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Prediction of Traffic Flow by an Adaptive
Prediction System

fmN Lu

In a dynamic (real-time) traffic control system, the accuracy of
the prediction of traffic characteristics such as flow, speed, and
headway is one of the key factors affecting the performance of
the system. Because the traffic characteristics can be described by
stochastic processes, nonlinear and time-variate types of predic-
tion models could be more adequate than linear or time-invariate
prediction models. A traffic control system model for traffic flow
is described, and the importance ofthe accuracy ofthe prediction
model is emphasized. Then, the concept of adaptive prediction
of traffic flow is introduced, and its mathematical derivation and
the least-mean-squate algorithm are described. As an experiment
to validate the adaptive prediction system, a sine function is used
to simulate traffic flow as input to the adaptive prediction system.
Finally, the adaptive prediction system is applied to actual traffic
flow data collected from a highway network. The predicted traffic
flow is then compared with the real traffic flow. The performance
of the model as to its dynamic response to a step function, con-
vergence of the adaptive prediction system, and related matters
are also discussed.

Since World War II, the scope of research involving vehicular
traffic has widened exponentially. The dramatic development
of the traffic system network has opened the door of traffic
engineering research to modern system theory, control theory,
and information theory. Classic traffic engineering theories
are now combined with other applied theories such as opti-
mum control (1) and kinetics (2).

As understood by researchers and users of traffic systems,
some traffic characteristics such as flow, speed, and headway
affect the performance of a traffic system. Certainly, the per-
formance of a traffic system can be improved by measuring
and controlling these characteristics through modern detec-
tion and control methods. Macroscopically, a traffic system
equipped with a detection system and a control system could
be mathematically abstracted into a dynamic multivariable
system. The actual behavior of an abstracted dynamic traffic
control system depends largely on the control rule and also
on the accuracy of the detection system and the prediction of
traffic characteristics.

Consider the real-time freeway traffic control system shown
in Figure 1. In this system, S1(¿), Sr(k), , S¡(k) are the
traffic characteristics measured at Time Step k by sensors. To
optimize the traffic characteristics of the freeway network, the
states of traffic characteristics at Step k + t, or S,(k + 1),
Sr(/c + 1), . . ., Sr(k + 1), must be predicted. According to
the feedback signal predicted, the real-time control system
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can adjust the timing of all related traffic lights or some type
of control equipment so that the traffic variables in the free-
way system are at the optimal state. In this case, the predicting
algorithm should be an important part in the control system.
The performance of the freeway network depends not only
on the control equipment itself but also on the accuracy of
the feedback signal predicted. The importance of the accuracy
of traffic prediction to the performance of the traffic control
system has been emphasized by Stephanedes et al. (3) and
by Kreer (4).

Traditionally, linear regression and extrapolation models
have been used as predicting models. However, these kinds
of predicting models are nonparameter estimation models,
and are usually used to predict the processes with obvious
trends. For stochastic processes such as traffic flow, speed,
and headway for a limited time interval, say from 5 to 9 a.m.,
the traffic characteristics of a system change with obvious
trends. In a macroscopic time interval, 1 day, 1 week, or 1

month, traffic characteristics are more appropriately described
as the approximation of stochastic processes without the obvious
constant trends. In this case, the linear regression and extrap-
olation models have limitations for the purpose of prediction.

Traffic characteristics are random variables. Strictly speak-
ing, these types of variables are not stationary in terms of
mean value, variance, or covariance in a relatively long time
period. To apply modern control theories and signal pro-
cessing theories (e.g., stochastic system control and signal
prediction theories) to traffic problems, the traffic variables
can be treated as asymptomatically stationary processes with
certain constraining conditions. These constraining conditions
could be the time frame considered, the sampling rate, given
time periods, locations, and environmental conditions. One
of the reasons to assume that the traffic variables are asymp-
tomatically stationary with certain constraining conditions is
that most of the prediction models could be guaranteed to
converge if the signal or noise is stationary. Examples of these
prediction models are the Kalman filtering model (5), the
Wiener filtering model (ó), the autoregressive-moving aver-
age (ARMA) filtering model (/), and the adaptive filtering
model (8).

In the last two decades, several important parameter esti-
mation models have been applied to traffic flow prediction
(9), intersection traffic distribution prediction (10), origin-
destination matrix estimation (11 ,12) , freeway incident detec-
tion (13), and traffic density estimation (74). Several typical
models have been used to predict traffic flow. Among these
models are the Kalman filtering model (9), the time series
prediction model (15), the spectral analysis model (1ó), and
the urban traffic control system (UTCS) (14.



55

FIGURE I A freeway trafäc control system.

