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Since 198L, the Washington State Department of Transpor-

tation (WSDOT) has used integrated traffic-responsive on-

ramp control to cope with recurring traffic congestion on the

Seattle region's portion of Interstate 5 (I-5). The algorithm
used to calculate the on-ramp entry rates has two basic rou-

tines, Iocal control and bottleneck control. In the local control
routine, the algorithm calculates metering rates on the basis

of the measured lane occupancy at the main-line station imme-

diately upstream of the on-ramp merge point' This portion

of the algorithm is effective only as long as the demand for
use of a section offreeway does not greatly exceed the capacity

of the section.
As is well known, both from traffic flow theory and from

practical experience, when demand for access to a section of
freeway is excessive, the operating speed of that section is

reduced and vehicles queue at the points of congestion (bot-

tlenecks). The bottleneck control routine of the WSDOT
algorithm eliminates these speed reductions by restricting access

to the freeway at one or more on-ramps upstream from the

bottleneck point. A detailed description of the WSDOT con-

trol algorithm was provided by Jacobson et al. (1).

One limitation of the bottleneck control algorithm is that
it is reactive rather than anticipatory. It does not take action

until a bottleneck has formed, so speed reduction and insta-

bility atready exist in the traffic stream. The bottleneck algo-

rithm is oriented toward cleaning up messes rather than pre-

venting them. If bottleneck formation could be forecast and

bottleneck control could be used to prevent bottleneck for-

mation, then at least in theory overall traffic volumes should

increase and delay of the traveling public should decrease.

The goal of recent research conducted at the University of
Washington is to develop an algorithm that can reliably fore-

cast bottleneck formation 1 min or more in advance of occur-

rence and to incorporate this new algorithm into the WSDOT
ramp control algorithm.

BOTTLENECK CONTROL ALGORITHM

The placement of mainline loop detector stations divides the

I-5 main line into short (%-mi or less) sections. Each section

is bounded upstream and downstream by a set of loop detec-

tors, one in each lane. On-ramps merge and off-ramps diverge

inside these section boundaries. The loop detectors provide
the freeway controller with measurements of traffic volume

and lane occupancy. The controller transmits the volume and

occupancy data to the freeway management system computer.

Tñi computer uses 1-min moving averages of main-line and

ramp volume and occupancy to compute on-ramp metering

rates every 20 sec. From the main-line and ramp volume

measurements, the computer calculates the difference between

the traffic entering and exiting a freeway section; this differ-

ence is called the storage rate for the freeway section. When

the difference is positive, indicating that more vehicles have

entered the section than have left it and when the measured

lane occupancy at the section's downstream boundary exceeds

18 percent, indicating that the traffic flow is near capacity,

the computer concludes that a bottleneck has formed. The

computer reduces the entry rates at on-ramps upstream from
the section's downstream boundary by the storage rate. If a

straightforward anticipatory algorithm could be developed to

forecast each section's downstream occupancy and storage

rate, then when these forecast values indicate a bottleneck,
the computer could use them in the bottleneck algorithm in
place of actual measurements. The bottleneck forecasting

ãlgorithm would come into effect before the occurrence of a
bottleneck, and metering rates would be calculated to prevent

or minimize the bottleneck.
The research team used a bottleneck section of southbound

I-5 approximately L2 mi north of downtown Seattle as a study

site. On this section, congestion routinely begins on weekday

mornings. The congestion from this section affects traffic flow

for several miles upstream. This section was designated as

Section 2, the section immediately downstream as Section 1-,

and the section immediately upstream as Section 3. Figure 1

shows the geometry of this study area. The total length of the

three sections was about 1.3 mi. The research team's goal was

to develop a routine that would forecast lane occupancy and

storage rate for Section 2, given past measurements from

Sections 1,2, and 3.

Problems of forecasting freeway traffic variables a few minutes
in advance, particularly lane occupancy and the difference between

inflowing and outflowing traffic for a short section of freeway,
are explóred. Methods based on linear time series analysis were
foundio do reasonably well at forecasting mean values but not
so well for those extremes corresponding to the onset of conges-

tion. Techniques based on statistical pattern recognition princi-
ples were found to be promising. The most promising of the.

þattern recognition algorithms was put into use on a section of
I-5 and is being field tested.
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FIGURE I Test section of southbound I-5.

The researchers collected.l-min volume and occupancy data
from the main-line stations defining these sections. One-
minute volume data were collected from all the ramps in these
sections as well. Data were collected from 6:00 to 8:00 a.m.
on five weekdays in late November and early December of
1988. These data were used to develop and test potential
forecasting routines.

TIME SERIES FORECASTING

Results presented by Ahmed and Cook (2) and by Kyte er
al. (3) indicate that the time series methods described in Box
and Jenkins (4) canbe used to model the short-term dynamics
of freeway traffic flow variables. In the Box and Jenkins (4)
method, data are first collected in time series form, that is,
as measurements indexed by time. The autocorrelation func-
tions (the correlation of a variable with its own past) and the
cross-correlation functions (the correlation of a variable with
another variable's present and past) are then inspected to
obtain candidate models. These models all express some var-
iable's current value as a linear combination of its own and
other variables'past values. The linear weights for each can-
didate model are then estimated and the models compared.
The best model is then selected as the forecaster.

