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Interactive Airport Landside Simulation: 
An Object-Oriented Approach 

s. A. MUMAYIZ AND R. K. JAIN 

Airport land idc imulations have been developed for more than 
two decades by the analyrical-mathematical modeling approach 
in which conventional general purposelanguages (e.g. FORTRAN 
BA lC) or imularion ystems (e.g., GPSS (general purpo e sim
ulation system)] are used. Con ensus withfo technical circles cur
rently recommends the use of object-oriented programming si m
ulation as an appropriate approach to designing the next generation 
of airport imulation models along with the u e of techniques 
developed in artificial intelligence and computer-aided de ign. 
The objective of this paper is to explore the different aspects in 
the design and implementation of an airport land ide simulation 
model. Major features and propenies of objects in the object
oriented programming environment are discussed and related to 
the imulation environment with an attempt to find analogs be
tween the two 10 repre ent the airport landside environment in 
an object-oriented environment . The preHrninary effort using an 
object-oriented approach to design and implement a simularion 
environment is presented and discussed. 

There has been considerable discussion recently about im
plementing object-oriented programming for airport landside 
simulation. Object-oriented programming has been around 
for a while and its main applications have been in artificial 
intelligence and expert systems. However, modern object
oriented extensions of popular programming languages have 
not yet gained a foothold in mainstream scientific program
ming. The intent of this paper is to analyze the airport landside 
simulation system from a conceptual view compared with the 
conventional mathematical modeling approach, and explore 
various aspects of simulating this complex system through the 
adoption of an object-oriented approach. A brief description 
of the major features of object-oriented language elements is 
followed by a presentation of preliminary work to simulate 
airport landside using object-oriented programming. Draw
backs of the conventional approach are also discussed and 
compared with the present programming approach. 

CURRENT SIMULATION APPROACH: 
DESCRIPTION AND LIMITATIONS 

The airport terminal can be modeled on two scales: macro
scopic, as one integral system from landside to airside, or 
microscopic, in which individual facilities are considered as 
separate entities . Each approach has its own merits and short
comings. A brief description of two simulation approaches 
taken to design an airport landside simulation model is pre
sented. They are the Federal Aviation Administration's (F AA's) 
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Airport Landside Simulation Model (ALSIM), and the Ca
nadian Airport Planning Model. A more detailed description 
of airport landside simulation models can be found elsewhere 
(1). 

FAA Airport Landside Simulation Model (ALSIM) 

ALSIM is a macroscopic , discrete-event , fast-time computer 
simulation model capable of producing flow and congestion 
parameters and respective statistics at simulation facilities. 
The structure of the model consists of main and auxiliary 
programs. The ALSIM simulation model is programmed on 
the IBM/370. The operating system on IBM/370 is essentially 
a batch processing type that requires the program, data , and 
appropriate system commands to be submitted together as a 
single job. There is no user interaction between the users and 
the executing programs (Figure la). ALSIM exhibited a fast 
execution time of approximately 7 min because of batch pro
cessing and the absence of run-time interaction between the 
user and the simulation environment. Debugging is a difficult 
task-an inherent drawback of a batch-oriented operating 
system. Several different languages are used to design 
ALSIM. The operating system commands are executed with 
the use of job control language (JCL), the main simulation 
environment is designed in GPSS-V, all input-output, data 
and report formatting are conducted in FORTRAN. This is 
tied together as a single module by the IBM/370 assembly 
language. In a single run, ALSIM can compute and analyze 
a number of parameters, statistics, and transactions. The model 
creates transactions representing the processing of passengers 
and visitors. Data sets , which are grouped into four major 
categories: flight schedule, passenger characteristics, airport 
geometry, and facility information, are supplied to the sim
ulation environment before the execution of the simulation 
process. Reporting includes passenger statistics, processing 
facility statistics, occupancy rate, and flow characteristics of 
passengers through the system (1-3). 