Recent studies have used an adaptive filtering model to
predict traffie flow. An adaptive traffic prediction system or
model can be considered as a dynamic (real time) parameter
estimation model; that is, the traffic characteristics predicted
at Time Step È are a function of past traffic characteristics at
TimeSteps k - L,k - 2,. .,k - M,where M < k,and
M and k are positive integers, and of a set of parameters
estimated by the adaptive prediction model.

Mathematically, the objective function of the adaptive pre-
diction model-minimizing the resulting mean square error-
might be similar to that of the Kalman filtering, time-series,
and UTCS prediction models. However, the adaptive pre-
diction model uses a simplified least-mean-square (LMS)
algorithm to search for the optimal filter weights or states.

This difference means that the dynamic response of the adap-
tive prediction model could be better and the data storage

space could be less than the earlier prediction models. Con-
sequently, the adaptive model could have more potential to
be used in an on-line traffic flow prediction and control sys-

tem. Intuitively speaking, if an adaptive prediction model is
viewed as a system, then this system is one whose structure
is adjustable in such a way that its performance improves
through contact with its environment.

BASIC pniT,IõTpT,B OF ADAPTI'E PREDICTION
SYSTEM

Figure 2 shows an adaptive prediction system. In this system,
Z-1 is a one-step delay factor, and Z-s is an s-step delay fac-

tor (where s is a positive integer). Mathematically , q(k)Z- | :
S& - l), and q(k)Z-s = S& - s). As can be seen from
Figure 2, the core of the system is the adaptive processor, the
structure of which is shown in Figure 3. In the adaptive pro-
cessor, all of the parameters (weights) at Step k are adjust-
abte. The error of prediction e(k) controls the adjustment of
the system. From Figures 2 and 3, the following equation can
be derived:

N
q(k):2w,oq@-s-l)

l=0

k:s*t,s+2,... (1)

Equation 1 indicates that q(Ð is a linear weighted combi-
nationof q(k - s),q(k - s - 1), . . .,5& - s - N). The
weights are Woo, Wro, . . ., W*o, and the Index fr denotes

the time step. If Q@) is used to predict q(k), then the error
of prediction at Step k is

e(k) : s&) - s&) k :s + r,s * 2,... (2)

The purpose of using an adaptive processor is to adjust the
weights at each Step k so that the mean square error E[ez(k)]
is minimized. The vectors Wo and Qo-, are defined as follows:

WÈ : (Wou, Wro, . . ., W*u)'

Qo_" : lq& - s), q(k - s - 1), .,q(k-s-^/)l'

q (k-s) Adaptive
P rocessor

FIGURE 2 Adaptive prediction system.
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With these definitions, Equation 1

vector notation as follows:

q&): Ql_"}Yo: WIQ¿_"

can be expressed using

Equation 4 describes how the adaptive processor adapts,
that is, how the vector \{o is adjusted as the Time Step Index
k changes. From Equations 2 and 3,

e(k) : s&) - WlQo-" : s&) - Qf-"wo (4)

By squaring Equation 4, the instantaneous squared error can
be obtained as follows:

e'(k) : lq]r) - wiQ"-Jls(/. - Qä-"Wol
: S'&) + WlQo_,QI_"Wo - zq(k)QI_"We (s)

In order to find the expected value of Equation 5 over k, e(k)
and q(k) are assumed to be statistically stationary. This
assumption can usually be approximately satisfied for the par-
ticular traffic characteristics. Then the expectation of e'?(k) is

E[e2(k)l: Elq'k)]

+ w;ElQ¿-"QI-J\ry. - 2Elq(k)Q[-"]w r (6)

Let R be defined as the square matrix

R : E[Q*-,Q;-J Q)

Therefore, R is the correlation matrix of q(k - s) with dimen-
sion N x N. Let P be defined as the column vector

P : E[q(k)Q[-"]

: n[q@)q(k - s), q(k)q(k - s - 1), . . .,

q(k)q(t -s-1Ðl'
This vector is the set of autocorrelation of q(ft). Therefore,
R and P are the second-order statistics of the random variable
q(k - s) at Step ft. By the definitions of R and P, Equation
6 can be expressed as,
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Elez(k)l : E[q'(k)] + w;Rwk - ZPrwk (9)

According to the assumption that q(k) is statistically station-
ary, R and P are a constant matrix and vector, respectively.
In this case, Efe2(k)] is a quadratic function of the weight
vector Wo. If the adaptive processor has the ability of self-
study to seek the minimum Efez(k)l by adjusting Wo, and
Elez(k)l tends to be minimal when lVo tends to be optimal
solution Wf , then the prediction of the processor will be
optimal. The question is how-to find the optimal solution
W[ of Wo so that Ele2(k)] is minimized at each Step k. This
question can be solved by the gradient method. The gradient
of the mean square error E[e2(k)] can be expressed by

