base plus programming sums the objective
of much current OODBMS research (13-17). This formula
is also the design objective of ODEPSI. The OODBMS design
philosophy resolves the impedance mismatch problem through
the tight interaction of data base concepts within the OOP
environment (18). Impedance mismatch is a term describing
the language difference between a DBMS and related appli
cations programs. Interfaces, like SQL, are widely used to
resolve this language difference .

Traditional language and data base interfaces depend on a
set of function calls or a separate data manipulation language
that has little or no interaction with other language features.
Traditional approaches burden the application program dur
ing data base interfacing and suffer more when they try to
interpret data semantics . If the data base system is developed
within the same programming environment as the application
development, a programming environment that addresses these
interfacing problems can be provided.

System Requirements

The primary requirement for ODEPSI is to provide a formal
data (object) definition language (DDL) and data manipu
lation language (DML). ODEPSI provides extensive data
manipulation capabilities , including most DBMS-like data
access and query. This permits a focus on those operations
that are application-specific. For a construction application,
the user of ODEPSI needs to concentrate on the algorithmic
behaviors of data objects like CPM processing or Earned
Value generation. Access and query behaviors of each object
are provided by the system.

ODEPSI also emphasizes automatic constraint manage
ment and semantic modeling. The system provides facilities
for defining constraints on property values, object types, and
object relationships. These constraints are then abided by the
system and enforced to the data base users. Semantics of the
real-world subject are modeled through the use of object
properties , constraints, and interobject relationships. These
capabilities are essential features for realizing the integrated
data base of design and construction.

Objects live beyond the user sessions in which they are
created. Each object is given a unique address by the system.
As a concept-proving tool of the proposed research, ODEPSI
needs only to be a single-user, virtual-memory-based, single
processor system. Other important data base issues, such as
security control, concurrency control, and query optimization,
are beyond the scope of this work.

System Development

Overall Architecture

ODEPSI is a set of new methods and classes added to the
existing Srnalltalk-SO•m system. ODEPSI uses existing data

84

types, variables, and control structures of Smalltalk-80'm. The
specific additions made to Smalltalk-80'm were DDL and DML
modules and a utility module for general system support,
including automatic constraint enforcement and semantic
modeling.

As schematically shown in Figure 3, ODEPSI and its gen
erated data objects reside within the Smalltalk-80'm image.
By combining all elements of program, DBMS, and data base
within one homogeneous environment, the level of automa
tion and integration necessary for integrated design and
construction data management can be achieved.

ODEPSI Classes

ODEPSI is built around existing Smalltalk-80'm classes. As
shown in Figure 4, most ODEPSI methods are created as a
part of the Object and Behavior classes of Smalltalk-80'm.
Because these two classes are well structured and readily pro
vide a rich set of generic methods for object programming,
it is appropriate to develop and include ODEPSI's methods
for object management within the same classes.

To handle methods that have no clear links to the Smalltalk-
80'm classes, two new classes, Property and Db, were created.
They were designed as subclasses of Object to inherit its generic
behaviors. Property creates instances for class properties, and
Db organizes all the classes and their instances created by
ODEPSI. The Db class is the root node of all classes created
by ODEPSI. Db also provides methods for maintaining and
providing unique symbolic identifiers for the objects created.

Concepts

Defining Object Values Through Properties An object is
a multivalued entity. Its values are explicitly defined and stored
in terms of properties. Each property identifies and stores
one or more values of the object. Each property of an object

ODE PSI
Q)
0

Utility Module ca
m

DDL Module ca .. ca
DML Module

c

Smalltalk-BO

Smalltalk-BO Image

FIGURE 3 ODEPSI architecture.

TRANSPORTATION RESEARCH RECORD 1282

ODEPSI

LEGEND

- subclassOf
Q ODEPSI Methods
<:=:::> ODEPSI Classes

FIGURE 4 ODEPSI class structure.

Data Base

has six generic slots. The actual storage for these slots is
produced by generating an instance of Property class .

Slots of a property are used to include the property's iden
tification, value, allowable domain (type), constraint, trigger,
and an indication of a single or multiple values. These slots
are represented with the following Property instance varia
bles: propName, propValue, propDomain , propConst,
propTrig, and isSet (see Figure 5).