Canadian Airport Planning Models 

Contrary to ALSIM, the model developed by Transport Can
ada represents an independent module-based simulation model 
to assist in the planning, design, demand assessment, and 
capacity-service evaluation levels of airport terminals and 
ground access facilities . It consists of a number of interactive, 
interrelated , and mutually compatible separate models that 
run on an IBM-AT or compatible microcomputer. Each one 
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FIGURE 1 (a) ALSIM simulation environment, (b) Transport Canada's simulation 
environment, (c) interactive simulation environment. 

of these individual models nas front, middle , and end seg
ments. Front and end segments, programmed in BASIC and 
Pascal, serve as input data editor and report generator. The 
middle segment is programmed in FORTRAN IV, and rep
resents the simulation engine of the model. These three models 
are the gate assignment model, the air terminal passenger 
flow simulation model , and the ground transportation simu
lation model (Figure lb) . 

The gate assignment model is a multi-channel queueing type 
operating in time intervals of S min . The output generated 
includes listing of two-way passenger flow through each gate, 
a Gantt Chart, statistics of gate use, and aircraft-passenger 
delays . 

The air terminal passenger flow model is an interactive 
event-oriented simulation model that simulates flow of pas
sengers along predefined paths from curb to the airport gates 
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and vice versa. The output includes number of users entered 
and exited, baggage device assignment , queueing, and delay. 

The ground transportation model is an interactive model 
that simulates the flow of vehicular traffic in the roadway 
system of the airport. The input is derived from survey sta
tistics and flow path information. Its output includes statistical 
information on occupancy time interval; vehicular character
istics (private, taxi, rental, mass transit); and total number of 
vehicles entering and exiting in a given time interval (1,4). 

THE CURRENT APPROACH TO LANDSIDE 
SIMULATION 

The difficulty in representing the landside of an airport is 
increasing with the growing complexity of the modern meth
ods of passenger handling at airports. A number of proposals 
have been put forward in recent years for the development 
of a general airport landside simulation model. 

The complexities of the airport landside system are exhib
ited by the variations in the handling processes that a pas
senger has to undertake at an airport under different situa
tions. Combined with the human element, these processes 
become stochastic in nature. The technology and organiza
tional context of each processing unit differ from one situation 
to another. 

A clearly defined simulation process for the landside is 
needed. The conceptual task faced is to understand and rep
resent the airport landside so that a simulation model can be 
generated with the capability of effectively helping in the 
design of airport service areas. 

From a theoretical standpoint, a simulation model should 
ensure the following: 

1. Suitability for a wide range of situations, 
2. Effectiveness for the process of airport service design, 
3. Ability to evaluate present states and also support eval

uation and selection through judgment and predictions, 
4. Easy modification to accept newer technological and or

ganizational approaches, and 
5. Effective analysis of threshold and performance meas

urement standards. 

AIRPORT LANDSIDE AND COMPUTATIONAL 
MODELING 

Advanced programs that support numeric calculations for 
structures, highways, energy, finance, defense, and other 
quantitative aspects have grown steadily in the past two dec
ades. These tools have helped in the development of solutions 
and alternatives in their specific fields, particularly in cases 
in which there is standardization. These tools have success
fully augmented and substituted the traditional manual op
eration but have actually provided very little support to the 
representative, generative, and evaluative tasks of a simula
tion process, states, and interaction. 

The computational techniques and tools developed to date 
for other disciplines do not support the requirements of air
port landside computer simulation models. They suffer from 
limitations that are inherent to the concept of the word "pro-
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gram" itself. In this context, a program deals with the exe
cution of a sequence of a predetermined set of instructions 
to obtain an output defined by the formulation of the problem 
and the data provided (5). This "programming" approach 
works well for applications and situations in which the prob
lem can be perfectly formulated, but fails when applied to 
complex and less formulated systems like landside simulation. 
The landside design problems are neither well understood nor 
can they be strictly formulated. Instead, they tend to be for
mulated in reaction and in response to parameters that emerge 
gradually during run time . These parameters vary according 
to case and vary even within the same case at different times. 
This clearly reflects a complex system made up of a large 
number of parts that interact in an uncomplicated way in 
which the whole is more than the sum of the parts. Given the 
properties of the parts and the laws of their interaction, it is 
not a trivial matter to infer, evaluate, or generate the prop
erties of the whole. In the face of such complexities, the 
principles of reduction and modulation of the parts along with 
their properties and laws can be a pragmatic method (6). 

The failure of a systematic method has nevertheless pro
duced a series of computational operations that make up the 
present simulation models and utilities. Thus the designers of 
landside simulation software have to use precise, systematic, 
and easily manageable models, following the logic of meth
odology. This situation can be overcome by the hierarchic 
system. It is based on techniques developed in the domain of 
artificial intelligence for representation, inheritance, demons, 
and perspective. Various procedures can be constructed that 
can make assumptions , report what is relevant, and also look 
for information on the basis of hierarchy (7). 

