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Combined Trip Distribution and 
Assignment Model Incorporating 
Captive Travel Behavior 

You-LIAN Cttu 

Most of the previous literature on combined trip distribution and 
assignment problems has focused on the logit and entropy dis­
tribution models. Though these models are satisfactory for many 
applications, they are incapable of handling situations in which 
the observed trip patterns are represented by both compulsory 
(captive) and discretionary (free) travel behavior. Consequently, 
the use of a dogit distribution formula in the construction of a 
combined trip distribution and assignment model is suggested. 
The new version of the combined model can itself be reformulated 
as an equivalent mathematical programming problem so that the 
equilibrium conditions on the network and the dogit destination 
demand functions can be derived as the Kuhn-Tucker conditions 
of the proposed programming problem. Moreover, this equiva­
lent mathematical program turns out to be a convex programming 
problem with linear constraints, a great advantage from the 
computational aspect. Numerical experiment indicates that this 
behaviorally sound combined model can be used in a realistic 
application at a reasonable cost and within a reasonable time 
period. 

The transportation planning process as currently carried out 
consists of four major stages: trip generation, trip distribution, 
modal split, and trip assignment. Planners customarily treat 
the four stages sequentially as a set of independent problems. 
The potential drawbacks of this approach are twofold. First, 
actual interactions among stages are not explicitly accounted 
for, and biased demand predictions usually result. Second, as 
far as traffic equilibrium is concerned, the estimates of traffic 
flows are not always consistent, and, in general, do not con­
verge to a stable solution. These deficiencies suggest that some 
or all of the stages in the transportation planning process be 
handled simultaneously or combined. 

With this in mind, a combined trip distribution and assign­
ment model is considered in which the solutions of interzonal 
trips and link flows are solved jointly. Because trip generation 
and modal split are not treated here, the proposed model 
should be applied exclusively on the automobile network, and 
the model requires the total number of automobile trips orig­
inating at each zone as input. Generalization of the model to 
include trip generation and modal split will be the subject of 
future research. 

To some extent, the proposed model may be considered a 
variation of the combined trip distribution and assignment 
models that were studied by others (1-3). The major differ­
ence between the previously developed models and the pro­
posed model is that the latter uses the dogit model (instead 
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of logit- and entropy-type models) to find how observed trips 
are distributed among the various destinations. The principal 
reason to employ the dogit model in distribution analysis is 
because at any time an observed trip pattern is typically com­
posed of at least two types of trips: (a) compulsory trips (e.g., 
work, business, school, etc.) and (b) discretionary trips (e.g., 
shopping, recreation, etc.). Compulsory trips are those that 
will be made even in the worst conditions. Thus, frequency, 
destination, and mode are nearly, if not absolutely, fixed. On 
the other hand, discretionary trips are less regular both in 
time and space (mainly because they are less economically 
motivated and are more sociologically and psychologically 
motivated). For example, these trips may be suppressed by 
inclement weather, crowded highways, or substitutes that are 
offered for them. 

Because both compulsory and discretionary trips will exist 
in many travel situations, some people in an urban area are 
captive to one or more specific aspects of travel, and some 
are free to make one or more choices. Despite this fact, most 
existing demand models have failed to explicitly distinguish 
between captive and free travel behavior. For example, the 
well-known logit model is structured so that each individual 
is assumed to exercise a choice for each travel decision to 
which the model is applied. A clear disadvantage of this 
assumption is that when the captive travel behavior is observed, 
the logit estimation will yield errors in parameter estimates 
and demand predictions. One way to alleviate the estimation 
problem is to carry out the model calibration with data only 
for people who have free choice rather than with mixed data. 
This approach, however, requires a careful preparation of the 
calibration data, and, most significant, leads to inability to 
detect the effects of certain transportation policies and actions 
that may remove captivity for some people or make others 
captive. 

