
TRANSPORTATION RESEARCH RECORD 1296 13

Interactive Airport Landside Simulation:
An Object-Oriented Approach

s. A. MUMAYIZ AND R. K. JAIN

Airport land idc imulations have been developed for more than
two decades by the analyrical-mathematical modeling approach
in which conventional general purposelanguages (e.g. FORTRAN
BA lC) or imularion ystems (e.g., GPSS (general purpo e sim
ulation system)] are used. Con ensus withfo technical circles cur
rently recommends the use of object-oriented programming si m
ulation as an appropriate approach to designing the next generation
of airport imulation models along with the u e of techniques
developed in artificial intelligence and computer-aided de ign.
The objective of this paper is to explore the different aspects in
the design and implementation of an airport land ide simulation
model. Major features and propenies of objects in the object
oriented programming environment are discussed and related to
the imulation environment with an attempt to find analogs be
tween the two 10 repre ent the airport landside environment in
an object-oriented environment . The preHrninary effort using an
object-oriented approach to design and implement a simularion
environment is presented and discussed.

There has been considerable discussion recently about im
plementing object-oriented programming for airport landside
simulation. Object-oriented programming has been around
for a while and its main applications have been in artificial
intelligence and expert systems. However, modern object
oriented extensions of popular programming languages have
not yet gained a foothold in mainstream scientific program
ming. The intent of this paper is to analyze the airport landside
simulation system from a conceptual view compared with the
conventional mathematical modeling approach, and explore
various aspects of simulating this complex system through the
adoption of an object-oriented approach. A brief description
of the major features of object-oriented language elements is
followed by a presentation of preliminary work to simulate
airport landside using object-oriented programming. Draw
backs of the conventional approach are also discussed and
compared with the present programming approach.

CURRENT SIMULATION APPROACH:
DESCRIPTION AND LIMITATIONS

The airport terminal can be modeled on two scales: macro
scopic, as one integral system from landside to airside, or
microscopic, in which individual facilities are considered as
separate entities . Each approach has its own merits and short
comings. A brief description of two simulation approaches
taken to design an airport landside simulation model is pre
sented. They are the Federal Aviation Administration's (F AA's)

S. A. Mumayiz, TAMS Consultants Inc., 2101 Wilson Boulevard,
Suite 300, Arlington, Virginia 22201. R. K. Jain , TAMS Consultants
Inc., The TAMS Building, 655 Third Avenue, New York, N.Y. 10017.

Airport Landside Simulation Model (ALSIM), and the Ca
nadian Airport Planning Model. A more detailed description
of airport landside simulation models can be found elsewhere
(1).

FAA Airport Landside Simulation Model (ALSIM)

ALSIM is a macroscopic , discrete-event , fast-time computer
simulation model capable of producing flow and congestion
parameters and respective statistics at simulation facilities.
The structure of the model consists of main and auxiliary
programs. The ALSIM simulation model is programmed on
the IBM/370. The operating system on IBM/370 is essentially
a batch processing type that requires the program, data , and
appropriate system commands to be submitted together as a
single job. There is no user interaction between the users and
the executing programs (Figure la). ALSIM exhibited a fast
execution time of approximately 7 min because of batch pro
cessing and the absence of run-time interaction between the
user and the simulation environment. Debugging is a difficult
task-an inherent drawback of a batch-oriented operating
system. Several different languages are used to design
ALSIM. The operating system commands are executed with
the use of job control language (JCL), the main simulation
environment is designed in GPSS-V, all input-output, data
and report formatting are conducted in FORTRAN. This is
tied together as a single module by the IBM/370 assembly
language. In a single run, ALSIM can compute and analyze
a number of parameters, statistics, and transactions. The model
creates transactions representing the processing of passengers
and visitors. Data sets , which are grouped into four major
categories: flight schedule, passenger characteristics, airport
geometry, and facility information, are supplied to the sim
ulation environment before the execution of the simulation
process. Reporting includes passenger statistics, processing
facility statistics, occupancy rate, and flow characteristics of
passengers through the system (1-3).