A class property in ODEPSI is internally represented with
two items: an instance variable named after it and an instance
of the Property class (see Figure 5). An instance variable is
created to provide each instance a memory space to store its
property value. A Property instance is created and allocated
to the class to store the six generic contents of the property.
A class object stores its Property instances into a class variable
whose symbol is made by combining the class name and a
word "PropertySet." As shown in Figure 5, Column's class
variable is named "ColumnPropertySet."

Controlling Properties With Constraints A constraint can
be defined for each property. A constraint of a property is
used to check input data validity. A property's constraint is
initially defined by the user with a list of procedural code.
The constraint is compiled and stored in the constraint slot
of the property. This list is evaluated when the property receives
input data.

Figure 6 shows an example of this property constraint . A
constraint is defined for the location property of Column class.
A column instance, Cl, is also created. The constraint of
location property is evaluated when Cl receives a value for
its location property. As shown in the example, when a proper
value, (1 2 1), is entered for Cl's location, the system accepts

Kim and lbbs

propName: 'locatlon'

prop Value: (0 0 0)

propDomain: Location

propConst: nll
prop Trig: nil

isSet: false • • • •
Structural Component

Instance Variable

locatlon

Class Variable

StructuralComponentPropertySet (

FIGURE 5 Defining a property location.

Column
Instance a

locatlon

propName: location

propValue: (O 0 O)

propDomaln: Locatlon

propConsl:

[:al(a>=(OOO)
ttFalse: [.. error • value out of bound1
ifTrue: 1• 1rueJ]

prop Trig:
when: [:a I (a>= (0 O 10)) and: (a<= (0 0 15))
act: [•self setLoadFactor: 0.9~] ---

lsSet: false

l_n ut vufuo lo · 1oc11llon• Rasull

FIGURE 6 Property constraint and trigger.

the value- meaning that the constraint is satisfied. However,
when an out-of-bound value, e .g., (0 2 - 1), is entered, an
error message is issued and the system rejects the value.

This property constraint maintenance mechanism is an
important tool for enhancing the integrity and consistency of
a data base. As stated earlier in the design philosophy, in this
way the user of the data base can concentrate on more impor
tant aspects of problem solving. The data base supports the
user in maintaining data integrity and consistency .

Controlling Properties With Triggers Another tool that
can enhance the integrity and consistency of a data base is

85

the trigger mechanism . A trigger can be defined for each
property. A trigger is defined by the user like the constraint
mechanism and stored in the trigger slot of a property. The
purpose of the trigger mechanism is slightly different from
that of the constraint. A property's trigger is activated only
when its predefined condition is satisfied by the input data .

Figure 6 also provides an example of trigger operation.
Here , a trigger is defined for the location property of Column
class. The code defined in the "when:" part is the trigger's
condition. If a column is between the 10th and the 15th floor,
then the load factor of the Column is reset as 0.9. Neither of
the two location values tried earlier satisfies this condition.
Thus, this trigger is not activated .

Property Value Inheritance A class's properties are inher
ited to its subclasses. As shown in Figure 7, a Structural
Component's subclass, Column , inherits all the properties
defined for the StructuralComponent. When it is necessary
for the Column class to change or customize the inherited
properties , the user redefines any of the property content;
value, domain, constraint, or trigger. This operation is sup
ported by the system in the following manner: when the sys
tem faces this situation, it copies the property and assigns it
to the class variable of the subclass , where the modification
attempt is made.

For instance, Column's inherited property, load, is modi
fied by overwriting its contents onto the copy of the property.
The original load property object of the Structural Component
is intact. Once the change is made , the Column class and its
instances reference their own copy of the load property, not
the property of the StructuraJComponent class. This ability
to customize the inherited properties is essential to efficiently
delegate and control object behavior.

location
material
connectedTo
isPartOf
load

connectedTo

- (isPartOf)

location
material
connectedTo
isPartOf
load
ColumnPropertySet().

i~C1
location: (5 10 3)
material: ('concrete')
connectedTo: (81 84 51)

load

cop~Ot
C§D

isPartOf: ConcreteStructure-1
load: 2000

FIGURE 7 Property inheritance.