Thus, to take into account captive and free travel behavior, 
a combined trip distribution and assignment model will be 
developed in which trip distribution is given by a behaviorally 
more realistic dogit model. To fulfill this objective, a dogit 
distribution model will be formulated on the basis of its orig­
inal individual probabilistic form. After the dogit-type sto­
chastic trip distribution is combined with a deterministic user 
network equilibrium, an equivalent minimization problem is 
proposed for which the Kuhn-Tucker conditions include the 
usual user-equilibrium equations for the basic network and 
the dogit demand functions for the interzonal trips. Because 
this equivalent minimization problem turns out to be a convex 
programming problem with linear constraints, it can be solved 
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efficiently by available algorithmic approaches. Finally, a 
numerical example is presented to demonstrate that the pro­
posed combined model and methodology can be used in a 
realistic application at a reasonable cost and within a reason­
able time period. 

MODEL DEVELOPMENT 

In this section a new version of the combined trip distribution 
and assignment model is presented in which the trip distribu­
tion is given by a dogit model. To explain the theories and 
assumptions underlying the proposed combined model, trip 
distribution and trip assignment models are first described 
separately and then combined into a single formulation. 

The do git model, as derived independently ( 4,5), is a special 
case of mixed probability discrete choice (or random utility) 
models. The functional form of the dogit model is 

(1) 

where 

P1, = the probability that an individual t randomly drawn 
from the population will choose the jth of K alter­
natives, 

a1 = a nonnegative parameter associated with the jth alter­
native, and 

V1, = the systematic utility of the jth alternative. 

The dogit model has two distinct features. First, when uk, 

k E K, is not equal to zero for all alternatives in the model, 
the ratio of the probabilities of choosing any two alternatives 
will depend on the attributes of all alternatives and hence be 
unconstrained by the Independence from Irrelevant Alter­
natives (IIA) property. Furthermore, if uk = 0 holds for some 
alternatives, the dogit model also allows some pairs of alter­
natives to exhibit the IIA property, while allowing the remain­
ing pairs to be free from the IIA restriction. 

Second, because the parameters uk in the model can repre­
sent the likelihood of an individual randomly drawn from the 
population being captive to particular alternatives, the dogit 
model can distinguish between compulsory (captive) and dis­
cretionary (free) travel behavior. To see this, assume that the 
population under study can be partitioned into K + 1 groups 
(see Figure 1), where K is the number of available alterna­
tives. The jth of K groups represents a group of individuals 
captive to the jth alternative, whereas the last [i.e., (K + l)th] 
group represents a group of individuals not captive to any 
alternative. The first term on the right-hand side of Equation 
1 can be interpreted as the probability that a randomly drawn 

population 
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FIGURE 1 Partitioned 
population. 
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individual comes from the jth group, in which case the indi­
vidual is captive to the jth alternative, and thus the probability 
of the jth alternative being chosen is clearly 1. The second 
term on the right-hand side of Equation 1 has two parts. The 
part involving the u vector can be interpreted as the proba­
bility that a randomly drawn individual comes from the last 
group, and the other is the logit probability model of choosing 
the jth alternative given that the individual has free choice. 
The probabilities that a randomly drawn individual may also 
come from the other groups in Kare ignored because in these 
cases the probabilities of the jth alternative being chosen are 
zero. 

On the basis of Equation 1, the trip distribution model in 
this paper is specified as 

where 

(2) 

Ti1 the number of trips from Origin Zone i to Des­
tination Zone j, 

O, the fixed and known number of trips leaving from 
Origin Zone i, 

a,1 a nonnegative parameter representing the odds 
that population in Origin i is captive to the jth 
destination, 

V,1 the systematic utility function associated with the 
i-j pair, 

P11 i the probability that a randomly selected individ­
ual who originates at Zone i will choose the jth 
destination, and 

E(P11 ;) = the expected value of P, which will be interpreted 
as the share of the population originating at i that 
is attracted to the jth destination. 