Canadian Airport Planning Models

Contrary to ALSIM, the model developed by Transport Can
ada represents an independent module-based simulation model
to assist in the planning, design, demand assessment, and
capacity-service evaluation levels of airport terminals and
ground access facilities . It consists of a number of interactive,
interrelated , and mutually compatible separate models that
run on an IBM-AT or compatible microcomputer. Each one

14

(a) USER
INPUT

INPUT
UTILITY

SIMULATION

ENVIRONMENT

TRANSPORTATION RESEARCH RECORD 1296

OUTPUT
UTILITY

FILE
PRINTER

USER USER

(b) GATE IR TERMINA GROUND
ASSIGNMENT PAX FLOW TRANSPORT
SIMULATION SIMULATION SIMULATION

ENVIRONMENT ENVIRONMENT ENVIRONMENT

OJTPUT
FILE OJTPUT

FILE OUTPUT
UTILITY UTILITY UTILITY FILE

CRT CRT CRT
PRINTER PRINTER PRINTER

INTEGRATED

FLIGHT ENVIRONMENT
PAX

SCl-Elll_E PATH
INTERFAU:: INTERFACC

'" / /

SIMULATION

(c)

USFR
INPUT

ENVIRONMENT

CRT
PRINTER
PLOTTER

//
AIRPORT OUTPUT
PARAMS CONTROL

INTERFAU: INTEIVACE

FILE

FIGURE 1 (a) ALSIM simulation environment, (b) Transport Canada's simulation
environment, (c) interactive simulation environment.

of these individual models nas front, middle , and end seg
ments. Front and end segments, programmed in BASIC and
Pascal, serve as input data editor and report generator. The
middle segment is programmed in FORTRAN IV, and rep
resents the simulation engine of the model. These three models
are the gate assignment model, the air terminal passenger
flow simulation model , and the ground transportation simu
lation model (Figure lb) .

The gate assignment model is a multi-channel queueing type
operating in time intervals of S min . The output generated
includes listing of two-way passenger flow through each gate,
a Gantt Chart, statistics of gate use, and aircraft-passenger
delays .

The air terminal passenger flow model is an interactive
event-oriented simulation model that simulates flow of pas
sengers along predefined paths from curb to the airport gates

Mumayiz and Jain

and vice versa. The output includes number of users entered
and exited, baggage device assignment , queueing, and delay.

The ground transportation model is an interactive model
that simulates the flow of vehicular traffic in the roadway
system of the airport. The input is derived from survey sta
tistics and flow path information. Its output includes statistical
information on occupancy time interval; vehicular character
istics (private, taxi, rental, mass transit); and total number of
vehicles entering and exiting in a given time interval (1,4).

THE CURRENT APPROACH TO LANDSIDE
SIMULATION

The difficulty in representing the landside of an airport is
increasing with the growing complexity of the modern meth
ods of passenger handling at airports. A number of proposals
have been put forward in recent years for the development
of a general airport landside simulation model.

The complexities of the airport landside system are exhib
ited by the variations in the handling processes that a pas
senger has to undertake at an airport under different situa
tions. Combined with the human element, these processes
become stochastic in nature. The technology and organiza
tional context of each processing unit differ from one situation
to another.

A clearly defined simulation process for the landside is
needed. The conceptual task faced is to understand and rep
resent the airport landside so that a simulation model can be
generated with the capability of effectively helping in the
design of airport service areas.

From a theoretical standpoint, a simulation model should
ensure the following:

1. Suitability for a wide range of situations,
2. Effectiveness for the process of airport service design,
3. Ability to evaluate present states and also support eval

uation and selection through judgment and predictions,
4. Easy modification to accept newer technological and or

ganizational approaches, and
5. Effective analysis of threshold and performance meas

urement standards.

AIRPORT LANDSIDE AND COMPUTATIONAL
MODELING

Advanced programs that support numeric calculations for
structures, highways, energy, finance, defense, and other
quantitative aspects have grown steadily in the past two dec
ades. These tools have helped in the development of solutions
and alternatives in their specific fields, particularly in cases
in which there is standardization. These tools have success
fully augmented and substituted the traditional manual op
eration but have actually provided very little support to the
representative, generative, and evaluative tasks of a simula
tion process, states, and interaction.

The computational techniques and tools developed to date
for other disciplines do not support the requirements of air
port landside computer simulation models. They suffer from
limitations that are inherent to the concept of the word "pro-

15

gram" itself. In this context, a program deals with the exe
cution of a sequence of a predetermined set of instructions
to obtain an output defined by the formulation of the problem
and the data provided (5). This "programming" approach
works well for applications and situations in which the prob
lem can be perfectly formulated, but fails when applied to
complex and less formulated systems like landside simulation.
The landside design problems are neither well understood nor
can they be strictly formulated. Instead, they tend to be for
mulated in reaction and in response to parameters that emerge
gradually during run time . These parameters vary according
to case and vary even within the same case at different times.
This clearly reflects a complex system made up of a large
number of parts that interact in an uncomplicated way in
which the whole is more than the sum of the parts. Given the
properties of the parts and the laws of their interaction, it is
not a trivial matter to infer, evaluate, or generate the prop
erties of the whole. In the face of such complexities, the
principles of reduction and modulation of the parts along with
their properties and laws can be a pragmatic method (6).