86

The benefit of this approach is shown in Figure 7. The
Column class modified its inherited load property to define
a constraint and a trigger. The constraint and trigger condi
tions required by Column may be different from those of the
Beam or Slab classes. This approach allows individualized
class behavior control. A Column instance, Cl's load value
is then affected by the constraint and trigger newly defined
for its class.

SYSTEM USE

Creation of a Class Object

To create a new class object, a class method called def
Subclass: is sent to an existing class from which the new classes
are to be created. The following sequence of statement creates
the initial definition of a new class, StructuralComponent,
and its subclass, Column:

1. Component defSubclass: 'StructuralComponent' .
2. Structural Component defProperty: 'location';

• defProperty: 'material';
• defProperty: 'connectedTo' ;
• defProperty: 'isPartOf';
• defProperty: 'load'.

~. StrncturalComponent rlefS11hcl;iss: 'Coh1mn' .

Component is the superclass of StructuralComponent. Once
a new class named "StructuralComponent" is created, prop
erties of the class are defined with the method defProperty:
Another class, Column, is created as a subclass of the
Structural Component class. As shown in Figure 7, the Col
umn class inherits the properties of its superclass
StructuralComponent. Each class in ODEPSI describes its
status in terms of properties. This concept of property is sim
ilar to that of the attribute of a frame-based Artificial
Intelligence (AT) knowledge representation concept.

Defining Set Properties

A property may have multiple values. For instance, a load
bearing wall may be built with several materials, such as con
crete and rebar. To allow a property to have multiple values,
it must be declared a set property using the class method
defPropertyAsSet: The following statement defines the mate
rial and connectedTo properties of Column as set properties:

StructuralComponent defPropertyAsSet: 'material';
defPropertyAsSet: 'connectedTo'.

The set property concept is an essential requirement for
capturing interobject relationships , especially those of aggre
gation and association . For example, the Column instance is
associated with several objects , such as Beam and Slab, and
it is built with several materials (e.g., concrete and rebar).
The Column is a subclass of the StructuralComponent class
and, therefore, any decisions made on the Structural
Component's properties are also inherited by the Column .

TRANSPORTATION RESEARCH R ECORD 1282

Defining Property Domain

A property value can be restricted to a certain class domain
in ODEPSI. This ability allows tighter control of data seman
tics. The domain concept is similar to the type constraint of
conventional data bases, but domain is used optionally when
necessary. Unless defined , the system provides a default domain
value of nil. The following statement defines the domain of
the properly isParlOf tu the dass CuncreteStructure:

StructuralComponent defPropertyDomain: 'isPartOf' with:
ConcreteStructure.

This statement restricts the value of the isPartOf property
of StructuralComponent to be a ConcreteStructure instance
or that of its subclasses. Once a property is given a domain,
the system automatically checks for the validity of its value
whenever the property receives a value. Any Smalltalk-801m

class or user-defined class can be a domam value.

Defining Default Property Value

As an example, consider adding a new property to the Column
class . This operation can be done by evaluating the following
statement:

Column defProperty: 'width' .

A default value of the width property can also be defined .
The following statement sets the property width of the class
Column to 12:

Column defPropertyValue: 'width ' with: 12.

Default property values of a class are automatically prop
agated to the class instances . For example, all instances of
Column will have their width properties valued as 12 . If some
instance object's width is not 12, then the user must input the
new value explicitly. This default concept is useful for engi
neering applications in which many standard values are
repeatedly applied. Default values of class properties are also
inherited to subclasses.

Defining and Triggering a Property Constraint

Knowledge necessary to propagate design changes to con
struction data can be captured through the use of these mech
anisms. For example, if the user wants to limit allowable load
values of the Column between 2,000 and 2,500 kg/in. 2 , the
user would define this constraint using the class method
defPropertyConst::

Column defPropertyConst : 'load'
with: '[:a I (a = < 2500 and: a = > 2000)
ifFalse: [' "error:
load value should be between 2000 and 2500"]]'

In ODEPSI, both constraints and triggers are represented and
stored within the Block object shown . An instance of Block

Kim and lbbs

is surrounded by square brackets and evaluated when it receives
the message value. A detailed explanation of the operational
aspects of Block and ifFalse: is available from Goldberg and
Robson (19).