The trip distribution model formulated in Equation 2 needs 
some explanation. In discrete choice modeling, the utility 
function relates the choice probability P11 , to a vector of var­
iables that may include individual characteristics and trans­
portation attributes. Thus, the aggregation process is usually 
required because the intent is to expand the individual choice 
estimates to an entire population or subpopulation to obtain 
a forecast of aggregate shares of alternatives. However, the 
aggregation process can be ignored if the utility function in 
the dogit model do not include variables that vary across 
individuals. This helps explain the reason why the trip distrib­
ution model in Equation 2 has a form similar to that in Equa­
tion 1, and the expected value of P11 , can be interpreted as 
the share of the population originating at i that is attracted 
to Destination j. 

To interpret the model in Equation 2, Tu can be viewed as 
the expected number of trips from Zone i to Zone j in the 
daily peak-load period, and during that period, the number 
of compulsory work trips from i to j is given by 

+ .l: <I1k 
k 

(3) 
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The number of discretionary nonwork trips from i to j is given 
by 

O; eVii 

1 + 2: U;k 2:eV;k 
(4) 

k k 

In addition, because the captivity parameters u;i can be 
expressed as 

1 
0 " ' 1 + L.., U;k 

k 

they are simply the ratios of the number of compulsory trips 
from i to j and the number of discretionary trips leaving i. 

The dogit distribution model constructed in Equation 2 is 
theoretically more general than the logit distribution model 
used by Expression 3. This is because by setting all captivity 
parameters equal to zero (i.e., u;k = 0 V k E K), the logit 
distribution model can be obtained as a special case of the 
do git distribution model. Similarly, the dogit distribution model 
is more general than the standard entropy distribution model 
used elsewhere (2,6,7), because the latter model is a limiting 
case of the logit distribution model [see the proof by Safwat 
and Magnanti (8)]. 

For convenience, the utility functions in Equation 2 will be 
specified as 

(5) 

where 

Mj = a measure of attractiveness (a constant) associated 
with the jth destination, 

uij = the travel cost over the shortest path connecting the 
i-j pair, and 

0 = the parameter associated with U;j· 

Trip Assignment Model 

Given a network of links and nodes and a trip table listing 
trips between all pairs of zones, the trip assignment problem 
is concerned with the allocation of the trips to the network 
links. In this paper, the driver's behavior on a road network 
is assumed to follow Wardrop's first principle. The principle 
states that, at equilibrium, the average travel cost on all used 
paths connecting any given i-j pair will be equal, and the 
average travel cost will be less than or equal to the average 
travel cost on any unused path (9). In the transportation lit­
erature, the flows that satisfy this principle are said to be a 
user-equilibrium or user-optimal flow pattern. The mathe­
matical expression equivalent to user equilibrium can be stated 
as follows: 

(cZ 

(cZ 

0 vi, j, p 

vi, j, p 

(6) 

(7) 
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where 

cz = the average travel cost of Path p between Origin i 
and Destination j, 

U;j = the minimum (or equilibrium) travel cost between i 
and j, and 

hZ = the flow on Path p connecting the i-j pair. 

Equations 6 and 7 imply that users' behavior is determin­
istic. Route choice might be treated more realistically as sto­
chastic, as was trip distribution choice. Nevertheless, the 
deterministic assumption is reasonable for congested network 
systems (JO). The major reason is that as congestion increases, 
the differences between alternative routes are more accurately 
perceived by users, and, hence, the route choice approaches 
the deterministic equilibrium solution. 

Now, if Equations 6 and 7 are combined with the conser­
vation of flow conditions 

vi, j (8) 

and the corresponding nonnegativity constraints 

vi, j, p (9) 

they constitute a quantitative statement of user-equilibrium 
conditions. 

It is well known (11) that these equilibrium conditions can 
be interpreted as the Kuhn-Tucker conditions for an equiv­
alent minimization problem, which is 

lf" 
min Z(f) = .2; c"(w)dw 

a 0 
(10) 

subject to Constraints 8 and 9, and a definitional constraint, 

Va (11) 

where 

fa = the flow on Link a, 
c.(f.) = the average travel cost per trip on Link a for Flow 

f, and 
&~P = 1 if Link a belongs to Path p from i to j, and 0 

otherwise. 