Y*=2RWt"-2P

In order to obtain the optimal solution W[ so that Ele2(k)]
is minimized, let

v¿:0:zRwi-2P
or

Wf : ¡¡-tP (10)

Equation 10 is the optimal solution for W*. By substituting
Equation 10 into Equation 9 and noting that the correlation
matrix is symmetrical, then

Efez(k)l^t"= EÍq'(k)l + [R-'P]rRR-'P - 2PrR-rP

: E[q'(k)] + PrR-1P - 2PrR-1P

: Elq'(k)l - PrR-1P (1 1)

Although Equation 10 is the optimal solution of Wo, in a

practical sense Wf is not estimated by Equation 10. In the
next section, the algorithm for estimating Wf is discussed.

LMS ALGORITHM

Recall in Equation 10,

Yp: 2RW* - 2P

'.ì
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FIGURE 3 Adaptive processor []7ro are adjusted by e(k), j = 0 toM.
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or

Wf : ¡-tP

Combining these two equations,

Wi:Wo-0.5R-1Vk

Equation 12 can be changed into an adaptive algorithm as

follows:

\ilr*r=Wk-0.5R-1VÂ

If the vector of weight (\{o) is adjusted in the direction of the
gradient at each Step k, and a constant p (0 < p < 1) is
defined, then Equation 13 can be simplified as follows:

Wr*r:Wo-trV*

With this simple estimate of the gradient, the LMS algorithm
can be specified by Equations 14 and 15:

lYr*r:\il¿-PV*
: W¿ * Zp"e(k)Qo-" (16)

Thus, Equations 3 and 16 constitute the adaptive prediction
model. Equation 16 indicates that the LMS algorithm can be
implemented in a practical system without squaring, aver-
aging, or differentiation and is elegant in its simplicity and
efficiency.

STABILITY AND COTIIVERGENCE

The stability and response performance need to be evaluated
for a system model. In the adaptive prediction system, the
stability and response performance depend mainly on the
step size (p) and the order (N) of the adaptive processor. In
order to simplify the discussion for the response performance
of the adaptive prediction system, only the number (CS) of
convergence steps is of concern. CS is defined as follows. If
q(k), astep function, changes from a constant level to another
constant level, then CS is the number of steps for ,i(k) to
converge to q(k) for a given criterion (C) after q(k) changes.

That is,

s&):A ifk<L

or

(Lz) s&):B ifk-L

(13)

(14)

where Á I B and L is a positive integer.
CS is defined by

l4@)-q(k)l'c irk>¿+cs (r7)

where C is a given criterion and CS is the minimum number
of steps for Equation 17 to exist.

Conceptually, small values for p and N result in good sta-

bility but slow convergence speed or large CS. This means

that there is a trade-off between stability and response perfor-
mance. In this research effort, another parameter (AL1) was

defined as follows:

AL1

For this discussion, the average vehicle speed is defined as

the mean speed of n vehicles at Time Step /<, where n is the
number of vehicles in a unit length of highway section. There-
fore, the average vehicle speed is also a spatial average speed.

It q(k) is considered the average vehicle speed and is a step
function, then

s@) = 30 (mPh) Lf. k < 20

or

s@) :50 (mph) if. k > 20 (18)

Figure 4 shows the results of observed avera9e speed versus

predicted average speed for N : 10, AL1 : 1.25, S : L, and

C : 0.1. Because the average speed changes from 30 to 50

mph after several steps, there is a significant difference between
q(k) and Q@). The predicted average speed ,f(k) returns to
almost the same as the observed average speed q(k) after
eight steps.

A step function is usually used as a reference input in the
performance evaluation of a system because of its simplicity.
To check the effects of AL1 (1/p) and N on the stability and

convergence step of the adaptive prediction system, the step

functíon (Equation 18) is considered as the reference input.
Figure 5a shows the curve of AL1 versus Convergence Step

CS. As AL1 gets larger (or p gets smaller), the adaptive
prediction system takes more steps to converge. Therefore,
CS becomes larger. Figure 5b shows the curve of N versus

Convergence Step CS. As N gets larger, the adaptive predic-
tion system takes fewer steps to converge. Therefore, CS

becomes smaller.
As previously discussed, the stability of the system depends

mainly on AL1 and N. Then, in the plane of (4L1, N) a zone

should exist in which the adaptive prediction system should
be stable. The predicted value would then converge to the
observed value for a given criterion C. Otherwise, the system

1

2p"

where p regulates the step size (from k to k + 1) and has

dimensions of reciprocal signal power.
In order to deyelop the LMS algorithm, e'z(k) itself can be

taken as an estimate of. Elez(k)l; then the estimate of the
gradient V" can be expressed by

û: [*l :2ek\ [*lv: 

L,-*-J 

:¿e\K) 

L***J
: -Ze(k)Qo-" (15)
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would be unstable. Figure 6 shows the stable and unstable
zones. The reference input is the same as for Equation 18.