The failure of a systematic method has nevertheless pro
duced a series of computational operations that make up the
present simulation models and utilities. Thus the designers of
landside simulation software have to use precise, systematic,
and easily manageable models, following the logic of meth
odology. This situation can be overcome by the hierarchic
system. It is based on techniques developed in the domain of
artificial intelligence for representation, inheritance, demons,
and perspective. Various procedures can be constructed that
can make assumptions , report what is relevant, and also look
for information on the basis of hierarchy (7).

HIERARCHIC SYSTEMS AND OBJECT
ORIENTED PROGRAMMING

A hierarchic system or hierarchy is composed of interrelated
subsystems, each of the latter being in turn hierarchic in struc
ture until some elementary subsystem is reached. Frames used
as a means of representation in artificial intelligence can best
represent hierarchy . Apart from a simple class or subclass
relationship, a frame can also represent complex subordina
tion among subsystems and specialized concepts. These frames
can report common situations (prototype) , make assump
tions, assign default values, decide what to look for depending
on the situation, and also where to look for it (7). This concept
of frames can be easily codified into binary representation
with the use of object-oriented programming languages.

Object-oriented languages are not new in concept, first
appearing in the 1960s. The first object-oriented language,
Simula-67, was a tool designed to model the operation of
mechanisms or objects. Previously, object-oriented languages
were largely restricted to specialized or experimental appli
cations such as artificial intelligence and expert systems ap
pearing in the form of an interpreted language such as Lisp,
Smalltalk, Flavors, or Loops. The development of computer
languages has kept pace with the realities of various appli
cations. The increasing technological breakthrough in com
puter hardware and software has made conceptual object
oriented programming a reality. The emphasis on structured
programming imposed order on a situation that had been

16

approaching chaos. Data abstraction and hiding of data has
given object-oriented programming a new level of modularity.
A conventional programming language essentially stores , re
covers, and manipulates data mathematically , and treats data
and procedures and functions separately. In object-oriented
programming, not only are the data and procedures viewed
as one entity, they can be viewed conceptually. The repre
sentation of "concept" is a unique characteristic of object
oriented programming. With object-oriented techniques hi
erarchy, relationship and abstract concepts can be conven
iently and neatly represented with compact and reduced code.
The designer does not have to worry about data types, pro
cedures, and variables and can just deal with the represen
tational and conceptual issues (8-10).

OBJECT-ORIENTED PROGRAMMING

Object-oriented programming can be done either by an
object-oriented language such as Lisp, Prolog, Smalltalk, or
object-based programming languages like Object-Pascal and
C + + , which are supersets of programming languages Pascal
and C, respectively. These programming language extensions
define object as a data structure. An object type of data
structure is similar to a record type in Pascal or a struct type
in C , with the provision to include fields that are procedures
or functions called methods of an object within itself; they
can also have an established ancestor-descendent hierarchy.
The principal properties of an object-oriented language are
inheritance, encapsulation, and polymorphism.

• Inheritance is a property that allows creation of a hier
archy of objects and descendants of objects inheriting the
characteristics and properties of the ancestor. The relation
ships between ancestors and descendants can provide predic
tive information and represent knowledge. Inheritance facil
itates code sharing, reuse , and extension of the current object.
The data fields are inherited by the descendent objects from
the ancestors. The descendent objects can also have data fields
of their own. Descendants can inherit functions of their ances
tors and can have additional functions of their own.

• Encapsulation allows the orderly , structural arrangement
of the internal data of an object and the associated action on
the manipulation of these data . It combines records or structs
with functions. The data elements of the object are accessible
through the functions connected with the object. In addition
to these benefits, data encapsulation also enables data hid
ing-access to the data of an object is restricted to the meth
ods associated with the respective object. The data-hiding
feature makes debugging easier than conventional program
ming.

• Polymorphism means "many shapes." In object-oriented
programming this concept refers to sharing action (and action
names) throughout an object hierarchy. Each object in the
hierarchy implements the action in a way appropriate to its
specific requirements (8). The same function name can be
assigned to objects in the same hierarchy. Though the func
tions carry the same name, they can be coded differently
depending on their individual requirements.

A good interactive user interface has a major impact on
the operation of the software. A good graphical user interface

TRANSPORTATION RESEARCH RECORD 1296

could be easily designed through the modular feature of
object-oriented programming. The design, construction, and
debugging of the program are relatively straightforward and
simple. The programs can be written for a wide range of
hardware platforms (computer systems) without major mod
ifications. A change in the platform would require only the
replacement of hardware-dependent modules . It would also
be easy to upgrade or modify the procedures without changing
the major source code.