Combined Trip Distribution and Assignment Model 

The equilibrium trip assignment model described above is 
used for a fixed distribution of trips. In this case, because 
demand is constant, travelers will not alter their destination 
even when faced with the additional costs that travel to a 
specific destination entails. This counterintuitive travel behav­
ior leads to consideration of a combined trip distribution and 
assignment model in which the trip flows of origin-destination 
(0-D) pairs will respond to changing network flow conditions. 
The proposed equilibrium distribution assignment model 
combines a dogit-type stochastic trip distribution with deter­
ministic network equilibrium and is specified as follows: 



Chu 

Vi,j (12) 

(ct - u;)ht = 0 vi, j, p (13) 

vi, j, p (14) 

This equilibrium model will be called the combined dogit trip 
distribution and assignment (CDDA) model in the following 
discussion. Equations 12, 13, and 14, when combined with 
the flow conservation conditions 

L ht= Tij vi, j (15) 
p 

the two corresponding nonnegativity constraints 

vi, j, p (16) 

T;j ~ cr,p/(1 + L CT1k) 
k 

vi, j (17) 

and one definitional constraint (Equation 11), constitute a 
quantitative statement of user equilibrium conditions for the 
CDDA model. The equilibrium conditions (Equations 11-17) 
state that at equilibrium, a set of 0-D trip flows and path 
flows must satisfy the following requirements: 

1. The 0-D trip flows satisfy a distribution model of the 
dogit form (Equation 12). 

2. The path flows are such that the user-equilibrium cri­
terion is satisfied (Equations 13 and 14). 

3. The 0-D trip flow between i and j equals the total trip 
flows generated from i (resulting from summation over j on 
both sides of Equation 12). 

4. The flows on all paths connecting each i-j pair equal the 
0-D trip flow between i and j (Equation 15). 

5. Each path flow is nonnegative (Equation 16). 
6. Each 0-D trip flow is equal to or larger than its corre­

sponding 0-D compulsory trip flow (Equation 17). 
7. The definitional relationship between path and link flows 

is satisfied (Equation 11). 

All used paths between each 0-D pair must have equal path 
costs. These costs represent the minimum path costs, and the 
0-D trip flows are in equilibrium determined by the minimum 
path costs. 

EQUIVALENT MINIMIZATION PROBLEM 

To solve the equilibrium of the CODA model, the approach 
is to show that an equivalent minimization problem (EMP) 
exists whose solutions satisfy the equilibrium conditions 
(Equations 11-17) . Consider the following minimization 
problem: 

min Z(T, f) G(T) + F(f) (18) 

such that 

vi 

vi, j 

v p, i, j 

vi, j 

where 

G(T) = ~ L L [(Tij - O'ij£• ) 
0 i j I + 2: CT;k 

k 

(T IJ,,o, ) 
+ 11 - I °"' + L.J c;,k 

k 

X (1 + ~ CT
11
,) 

In O; 

lf, 

F(f) = L ca(w)dw 
a 0 

!a = 2: 2: 2: hZ a~p v a 
J p 
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(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

In this formulation, the objective function (Equation 18) 
comprises two sets of terms . The first set, G(T), has as many 
terms as the number of 0-D pairs in the network. Each term , 
G,,(1), is a function of the number of trips T,i distributed from 
a given origin i to a given destination j. The second set, F(f), 
has as many terms as the number of links in the network. 
Each term, F

0
(f), is a function of the flows over all paths that 

share a given link a [as implied by the link-path incidence 
relationships (Equation 11)). 

Equations 19 and 20 are flow conservation constraints, which 
state, respectively, that the number of trips distributed from 
i to all j's must equal the number of trips generated from i 
and that the number of trips on all paths connecting each i-j 
pair must equal the number of trips distributed from i to j . 
Equation 21 represents the flow nonnegativity constraints 
required to ensure that the solution of the program is phys­
ically meaningful. Constraint 22 is required to ensure that the 
objective function is well defined. (Because O; ~ 0 and CT1k 

~ 0 for all k, Contraint 22 implies that T,j is greater than or 
equal to a nonnegative constant .) Finally, the link-path inci­
dence relationships (Equation 25) express the link flows in 
terms of the path flows [i.e., f = f(h)]. 