Continuing with the example, suppose the load value is
increased from 2,000 to 2,500 kg/in. 2 . A likely scenario is that
the material estimate, especially rebar and perhaps formwork,
may have to be adjusted, because the increased load-bearing
capacity may demand less structural reinforcement. Users can
prepare for this situation using triggers. The following trigger
is defined to update the effect of the load-bearing capacity
increase:

Column defPropertyTrigger: 'load'
when: '[:a I (a > 2000)
act: [' self updateMaterialEstimate "rebar" with: a]]'

The preceding message defines the property load trigger
and stores it in the class Column. Whenever the property load
value of any one class instance is updated and meets the
condition (defined in the when: message), its trigger (defined
in the act: message) is fired .

SEMANTIC MODELING

Four basic relationships-generalization, specialization,
aggregation, and association-are represented and supported
in ODEPSI. The ability to handle these basic relationships is
what distinguishes OODBMS from other data base concepts.
To avoid redundancy, specialization and association are not
explicitly discussed here. Their meaning can be inferred by
understanding the generalization and aggregation concepts.

Generalization

A generalization relationship permits the grouping of similar
objects into a single unit; in other words, generalization
describes objects in an abstracted form. For example, the class
Column may be a generalization of more detailed classes such
as ConcreteColumn, Stee!Column, or WoodColumn. The class
Column may store generic properties common to all columns.
All columns have properties, such as columnDimension ,
columnLocation, or supportingComponents. The class Col
umn is an ideal candidate for accommodating all these prop
erties . Then more detailed properties can be assigned to the
specialized classes. For example, the class WoodColumn may
include a property like woodType to describe the wood mate
rial that it is made of. The following statements describe these
generalization relationships with ODEPSI syntax:

StructuralComponent defSubclass: 'Column'.
Column defProperty: 'columnDimension';

defProperty: 'columnLocation';
defProperty: 'supportingComponents' .

Column defSubclass: 'ConcreteColumn' .
Column defSubclass: 'SteelColumn'.
Column defSubclass: 'WoodColumn'.
WoodColumn defProperty: 'woodType'.

87

One important aspect of the generalization relationship is
its implication for inheritance. In ODEPSI, properties and
their values of superclasses are inherited to their subclasses.
In the previous example, those classes specialized from Col
umn inherit all the properties of Column. In addition, those
classes inherit all properties of the superclasses of Column
(e.g., StructuralComponent). Like the WoodColumn class,
they can add properties to themselves.

Aggregation

An aggregation is a form of an isPartOf relationship. With
aggregation, one class that contains or aggregates others assumes
the role of assembly, and the other classes assume the role
of components. Aggregation relationships are especially
abundant in engineering applications. A building's structural
frame is an aggregation of basic structural components, such
as columns, beams, slabs, or stairs.

An aggregation relationship between Floor-1 and the floor
components (Room-1, Room-2, Room-3 , and Corridor-I) is
established as follows:

Floor-1 setPropertyValue: 'contains' with: Room-1;
setPropertyValue: 'contains' with : Room-2;
setPropertyValue: 'contains' with: Room-1;
setPropertyValue: 'contains' with: Corridor-I.

CONCLUSIONS AND RECOMMENDATIONS

An experimental OODBMS, ODEPSI, has been presented.
Basic concepts of object-oriented data representation and
management have been discussed . Issues involved in ODEP
SI's implementation and its basic syntax have been presented.
The approach to achieving property value inheritance and
semantic modeling has also been discussed.

The initial results of this work indicate that a homogeneous
environment for programming and data base is advantageous
for representing the semantics of a construction project. A
project model that integrates design objects with construction
planning and control objects is being developed with the cur
rent version of ODEPSI. This exercise will further clarify
directions to take in developing an object-oriented project
planning and control system.

The ODEPSI experience indicates several improvements
to its functions. At the top of the list is a composite object
function. To better represent functional and spatial con
straints of a facility, an explicit mechanism is needed to handle
those objects that are highly aggregated (i.e., assembly-type
objects).