HIERARCHIC SYSTEMS AND OBJECT
ORIENTED PROGRAMMING 

A hierarchic system or hierarchy is composed of interrelated 
subsystems, each of the latter being in turn hierarchic in struc
ture until some elementary subsystem is reached. Frames used 
as a means of representation in artificial intelligence can best 
represent hierarchy . Apart from a simple class or subclass 
relationship, a frame can also represent complex subordina
tion among subsystems and specialized concepts. These frames 
can report common situations (prototype) , make assump
tions, assign default values, decide what to look for depending 
on the situation, and also where to look for it (7). This concept 
of frames can be easily codified into binary representation 
with the use of object-oriented programming languages. 

Object-oriented languages are not new in concept, first 
appearing in the 1960s. The first object-oriented language, 
Simula-67, was a tool designed to model the operation of 
mechanisms or objects. Previously, object-oriented languages 
were largely restricted to specialized or experimental appli
cations such as artificial intelligence and expert systems ap
pearing in the form of an interpreted language such as Lisp, 
Smalltalk, Flavors, or Loops. The development of computer 
languages has kept pace with the realities of various appli
cations. The increasing technological breakthrough in com
puter hardware and software has made conceptual object
oriented programming a reality. The emphasis on structured 
programming imposed order on a situation that had been 
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approaching chaos. Data abstraction and hiding of data has 
given object-oriented programming a new level of modularity. 
A conventional programming language essentially stores , re
covers, and manipulates data mathematically , and treats data 
and procedures and functions separately. In object-oriented 
programming, not only are the data and procedures viewed 
as one entity, they can be viewed conceptually. The repre
sentation of "concept" is a unique characteristic of object
oriented programming. With object-oriented techniques hi
erarchy, relationship and abstract concepts can be conven
iently and neatly represented with compact and reduced code. 
The designer does not have to worry about data types, pro
cedures, and variables and can just deal with the represen
tational and conceptual issues (8-10). 

OBJECT-ORIENTED PROGRAMMING 

Object-oriented programming can be done either by an 
object-oriented language such as Lisp, Prolog, Smalltalk, or 
object-based programming languages like Object-Pascal and 
C + + , which are supersets of programming languages Pascal 
and C, respectively. These programming language extensions 
define object as a data structure. An object type of data 
structure is similar to a record type in Pascal or a struct type 
in C , with the provision to include fields that are procedures 
or functions called methods of an object within itself; they 
can also have an established ancestor-descendent hierarchy. 
The principal properties of an object-oriented language are 
inheritance, encapsulation, and polymorphism. 

• Inheritance is a property that allows creation of a hier
archy of objects and descendants of objects inheriting the 
characteristics and properties of the ancestor. The relation
ships between ancestors and descendants can provide predic
tive information and represent knowledge. Inheritance facil
itates code sharing, reuse , and extension of the current object. 
The data fields are inherited by the descendent objects from 
the ancestors. The descendent objects can also have data fields 
of their own. Descendants can inherit functions of their ances
tors and can have additional functions of their own. 

• Encapsulation allows the orderly , structural arrangement 
of the internal data of an object and the associated action on 
the manipulation of these data . It combines records or structs 
with functions. The data elements of the object are accessible 
through the functions connected with the object. In addition 
to these benefits, data encapsulation also enables data hid
ing-access to the data of an object is restricted to the meth
ods associated with the respective object. The data-hiding 
feature makes debugging easier than conventional program
ming. 

• Polymorphism means "many shapes." In object-oriented 
programming this concept refers to sharing action (and action 
names) throughout an object hierarchy. Each object in the 
hierarchy implements the action in a way appropriate to its 
specific requirements (8). The same function name can be 
assigned to objects in the same hierarchy. Though the func
tions carry the same name, they can be coded differently 
depending on their individual requirements. 

A good interactive user interface has a major impact on 
the operation of the software. A good graphical user interface 
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could be easily designed through the modular feature of 
object-oriented programming. The design, construction, and 
debugging of the program are relatively straightforward and 
simple. The programs can be written for a wide range of 
hardware platforms (computer systems) without major mod
ifications. A change in the platform would require only the 
replacement of hardware-dependent modules . It would also 
be easy to upgrade or modify the procedures without changing 
the major source code. 