The importance of the EMP (Equations 18-25) is that even 
with mild assumptions imposed on the problem data, it is a 
convex program, which has a unique solution that is equiv­
alent to equilibrium on the proposed CDDA model. The 
formal proof of this result is given elsewhere (12) , but it is 
worth mentioning that the equivalence between the EMP and 
the CDDA model can be established by examining the opti­
mality conditions of the EMP. 
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PARAMETER CALIBRATION AND SOLUTION 
ALGORITHM 

Dogit Model Estimation 

The dogit distribution model specified in Equations 2 and 5 
contains several free parameters that must be estimated, that 
is, a, M, and 0. The dogit model parameters will be estimated 
using the maximum likelihood (ML) method. By assuming 
that all the values of variables in the utility function are the 
same for each traveler in a particular zone and that the sample 
is composed of zonal values, the likelihood function of the 
observed sample is given by 

71 -
L = n 11 TI TI Il P!V(a,M,e)T'i 

if• l J 

(26) 

wher~ T is the total number of travelers (equal to I;Ii T;;) 
and Pi

1
, = T/O,. The ML estimates of the parameters are 

obtained by taking the derivatives of the logarithm of L with 
respect to a, M, and 0, equating the derivatives to zero, and 
solving for a, M, and 0. 

Three observations are made concerning dogit model cal­
ibration. First, an identification problem will result when cal­
ibrating the dogit distribution model. In general, if N zones 
are encompassed in the model, there are only N2 - N param­
eters that can be identified in the estimation. 

Second, the number of parameters that must be estimated 
increases rapidly as the number of zones increases. This can 
be a serious problem in typical network analysis, where the 
observed number of 0-D pairs is usually large. The usual way 
to reduce computational costs is to impose some reasonable 
constraints on the captivity parameters (12). 

Third, because the log likelihood function of Equation 26 
lacks concavity (13 ,14), the estimation must proceed with 
great care because multiple maxima or saddle points or both 
may be encountered. In this case, the appropriate way to 
check the global maximum may be to carry out several searches, 
using a different initial point each time. The main purpose of 
this process is to search for alternative maxima and establish 
a convincing case for the global maximum. 

Evans Algorithm 

Once the parameter values are obtained, the EMP can be 
readily solved by appropriate algorithmic procedures to yield 
the desired equilibrium on the CDDA model. Because the 
EMP is virtually a convex programming problem, the well­
known Frank-Wolfe (15) and Evans (2) algorithms can be 
used to solve the equilibrium problem. 

In this study, the Evans algorithm is selected for three 
reasons. First, in contrast to the Frank-Wolfe algorithm, in 
which only one destination is loaded at each iteration, the 
Evans algorithm ensures that every destination will be loaded 
with trips from each origin at every iteration. Thus, the Evans 
algorithm is more efficient than the Frank-Wolfe algorithm 
for the usual combined trip distribution and assignment 
problems. 

Second, the objective function of the subproblem in the 
Frank-Wolfe algonthm is derived from the linearized objec-
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tive function of the EMP (Equation 18). The objective func­
tion in the Evans subproblem, on the other hand, involves a 
partial linear approximation in the sense that the link cost 
functions in Equation 18 are linearized but the remaining 
functions are not. As Florian (16) has remarked, the feasible 
direction derived from partial linear approximation is better 
than linear approximation because the subproblem in the Evans 
algorithm used for finding the direction of descent is closer 
to the original EMP. The solution of the Evans algorithm 
would, therefore, require fewer iterations than the Frank­
Wolfe algorithm. 