AL1 changes from 75 to 500, and N changes from 6 to 30. If
(4L1, 

^/) 
values belong to the area above the straight line,

the system is stable; otherwise it is unstable.

EXPERIMENTS WITH THE ADAPTIVE
PREDICTION SYSTEM

Two types of experiments were conducted to evaluate the
performance of the adaptive prediction system. In the first
experiment, a sine function is used to simulate the traffic flow

[q(k)):

s&) = Asin(kT) + B
(vehicles/hour, k : 0, t, 2, . . .) (1e)

where ,4 and B are positive constants and Z is the sample

interval. The experimental results are shown in Figure 7, with
AL1 : t25, N = 10, and S : 1. The predicted traffic flow

[d(k)] follows the true (observed) traffic flow [q(k)]. The error
of prediction is shown in Figure 8. For this kind of determin-
istic traffic flow, the adaptive prediction system has the ability

59

to predict precisely the future cha¡acteristics of the traffic flow
by understanding the past process of q(k). This ability could
be the result of the cyclic nature of the sine function input.

In the second experiment, real traffic data were collected
from northbound lanes of the Mopac Highway and West 35th
Street intersection in Austin, Texas. The data collection period
covered three consecutive days with a l-hr time interval between
data sampling. The unit of the traffic flow data is vehicles per
hour. Because the experiment was conducted to test how well
the adaptive prediction system worked and because predicting
traffic flow by historical traffic data is more difficult with a

large sampling interval than with a small sampling interval, a

large sampling interval (1 hr) was used in the experiment
instead of a small sampling interval (3 to 5 min). Although
the past characteristics of traffic flow were observed, precisely
predicting the future values of the traffic flow was impossible.
This result was different from that of the first experiment.
The adaptive prediction system can figure out the statistical
characteristics of the traffic flow using the adaptive processor
and the past values to optimally predict the future traffic flow.
Statistically, the adaptive prediction system's performance is

optimal. Figure 9 shows the curves of observed traffic flow
and predicted traffic flow with the given structure (AL1 :
1.08, N : 23, and S = i). Figure 10 shows the same prediction
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FIGURE 6 Stable and unstable zones in (ALl' Ð plane.

FIGURE 7 Prediction of traffic flow [q(/r) = A sin (kn + B,T-sample
intervall.
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FIGURE I Error of prediction lq(k) =,4 sin (frT) + Bl.

+ ObenndTrafllcFlow

+ Pr€d¡ct€dTrôtl¡cFlory

Time (Hr.; 24 hrs. per day)

FIGURE 9 Prediction of traffic flow (trafÏic flow data collected from Mopac Highway, Austin,
Texas) with N = 23, ALI = 108.
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process but with a different model structure (AL1 : 9 x I07,
N : 6, and S : 1). The figures indicate that the model
structure (AL1 and N) affects the prediction error and perfor-
mance of the prediction system.

CONCLUSIONS

The adaptive prediction system can be used as a real time
predictor. The performance of the predictor depends on the
characteristics of the traffic variables and on the structure of
the predictors AL1 and N. In the process of choosing AL1
and N, consideration should be given to the stability and
convergence step. For the prediction of a specific traffic var-
iable, an adequate number of tests should be run to obtain
the optimal AL1 and N values.

As discussed, the LMS algorithm is so simple that the adap-
tive prediction system can be conducted by hardware. The
control system would then have better performance (less delay
and faster response).

An adaptive prediction system is only one of the applica-
tions for the adaptive processor. The adaptive processor can
be used widely in othe¡ traffic control areas such as filtering,
signal detection, and signal processing. The adaptive predic-
tion system, like the other prediction models cited, has some
limitations for practical applications. One of the most critical
problems seems to be the convergence. Although in certain
situations, the adaptive prediction system could converge to
the optimal states with given model structures (i.e., AL1 and
N), in some other situations, the adaptive prediction system
might not converge with the same model structures.

o 2 4 6 8 101214161820222426283032343638404244
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FIGURE 10 Prediction of traflÏc flow (trafTrc flow data collected from Mopac Highway'
Austin, Texas) withN = 6, ALl = 9 * 107.
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