Because concepts can be easily represented, a simulation 
model of a generic airport can be formulated . This generic 
model can be tailored to any specific situation through a user 
interface without having to change the source code. The sim
ulation model can also be expanded to evaluate and make 
judgments on a rule-based or predictive expert system. 

THE OBJECT: BASIC ENTITY OF THE 
SIMULATION PROCESS 

The object is the basic unit of the simulation system. It holds 
the data base and its operators , the inter-object relationship, 
and operators for prototypical and specific cases. The simu
lation system consists of three major types of objects: 

1. Generic objects that are the prototypes, 
2. Specific objects that are tailored generic objects placed 

in a specific context, and 
3. Relational objects that establish inter-object relation

ships. 

The objects include both descriptive and functional char
acteristics. The descriptive characteristics represent the phys
ical or name-value component, whereas the functional char
acteristics represent the nonphysical, conceptual characteristics. 
Descriptive characteristics provide the system with a data base 
and functional characteristics provide it with knowledge, es
tablish relationships, and represent concepts. 

Examples of some of the objects that are used in the proto
typical, preliminary simulation model are listed in the follow
ing paragraphs. 

Event_Object 

An object that updates the clock, the event_ object looks out 
for changes of states in the simulation environment and reacts 
to any changes according to the parameters of the simulation 
environment. The event_object also checks for user interrup
tion and halts the simulation process for user input; for ex
ample, if the system clock time equals the arrival time of the 
plane less the time the first meeter-greeter arrives at the air
port , it initiates the meeter-greeter logic of that specific plane 
object . 

Pax_Object 

This is the passenger object, which is the subclass of the plane 
object. Its main parameters of arrival and departure time are 
held within the plane object . The pax_object is assigned a 
route, which it undertakes at arrival and departure. The 
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pax_object updates its position on its own if it is "linked" to 
a transition_object; or if the passenger object is linked to a 
transaction_object, it queues and waits to be processed by the 
transaction _object. The pax _object keeps track of its position. 
It also relates itself to other passengers to represent group 
relationship, moves through the list of process_objects, and 
keeps statistics of its own time at each processing unit. 

Transaction_ Object 

The transaction_object represents the processing units such 
as check-in desks, baggage handling, immigration counters, 
and so on, in which a passenger has to queue and undergo 
the necessary processing. This object holds the logic of its 
process and actions, which can be mathematical, statistical, 
or heuristic representations or models. It is in reality a sub
simulation of the main simulation process, in which each 
transaction_object simulates the scenario at a check-in desk 
or security center. It holds the processing variables, statistics 
of itself, processes passengers, and keeps track of processing 
time. 

Transition_ Objects 

The transition_ object represents the transition the passenger 
has to undertake to connect from one processing unit to an
other. The transition_object connects the different 
transaction_objects into a finite set of possible processing paths 
that represent the situations at a specific airport. Each arriv
ing, departing, or transfer pax_object is assigned a processing 
list on creation. Apart from establishing relationships between 
transaction_ objects, it also holds values of distances between 
the transaction_objects . 

Process_ Object 

This is the superclass of the transition_ and transaction_ objects. 
It defines the logic of traversing within the processing net
work . The processing_object is an abstract object that con
tains generic procedures for the use of its descendent objects 
(e.g., access interface object). 

Demon_ Object 

The simulation system consists of a number of demons who 
"reside dormant" in the simulation environment. They are 
evoked when they are needed to accomplish some task . A 
demon assigns logical or default values to other objects in the 
simulation process. These values are dependent on a specified 
range of mathematical, statistical, or heuristic sub-modeling 
of an individual action represented by the demon. A demon 
can help in modeling the randomness of a simulation process 
and also give it a realistic touch . An example of a demon is 
the stochastic_deplaning_demon, which is evoked when the 
plane_object is attached to a gate. This demon assigns the 
deplaning passengers or group of passengers a processing path 
for a set of predefined processing paths. 