Third, each iteration of the Evans algorithm computes an 
exact solution for equilibrium conditions of the CDDA model, 
whereas in the Frank-Wolfe algorithm, none of the equilib­
rium conditions is met until final convergence. This has an 
important implication in large-scale network applications 
because it is often unlikely that either the Evans or the Frank­
Wolfe algorithm will be run to exact convergence because of 
the high computational costs involved. 

NUMERICAL EXAMPLE 

In this section the CDDA model and its associated meth­
odology will be applied to a hypothetical transportation sys­
tem. Two computer programs were written; one was used to 
estimate the parameters of the dogit trip distribution model, 
and the other was for the solution algorithm used to obtain 
simultaneous prediction of equilibrium in the CDDA model. 

The hypothetical highway network, which consists of 6 nodes 
and 20 links, is shown in Figure 2. Two of the nodes are 
assumed to be intermediate, and the rest are origins or des­
tinations (or both) defining 16 0-D pairs, as shown in Table 
1. Table 1 also gives the travel demand associated with each 
0-D pair. Table 2 gives the following information for each 
link: name of the "from" node, name of the "to" node, link 
capacity, and free-flow (uncongested) travel time . [The travel 
time (ta) is used as a proxy for the cost variable (ca).] 

To implement the CODA model, the utility function (V;) 
in the trip distribution model must be specified as well as the 
link performance function [c0 (fa)] in the trip assignment model. 
For the Evans algorithm to work, the link performance func­
tion must be monotonic increasing. To this end, a standard 
function developed by the U.S. Bureau of Public Roads (17) 
is used. The performance function has the following form : 

\:/a (27) 

where 

ta = congested travel time on Link a, 
t~ uncongested (free-flow) travel time on Link a, 

FIGURE 2 Hypothetical 
network example. 
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TABLE 1 LIST OF 0-D PAIRS 

0-D Observed 0-D 
No. Origin Destination Trip Flows 

1 1 1 40.0 
2 1 2 100.0 
3 1 3 30.0 
4 1 4 150.0 
5 2 1 100.0 
6 2 2 50.0 
7 2 3 170.0 
8 2 4 30.0 
9 3 1 130.0 

10 3 2 280.0 
11 3 3 50.0 
12 3 4 210.0 
13 4 1 170.0 
14 4 2 200.0 
15 4 3 350.0 
16 4 4 60.0 

TABLE 2 HYPOTHETICAL LINK DATA 

Link Link Free-Flow 
No. From To Capacity Travel Time 

1 1 2 100.0 22 . 0 
2 1 3 100.0 43 . 0 
3 1 4 150.0 24 . 0 
4 1 5 200.0 12 . 0 
5 2 1 100.0 13 . 0 
6 2 3 110.0 23 . 0 
7 2 4 50.0 34 . 0 
8 2 6 200.0 12 . 0 
9 3 1 190.0 25 . 0 

10 3 2 150.0 29 . 0 
11 3 4 300.0 24 . 0 
12 3 6 200.0 15 . 0 
13 4 1 150.0 16 . 0 
14 4 2 .300.0 23 . 0 
15 4 3 400.0 19 . 0 
16 4 5 100.0 12 . 0 
17 5 1 100.0 12 . 0 
18 5 4 50.0 12 . 0 
19 6 2 300.0 15 . 0 
20 6 3 200.0 12 . 0 

f. = the flow (volume) on Link a, 
Pa = the "practical" capacity of Link a, and 

a, 13 = parameters whose usual values are 0.15 for a and 
4 for 13. 

For convenience, the utility function in the trip distribution 
model is assumed to be linear in the parameters and has the 
form 

(28) 

where 

uij = travel cost over the shortest path connecting the 
i-j pair, 

Mj = attractiveness of Zone j, and 
01 , 02 = parameters to be estimated. 