Another useful function being worked on is object ver
sioning combined with the time concept. In the reality of
design and construction, many objects are changing property
values while design and construction are in progress. On many
occasions , histories of those objects must be maintained to
resolve conflicts or to capture valuable engineering or
construction information that would otherwise be lost.

In the future, composite object management capability will
be added to ODEPSI. As more of these enhancements are

88

developed, transportation managers and engineers will see
the appearance of object-oriented data bases in day-to-day
practice.

ACKNOWLEDGMENT

This material is based on work supported by the National
Science Foundation (NSF).

REFERENCES

1. Report from The I986 Workshop on Integrated Data Base Devel
opment for The Building Industry. Building Research Board,
Commission on Engineering and Technical Systems, National
Research Council, Woods Hole, Mass., June 1987.

2. Database to Track Project Progress. Engineering News-Record,
Feb. 1988, p. 26.

3. K. C. Choi and C. W. Ibbs. Cost Effectiveness of Computerization
in Design and Construction. Technical Report 17, Department
of Civil Engineering, University of California at Berkeley, 1989.

4. E. J. Yannakoudakis. The Architectural Logic of Database Sys
tem. Springer-Verlag, London, 1988.

5. 0. J. Dahl and K. Nygaard. SIMULA: an algol-based simulation
language. Communications of the ACM, Vol. 9, 1966, pp. 671-
678.

6. T. Kaehler and D. Patterson. A Small Taste of Smalltalk. BYTE,
Aug. 1986, pp. 145-159.

7. G. A. Pascoe. Elements of Object-Oriented Programming. BYTE,
Aug. 1986, pp. 139-144.

8. B. J. Cox. Object-Oriented Programming: An Evolutionary
Approach, Addison-Wesley, Reading, Mass., 1986.

9. Smalltalk/V286 Tutorial and Programming Handbook. Smalltalk/
V286, Digitalk Inc., 1988.

10. P. P. S. Chen. The Entity-Relationship Model-Toward a Uni-

TRANSPORTATION RESEARCH RECORD 1282

fied View of Data. ACM Transactions on Database Systems, Vol.
1, No. 1, March 1976, pp. 9-36.

11. J.M. Smith and D. C. P. Smith. Database Abstractions: Aggre
gation and Generalization. ACM Transactions on Database Sys
tems, Vol. 2, No. 2, June 1977, pp. 105-133.

12. L. A. Rowe and M. R. Stonebraker. The POSTGRES Data
Model. Proc., 13th International Conference on Very Large Data
Bases, Brighton, England, 1987, pp. 83-96.

13. A. Purdy, B. Schuchardt, and D. Maier. Integrating an Object
Server with Other Workls. A (,'M Transartinns nn nffire lnfnr
mation Systems, Vol. 5, No. 1, Jan. 1987, pp. 27-47.

14. J. Banerjee, H. T. Chou, J. F. Garza, W. Kim, D. Woelk, and
N. Ballou. Data Model Issues for Object-Oriented Applications.
ACM Transactions on Office Information Systems, Vol. 5, No.
1, Jan. 1987, pp. 3-26.

15. A. Ege and C. A. Ellis. Design and Implementation of Gordion,
an Object Based Management System. Proc., IEEE 3rd Inter
national Conference on Data Engineering, Los Angeles, Calif.,
Feb. 1987, pp. 226-234.

16. J. Diederich and J. Milton. ODDESSY: An Object-Oriented
Database Design System. Proc., IEEE 3rd International Con
ference on Data Engineering, Los Angeles, Calif., Feb. 1987, pp.
235-244.

17. M. J. Carey, D. J. DeWitt, and S. L. Vandenberg. A Data Model
and Query Language for EXODUS. Proc., ACM SIGMOD
International Conference on Management of Data, 1988, pp. 413-
423.

18. G. Copeland and D. Maier. Making Smalltalk a Database Sys
tem. Proc., ACM S/GMOD International Conference on Man
agement of Data, 1988, pp. 316-325.

19. A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley, Reading, Mass., 1983.

Any opinions, findings, conclusions, or recommendations expressed
in this paper are those of the authors and do not reflect the views of
the National Science Foundation.

Publication of this paper ~ponsored by Commillee on Construction
Management.