DESIGN OF USER INTERFACE AND IMPACT ON 
SIMULATION PROCESS 
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User interaction has become an important feature in software 
design . Computer graphics have become a standard means of 
communicating between the user and the machine. A good 
user interface reduces the visible complexities of the model 
and guides the user through the whole process, making the 
operation of the model very simple. Interactive graphics can 
also be used to reflect the state of the simulation environment 
to the user, thus confirming whether it is a true representation. 

Through interactive computer graphics, the user can control 
and manipulate the simulation process . This can be accom
plished with the use of interactive devices such as keyboards, 
a mouse, a digitizer tablet and puck, or a light pen. With 
interactive devices, the user can either type in alphanumeric 
information or select from menus existing on the digitizer or 
on the CRT screen. Interactive interface is used to specify 
operations or components of the simulation process on which 
operations are to be executed. This interactive interface tech
nique does not require the user to be a programmer. The user 
simply has to make choices, answer questions, and assign 
place values on the CRT when prompted (11). 

The interactive graphics capability of the simulation model 
achieves a strong man-machine communication. A combi
nation of text and static or dynamic graphics or animation 
makes a significant difference in the user's ability to under
stand data, perceive trends, and visualize the simulation in 
totality . The user interaction is designed to 

1. Provide a consistent interaction sequence, 
2. Limit and control the number of options required for 

direct communication with the program and exhibit available 
options in a hierarchical manner, 

3. Prompt the user at each stage of the interaction process, 
4. Provide appropriate feedback to help the user evaluate 

the trends of the simulation process, and 
5. Make the user interface crash-proof and recover grace

fully from mistakes. It should issue warnings by beeping and 
provide a feedback on the error and possible solutions. 

The simulation environment communicates back to the user 
through a CRT, a dot matrix printer, or through an output 
file. Additional facilities like capturing the screen and pro
ducing a hard copy can be helpful in documenting the process 
and subprocesses. 

REPRESENTATIVE HIERARCHY OF AN 
AIRPORT TERMINAL SYSTEM 

The passenger terminal system can be represented as a hi
erarchy based on the activities. The major subsystems of a 
passenger terminal system are the access interface , the process 
interface, and the flight interface. 

• Access interface is a situation in which the passengers 
transfer from the ground transportation access mode to the 
terminal complex. The representative activities of this sub
system are curb-side loading and unloading of passengers, 
circulation, and parking. The facilities that constitute this sub
system are the roads, arrival and departure curbs, long- and 
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short-term parking spaces, walkways, and public ground 
transport facilities. 

• Processing interface is the center of the passenger terminal 
system. Here the passenger is processed at the start or end 
of the trip. The primary activities that constitute this subsys
tem are ticketing, baggage check in, baggage claim, seat as
signment, federal inspections, and security. This subsystem 
consists of facilities such as ticket counters and baggage check
in facilities, public and nonpublic concessions, lobbies, cir
culation spaces (such as corridors, stairways, escalators, and 
elevators), baggage-handling facilities and devices, security 
facilities and devices, and federal inspection facilities. 

• Flight interface is the situation in which the "processed" 
passenger transfers to the aircraft. The activities conducted 
in this subsystem are assembly, conveyance to and from the 
aircraft, and security checks. The facilities provided for these 
activities are the concourse, departure lounge or gate hold
room passenger boarding devices, airline operations, and space
and security-checking equipment and facilities (12). The com
ponents of a prototypical passenger terminal system and the 
hierarchy of the components are shown in Figure 2. 

Each node in the representative tree of the prototypical 
airport can be considered as an object in the same hierarchy 
as shown in Figure 3. The lines connecting these nodes rep
resent the relationship of ancestor-descendants in the direc
tion from top to bottom. The root of this hierarchical rep
resentation is the generic airport object. The first generation 
objects are the three subsystems, their descendants are the 
individual facilities, and the end node of this system is the 
queue_ object. The basic components of each object are the 
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variables that hold the data and statistics of the subsystem 
they parent and the procedures needed to process passengers 
within a subsystem or a specific node. The processing pro
cedures are more general near the root of the tree and get 
increasingly specific and complex lower down the tree. This 
is helpful in establishing default procedures and overall sta
tistics of a subsystem. The property of polymorphism of ob
jects is exploited to achieve the hierarchical complexity of the 
object-processing procedures that act on the pax_object. 