The Mjs originally specified in Equation 5 were a set of 
alternative-specific constants. But for the sake of reducing the 
number of parameters to estimate, the Mjs are treated as the 
explanatory variable in Equation 28 and associated with a 
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single parameter 02 • The above treatment is purely for sim­
plicity in this study, but in practical applications the omission 
of constant terms in the utility function should be avoided 
whenever possible. This is because the inclusion of constant 
terms not only can compensate for sampling and measurement 
errors, but also can capture the mean effects of unobserved 
or unmeasured variables that describe the unique character­
istics of the choice alternatives. 

For convenience, the attractiveness of Zone j in Equation 
28 is measured by the employment density (employees per 
acre) in Zone j. If other measures, such as population and 
area, are used for the representation of zonal attractiveness, 
the variable Mi must be replaced with a linear function of 
those measures with unknown parameters inside a log oper­
ation (18). 

Given the data of 0-D trip flow (Table 1), travel cost over 
the shortest path connecting each 0-D pair (Table 3), and 
zonal employment density (Table 3), the calibration results 
for the dogit distribution model are shown in Table 4, and 
the estimated 0-D compulsory and discretionary trip flows 
are shown in Table 5. 

Given the estimated coefficient values and the data pro­
vided in Tables 1 and 2, equilibrium on the hypothetical trans­
portation system can be predicted. The prediction procedure 
was required to stop when the changes in 0-D trip flows and 
link flows between successive iterations were negligible or 
when the number of iterations reached 20. The final equilib­
rium results in Table 6 are those of the 12th iteration. 

As indicated in Table 6, the equilibrium results of the exam­
ple appear reasonable in that (a) the predicted number of 
trips between each i-j pair is larger than the corresponding 
estimated number of compulsory trips, implying that existing 
0-D compulsory trip flows will remain unchanged regardless 
of congestion potentially occurring on the network; ( b) there 
are no positive flows on paths with higher than the minimum 
perceived costs, indicating that the user optimization principle 
is well satisfied; and (c) predicted 0-D trip flows and mini­
mum 0-D path costs have values similar to those observed. 

The value of the objective function in the Evans algorithm 
consistently decreased from one iteration to the next in all 
the runs. In particular, the improvement in the value of the 

TABLE 3 HYPOTHETICAL DATA FOR MODEL 
CALIBRATION 

Observed 0-D Observed 
Minimum Path Employment 

Origin Destination Travel Time Density 

1 1 30.0 25 . 0 
1 2 25.0 35 . 0 
1 3 45.0 40 . 0 
1 4 25.0 25 . 0 
2 1 15.0 25 . 0 
2 2 30.0 35 . 0 
2 3 25.0 40 . 0 
2 4 35.0 25 . 0 
3 1 25.0 25 . 0 
3 2 30.0 35 . 0 
3 3 50.0 40 . 0 
3 4 25.0 25 . 0 
4 1 20.0 25 . 0 
4 2 25.0 35 . 0 
4 3 20.0 40 . 0 
4 4 50.0 25 . 0 
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TABLE 4 DOGIT ESTIMATION RESULTS 

Model Estimated 
Parameters Coefficient Values 

8, -0.12 
8, 0.08 
<Ju NI* 
<J12 0.27 
<J13 NI* 
cr,. 0.96 
<J21 0.33 
<J22 NI* 
cr., 0.84 
cr,.. NI* 
<J31 0.30 
cr,, 0.96 
cr,, NI* 
cr,. 0.69 
cr" 0.45 
cr., 0.51 
cr., 0.69 
cr.., NI* 

log-likelihood -2938.943 
at zero 

log-likelihood -2600.262 
at convergence 

Note: NI* = not identifiable. 