The researchers prepared time series of 1-min storage rate
and average lane occupancy for Sections 1,2, and 3 from the
data. They fit univariate and transfer function models to the
data from the 1st day using standard Box-Jenkins (4) methods
and then used the fitted models to generate 1-min-ahead fore-
casts of Section 2 occupancy and storage rate for each value
of the data from each of the 4 days. The detection rule was
as follows:

If forecast occupancy > 1.8 percent and forecast storage rate
> 0, then forecast a bottleneck.
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The estimated auto- and cross-correlation functions had
potential for predicting occupancy and storage rates from Sec-
tion 2, both from past measurements at Section 2 and from
past measurements from the downstream Section 1.. This latter
result appears to be caused by the propagation of shock waves
upstream from Section L into Section 2. It has been identified
in cross-correlation functions by Kyte et al. (3). Table 1 pre-
sents the detection rates for the time series forecasts on four
of the study days. The Percent Correct column gives the
unconditional percentage of correct forecasts, whereas the
False Positive and False Negative columns give conditional
percentages; that is, the False Positive column gives the per-
centage of nonqueuing (nonbottleneck) intervals that were
falsely predicted to show queuing, whereas the False Negative
column gives the percentage of queuing (bottleneck) intervals
falsely predicted not to show queuing. These conditional rates
are more informative than unconditional rates, such as the
Percent Correct, because they correct for the high proportion
of nonqueuing intervals in the available data sample. The rates
presented in Table l- are not encouraging.

Figures 2 and 3 show sequences of actual and l-min-ahead
forecasts of storage rate for Section 2 on a lightly congested
day. The forecast values of storage rate tend to hover around
the mean value for the time series and ignore extreme values.

TABLE 1 DETECTION RATES FOR TIME SERIES
FORECASTS

Percent Correct F¡lse Pociriwe< Falce N-."ri--"
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FIGURE 2 Actual and modeled occupancies for Section 2.
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FIGURE 3 Actual and modeled storage rates for Section 2.

This tendency of tlme series forecasters to avoid extreûIe
values is especially distressing because the extreme values are

of primary interest. The forecast values of occupancy track
the true values, but 1 min too late. Similar results were found
for a number of univariate and multivariate time series models,

and Davis and Nihan (5) have reported similar findings for
the nonparametric nearest-neighbor forecaster. Least-squares-

based approaches, although tending to minimize the average

error between forecast and actuality, were not promising can-

didates to predict the formation of bottlenecks.

PATTERN RECOGNITION APPROACH

In statistical pattern recognition, the primary activity is to sort
observations into two or more categories (ó). Using the data,
the 1-min intervals were sorted into queuing and nonqueuing
intervals. Queuing intervals were those for which the data
met the bottleneck criteria in Section 2 (positive storage rate,
occupancy > 18 percent). Nonqueuing intervals did not meet
those criteria. Measurements from previous (lagged) intervals
for Sections 1,2, and 3 could then be sorted into those that
preceded bottleneck formation and those that did not. A rule
based on these lagged measurements was developed that dis-

criminated intervals with bottlenecks from intervals without
bottlenecks. For example, suppose the storage rates from
Section L measured 3 min in the past (SR1,-3), preceding the
bottleneck intervals in Section 2, are normally distributed with
a mean of 4 veh,/min and a standard deviation (SD) of 8 veh/
min, whereas those SR1,-, values preceding nonbottleneck
intervals are normal with a mean of -2 veh/min and SD of
9 veh/min. Obviously, Iarger positive values of SRl,-, are

more likely to precede bottlenecks in Section 2. The rule

If sR1,_3 > -2 + (2 " 9)

: 16 veh/min, then forecast a bottleneck
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would falsely anticipate a bottleneck about 5 percent of the

times when bottlenecks did not occur. However, the value of
L6 veh/min corresponds to the standard score of 1.5 on the
distribution for bottleneck predecessors. From a table ofnor-
mal probabilities, about 93 percent of the bottleneck intervals
will be missed when they do occur. Therefore, a low false

positive rate (5 percent) is traded for a high false negative
rate (93 percent). Any attempt to lower the false negative
rate by lowering the cutoffwill produce a corresponding increase

in the false positive rate. Obviously, distributions with large
differences between their means and low standard deviations
will produce data that are relatively easy to classify, whereas

distributions with substantial overlap will produce ambiguous
data.