DESCRIPTION OF INTERACTIVE AIRPORT 
LANDSIDE SIMULATION MODEL 

Currently, the model consists of the following five interfaces 
integrated in a common environment: 

1. Flight Schedule Interface is a window-based utility used 
to generate flight schedules interactively. The user can create, 
retrieve, store, and manipulate originating, terminating, or 
transit flight schedules interactively. The schedules are main
tained in separate files in the binary format and are merged 
together at run time. Through interactive windows and screen 
menus, the user can operate on these schedules. Through this 
interface, the user can also assign passenger characteristics to 
a specific flight. 

2. Passenger Path Interface is a menu-driven interactive 
graphic interface used to represent passenger processing paths 
required in the simulation environment. The prototypical flow 
diagrams representing the typical processing facilities and pro
cessing paths are selected from the IATA manual (13). These 
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Lounge BoBrdng 
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FIGURE 2 Hierarchic arrangement of landside processing facilities. 
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FIGURE 3 Hierarchic arrangement of objects in the simulation environment. 

flow diagrams are displayed graphically on the screen . From 
an interactive mouse-driven menu, the user can choose from 
four flow diagrams. Further details on the flow charts are 
available in the IATA manual (13) (pp. 3-7 to 3-10). The 
selected diagram is displayed on the screen and the user has 
five selection choices from the menu: 

• Add a new path to the processing path _list (by interac
tively linking the displayed processing facilities); 

• Assign parameters like traveling distances, mode of travel 
(corridor, stairway escalator , etc.), or the percentage of pas
sengers on a specific path (either to an existing path or a new 
path); 

• Assign or alter the default parameters of the processing 
facilities (objects); 

• Edit an existing path; or 
• Delete an existing path. These paths can be stored in a 

file and retrieved for future use. 

3. Airport Parameter lntetface is used to assign global pa
rameters to the simulation environment. Default passenger 

characteristics can be assigned globally to be used by passen
gers of flights that do not have a specific passenger charac
teristic assigned to them . Other global parameters like service 
time distribution, passenger loading and unloading at arrival 
and departure curb, baggage transport time to baggage claim 
devices , and so on, can be provided to the simulation envi
ronment to override default values . These input requirements 
are based on the requirements of ALSIM and Transport Can
ada's simulation model. Further details can be found in the 
references (2-4). 

4. Simulation Environment is a graphics-based, user
interactive, menu-driven , mouse-assisted interface of the whole 
simulation process. It is a probabilistic, multiple event-based 
simulation environment that operates on the parameters and 
inputs determined by the other systems. The model is de
signed to run in three modes: representative, evaluative, and 
optimization. 

• In the representative mode, graphical representation of 
the airport landside scenario is generated and displayed on 
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the CRT. Representative assembly of the different compo
nents of the simulation environment and the interaction among 
them are shown in Figure le. In this mode, no evaluation is 
made and the simulation environment graphically reflects the 
execution of the process. The representative mode is the basic 
simulation process; it is a "state" generative-representative 
environment that forms the deterministic parameters for the 
other two modes. 

• The evaluative mode is the working of the simulation 
process in the dynamic threshold evaluator shell. This is shown 
diagrammatically in Figure 4. At run time the threshold eval
uator will check for the performance levels of the processing 
facilities and periodically indicate the performance of these 
facilities through an output channel (screen or printer). At 
the end of the run, the statistics of individual facilities are 
generated. In the evaluative mode the simulation system can 
(a) generate transactions of the different processes, (b) keep 
track of the passengers in the system and the time spent at 
individual facilities, ( c) evaluate operational performances at 
the individual processing facilities of the whole subsystem or 
the whole airport, and ( d) represent queues and compute 
waiting times for individual passengers or give an overall per
spective on the level of service. 

•In the optimization mode (Figure 5), the dynamic facility 
optimization is an integral part and works with the threshold 
evaluator. The threshold evaluator triggers the dynamic fa
cility optimization manager if a processing facility is over
burdened or underused. The facility optimization manager 
either increases or decreases capacity at run time. A statistical 
result helps to establish capacities for a new design or eval
uates capacities of an existing situation. In this mode, the 
simulation system , apart from what it can do in the evaluative 
mode, can also (a) recognize points of bottlenecks or unde-

TRANSPORTATION RESEARCH RECORD 1296 

ruse, and (b) increase or decrease the number of facilities 
dependent on the demand and need based on the level of 
service established for that run . Actions are indicated graph
ically. The simulation process can be interrupted at any mo
ment during its run to alter parameters or request status re
ports through the output subsystem. 