TABLE 5 COMPARISON BETWEEN OBSERVED AND 
ESTIMATED 0-D TRIP FLOWS 

Observed Estimated Estimated 0-D Estimated 0-D 
0-D 0-D Total 0-D Total Compulsory Discret i onary 
Pa i rs Trip Flows Trip Flows Trip Flows Trip Flows 

1-1 40 . 0 40 . 72 24 . 34 16.38 
1-2 100 . 0 99 . 29 32 . 85 66 .44 
1-3 30 . 0 33 . 33 24. 33 9 . 00 
1-4 150 . 0 146.66 116 . 81 29.85 
2-1 100.0 100 . 33 44.94 55 , 39 
2-2 50 . 0 47 . 61 27.24 20.38 
2- 3 170 . 0 169 . 79 114.40 55.39 
2- 4 30 . 0 32. 26 27.25 5.01 
3-1 130 . 0 126 . 61 63.81 62.80 
3-2 280 . 0 280 . 90 204.19 76.71 
3-3 50 . 0 52 . 92 42.54 10.38 
3-4 210 . 0 209 . 57 146.76 62.81 
4-1 170 . 0 172 . 30 123.16 49.14 
4 -2 200 . 0 199 .61 139 . 58 60.03 
4-3 350 . 0 352.01 188.84 163.17 
4 -4 60 . 0 56.08 54 . 74 1. 34 

objective function during the first five iterations was substan­
tial and tended to be insignificant during the following iter­
ations. This result may suggest that a reasonably accurate 
solution can be obtained in no more than 10 iterations. Finally, 
because the hypothetical example had a much smaller number 
of links and nodes than real-life networks, it is somewhat 
difficult to extrapolate the CPU time necessary to run the 
CDDA model in actual applications. Nevertheless, because 
the CDDA model adds few simple arithmetic operations in 
the Evans algorithm, the computational time should be com­
parable with the time required to solve any of the existing 
combined models. 
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TABLE6 DOGIT EQUILIBRIUM RESULTS 

Trip Distribution 

Predicted Predicted 
0-D Trip Minimum 0-D 

Origin Destination Flow Path Cost 

1 1 40.33 F* 
1 2 98.43 25.09 
1 3 34. 31 44.06 
1 4 146. 92 24.89 
2 1 98.44 14 . 83 
2 2 46.16 F* 
2 3 172. 77 24 . 19 
2 4 32.63 33.90 
3 1 129.22 24. 77 
3 2 276.54 30.99 
3 3 52.93 F* 
3 4 211. 31 24.89 
4 1 17?.Sn 20.20 
4 2 209.51 23.82 
1, 3 3111. 86 20.60 
4 4 56.08 F* 

Trip Assignment 

Predicted Predicted 
Link Link Link 

No . From To Flow Cost 

1 1 2 98.43 25 . 09 
2 1 3 30.51 44 . 06 
3 1 4 106.01 24 . 89 

'" 1 5 44.72 12 . 00 
5 2 1 98,44 14 . 83 
6 2 3 84.22 24.19 
7 2 4 32.63 33 . 90 
8 2 6 88.55 12.07 
9 3 1 129.22 24 . 77 

10 3 2 123.49 30 . 99 
11 3 4 211. 31 24 . 89 
12 3 6 153.06 15 . 77 
13 " 1 172 . 56 20 . 20 
14 4 2 209 . 51 23 . 82 
15 4 3 345 . 66 20 . 60 
16 4 5 0 . 00 12 . 00 
17 5 1 0.00 12 . 00 
18 5 4 44' /2 U . l~ 
19 6 2 153.06 15 . 15 
20 6 3 88.55 12 . 07 

Note: F* ~ fixed intrazonal path cost . 

CONCLUSIONS 

The most important feature of the proposed combined trip 
distribution and assignment model is that the equilibrium 
0-D trip flows satisfy a dogit model that is able to describe 
users' compulsory and discretionary travel behavior in response 
to performance on a transportation network. Thus, the pro­
posed model should be more sound behaviorally than any of 
the other combined trip distribution and assignment models 
reported in the literature. Moreover, because the model can 
itself be reformulated and solved by an EMP and because this 
problem is a convex programming problem with linear con­
straints, it can be solved efficiently by several algorithmic 
approaches that are available for such problems. In particular, 
when applying the Evans algorithm to the equilibrium prob­
lem, the proposed combined model should be usable in a 
realistic application at a reasonable cost and within a reason-
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able time period. To verify this expectation, future research 
should focus on the application of the model to a real large­
scale network. 
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