In this pattern recognition approach, variables must be

identified that show good separation between bottleneck and

nonbottleneck conditions. Using the boxplot feature of Min-
itab (7), the researchers evaluated the storage rate and occu-
pancy measurements at time intervals lagged 1, 2, and 3 min
for Sections L,2, and 3 to determine which had the greatest

ability to discriminate between bottleneck and nonbottleneck
intervals. Figure 4 shows boxplots for the two variables that
appear to give the best discrimination. In interpreting a box-
plot, note that the interval between the l symbols corresponds
to the interval between the first and third quartiles of the
frequency distribution of the data. The + symbols indicate
the location of the estimated median of the distribution, and

the parentheses give a 95 percent confidence region around
the estimate of the median. The single lines extending to the
right and left of the quartile boundaries indicate the probable
range of the distribution, while the symbols mark the location
of possible outliers.

From the boxplots, one occupancy (OC) variable and one

SR variable were selected to be used as forecasters for lightly
congested data (November 23, 1988) and another set 'was

selected to be used for heavily congested data (November 22,

1988). For lightly congested data, the OC values from Section
2lagged one interval (OC2,-) and the SR values from Section
1 lagged two intervals (SR1,-r) were selected. For heavily
congested data, the same occupancy variable (OC2,-t) and

storage rate from Section 1 lagged three intervals (SRl,-r)
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FIGURE 4 Boxplots for Section 1 storage rate, Lag 2 (top),

and for Section 2 occupancy, Lagl (bottom).
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were selected. The following simple forecasting rule was
adopted:

If the measurement exceeds the 75th percentile of the non-
bottleneck distribution, then forecast a bottleneck.

This rule resulted in a 25 percent false positive rate in all
cases, and a false negative rate depending on the variable
used. In addition to separate forecasts for the SR and OC
variables, the following compound forecasts were con-
structed:

If OC indicates a bottleneck and SR indicates a bottleneck,
forecast a bottleneck.

If OC indicates a bottleneck or SR indicates a bottleneck,
forecast a bottleneck.

Table 2 presents the percent of correct forecasts, the false
positive rate, and the false negative rate for each pattern
recognition forecaster and for each of the 5 days for which
data were collected. The traffic congestion on November 22
was considered heavy, whereas that on November 13, 1.5, and
23 was considered light. The congestion on November 14 was
intermediate between light and heavy, and forecasts were
made using the light congestion rules. Generally, for a given
false positive rate of about 25 percent, the individual forecasts
have lower accuracy rates and higher false negative rates as
traffic congestion increases. However, the andedforecasts for
lightly congested days appear to do well, with false positive
rates ranging from 5 to 1L percent and false negative rates
ranging from 33 to 36 percent. Apparently, the andedf.orecast
could prove useful in forecasting those bottlenecks that char-
acterize the transition from uncongested flow to congested
flow, but after congestion sets in, forecasting bottlenecks
becomes more difficult.

TABLE 2 DETECTION RATES FOR PATTERN
RECOGNITION FORECASTS

Dale Forecaster Percent Correct False Pocilivec F¡lcp Nacoriw-.
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IMPLEMENTATION

For practical purposes, the critical errors are false positives.
In the WSDOT freeway management system, if a bottleneck
is not forecast but one occurs, the situation is what currently
exists-a responsive reaction to the bottleneck after it is
detected. (In essence, the current system predicts bottlenecks
with a 100 percent false negative rate.) However, a false pos-
itive forecast of a bottleneck would lead the system to cal-
culate metering rates that would be more restrictive than nec-
essary. This restriction could lead to excessive ramp queues
and possibly a more congested freeway as the queues extend
to the queue detectors and metering rates are set higher as a
result. The false positive rates presented in Table 2 were
within an acceptable range, while the false negative rates were
low enough to indicate that an algorithm based on this fore-
caster would likely improve the existing bottleneck control
algorithm. Therefore, WSDOT has incorporated this fore-
caster into its bottleneck control algorithm for field testing.

The forecaster's simplicity fits well into real time process
control. The forecasting algorithm was programmed as a two-
step process. First, the computer program checks occupancy
at Section 2. Ilthe occupancy is above the level that indicates
a positive prediction (13 percent), the algorithm checks the
storage rate for Section 1 from the previous minute. If the
storage rate is greater than six vehicles, the algorithm predicts
the formation of a bottleneck in Section 2 during the next
minute and calls the normal bottleneck algorithm. The bot-
tleneck algorithm uses an average storage rate for the meter-
ing rate reduction that it distributes over upstream ramps.

The test period is underway. Data are being collected that
will be analyzed using time series analysis to determine if the
forecasting and early metering intervention has a significant
impact on traffic flow.

CONCLUSION

The onset of capacity-reducing freeway congestion should be
forecast so that measures can be taken to prevent its for-
mation. Box-Jenkins-type time series methods tend to con-
centrate on forecasting mean values and avoiding extremes.
However, the occurrence of extreme values is what charac-
terizes the transition from smoothly flowing traffic to the stop-
and-go traffic that must be forecast. An approach based on
statistical pattern recognition principles was aimed at iden-
tifying those variables with conditional distributions that show
good discrimination between the presence and absence of
traffic bottlenecks.

Although the results must be regarded as preliminary, they
show enough promise to be field tested. Other combinations
of variables, including upstream volume, may improve the
algorithm's forecasting ability.
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