5. Output Control Interface, as the name implies, is a utility 
to generate outputs of the simulation environment. These 
outputs can be directed to the CRT or filed on the disk or 
the printer. The output can be obtained at run time, user 
interrupts, and at the end of the simulation run. It can also 
generate outputs of the schedule files and passenger flow 
paths. 

These systems are interactive and can be selected at any 
time during the simulation process (Figure le). At present, 
the simulation is based on process relationship and is not 
related to the geometry of the airport. There is a provision 
in the design of the data structure to incorporate the geometric 
relationship of an airport terminal floor plan . 

The sequence of logic of the simulation process is as follows: 

• At the start of each cycle the event_ handler_ object checks 
the status, parameters, and flags to establish existence of events 
such as arrival of planes or user interrupt. 

• If a plane is attached to the gate, it evokes the demon_object 
to deplane the pax_objects from the plane_object and puts 
the pax_objects into the terminal network. 

•Each generated pax_object is assigned a processing path 
by the stochastic_deplaning_demon. The pax_object travels 
through the processing path until it reaches the end of the 
access interface . 
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FIGURE 4 Evaluative mode environment. 
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FIGURE 5 Optimization mode environment. 

•In the end, destructor_ demons update the necessary sta
tistics and destroy the pax_object to make room in the limited 
memory resource. 

• The evaluation of performance of a state is achieved by 
computing the parameters at that instance; for example, if 
the queue length at time t at facility f was needed , then the 
physical count of the pax _objects at that facility f had to be 
taken. 

SUMMARY AND CONCLUSIONS 

Presented in this paper is a new approach to airport landside 
simulation using the concepts from artificial intelligence and 
computer-aided design . Comparison of the present approach 
with the conventional approach indicates many drawbacks 
that inhibited efficient use of earlier simulation systems. Those 
systems had high "number crunching" capabilities , but ex
hibited limited and ineffective use of logic-based computation 
and great difficulty in programming and debugging. In par
ticular, the object-oriented approach is capable of providing 
immense programming flexibility, greater reduction of input 
requirements, is easier to operate and user friendly, and offers 
fully interactive execution with a high degree of animation
graphics capability. Preliminary findings of the performance 
of the object-oriented Iandside simulation model indicated 
the following: 

1. The ability to represent concepts in program code and 
other properties of object-oriented programming greatly en
hances the flexibility, versatility , and use of Iandside simu
lation. 

2. A prototypical (generic) simulation model can be rep
resented and extended for a wide variation of airport types, 
sizes, and complexity without the need to change the source 
code. 

3. Animation, graphics, run-time user interface, and inter
action can increase the capabilities of the model and offer 
wide possibilities for manipulation and checks that can make 
landside simulation closer to reality. 

As an ending note, the question remains: Can simulation 
be the ultimate in the process of design of airport terminals? 
The computer has come a long way in assisting in daily re
quirements. In the last decade its role has been more com
putational; hence its use as a simulation tool was restricted 
to evaluate or derive parameters that influence the quanti
tative aspects required for the design of airport terminals. The 
objective is to develop a tool that can assist in the design 
process that should not be limited to achieving quantitative 
results only. It should also represent qualitative properties 
and values and establish ways to evaluate them. This would 
help in the optimization of performance of facilities, evaluate , 
make selections and judgments, and predict the quality of 
performance standards. The computer should not be treated 
as another computational tool because its potential can be 
used in a decision-making capacity [i .e . , Expert Systems, in 
the process of airport terminal design (14)]. Ultimately, the 
computer may become an essential element in the airport 
design process or even play the role of an equal partner. Some 
of the areas in which simulation and computers can assist are 
related to human factor issues of "way finding" at airport 
terminals and "distress reaction" to emergencies. Some pi
oneering research in the domain of architecture and computer-
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aided design (15-17) can make a strong and significant impact 
on the modeling and simulation of airport landside. In the 
opinion of the authors, this can be achieved through object
oriented tools and the use of artificial intelligence techniques 
of representation, semantic network, and expert systems (14). 
This paper provides a discussion of a preliminary ongoing 
study; more details will be presented in subsequent publica
tions. 
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