Because concepts can be easily represented, a simulation
model of a generic airport can be formulated . This generic
model can be tailored to any specific situation through a user
interface without having to change the source code. The sim
ulation model can also be expanded to evaluate and make
judgments on a rule-based or predictive expert system.

THE OBJECT: BASIC ENTITY OF THE
SIMULATION PROCESS

The object is the basic unit of the simulation system. It holds
the data base and its operators , the inter-object relationship,
and operators for prototypical and specific cases. The simu
lation system consists of three major types of objects:

1. Generic objects that are the prototypes,
2. Specific objects that are tailored generic objects placed

in a specific context, and
3. Relational objects that establish inter-object relation

ships.

The objects include both descriptive and functional char
acteristics. The descriptive characteristics represent the phys
ical or name-value component, whereas the functional char
acteristics represent the nonphysical, conceptual characteristics.
Descriptive characteristics provide the system with a data base
and functional characteristics provide it with knowledge, es
tablish relationships, and represent concepts.

Examples of some of the objects that are used in the proto
typical, preliminary simulation model are listed in the follow
ing paragraphs.

Event_Object

An object that updates the clock, the event_ object looks out
for changes of states in the simulation environment and reacts
to any changes according to the parameters of the simulation
environment. The event_object also checks for user interrup
tion and halts the simulation process for user input; for ex
ample, if the system clock time equals the arrival time of the
plane less the time the first meeter-greeter arrives at the air
port , it initiates the meeter-greeter logic of that specific plane
object .

Pax_Object

This is the passenger object, which is the subclass of the plane
object. Its main parameters of arrival and departure time are
held within the plane object . The pax_object is assigned a
route, which it undertakes at arrival and departure. The

Mumayiz and Jain

pax_object updates its position on its own if it is "linked" to
a transition_object; or if the passenger object is linked to a
transaction_object, it queues and waits to be processed by the
transaction _object. The pax _object keeps track of its position.
It also relates itself to other passengers to represent group
relationship, moves through the list of process_objects, and
keeps statistics of its own time at each processing unit.

Transaction_ Object

The transaction_object represents the processing units such
as check-in desks, baggage handling, immigration counters,
and so on, in which a passenger has to queue and undergo
the necessary processing. This object holds the logic of its
process and actions, which can be mathematical, statistical,
or heuristic representations or models. It is in reality a sub
simulation of the main simulation process, in which each
transaction_object simulates the scenario at a check-in desk
or security center. It holds the processing variables, statistics
of itself, processes passengers, and keeps track of processing
time.

Transition_ Objects

The transition_ object represents the transition the passenger
has to undertake to connect from one processing unit to an
other. The transition_object connects the different
transaction_objects into a finite set of possible processing paths
that represent the situations at a specific airport. Each arriv
ing, departing, or transfer pax_object is assigned a processing
list on creation. Apart from establishing relationships between
transaction_ objects, it also holds values of distances between
the transaction_objects .

Process_ Object

This is the superclass of the transition_ and transaction_ objects.
It defines the logic of traversing within the processing net
work . The processing_object is an abstract object that con
tains generic procedures for the use of its descendent objects
(e.g., access interface object).

Demon_ Object

The simulation system consists of a number of demons who
"reside dormant" in the simulation environment. They are
evoked when they are needed to accomplish some task . A
demon assigns logical or default values to other objects in the
simulation process. These values are dependent on a specified
range of mathematical, statistical, or heuristic sub-modeling
of an individual action represented by the demon. A demon
can help in modeling the randomness of a simulation process
and also give it a realistic touch . An example of a demon is
the stochastic_deplaning_demon, which is evoked when the
plane_object is attached to a gate. This demon assigns the
deplaning passengers or group of passengers a processing path
for a set of predefined processing paths.

DESIGN OF USER INTERFACE AND IMPACT ON
SIMULATION PROCESS

17

User interaction has become an important feature in software
design . Computer graphics have become a standard means of
communicating between the user and the machine. A good
user interface reduces the visible complexities of the model
and guides the user through the whole process, making the
operation of the model very simple. Interactive graphics can
also be used to reflect the state of the simulation environment
to the user, thus confirming whether it is a true representation.

Through interactive computer graphics, the user can control
and manipulate the simulation process . This can be accom
plished with the use of interactive devices such as keyboards,
a mouse, a digitizer tablet and puck, or a light pen. With
interactive devices, the user can either type in alphanumeric
information or select from menus existing on the digitizer or
on the CRT screen. Interactive interface is used to specify
operations or components of the simulation process on which
operations are to be executed. This interactive interface tech
nique does not require the user to be a programmer. The user
simply has to make choices, answer questions, and assign
place values on the CRT when prompted (11).

The interactive graphics capability of the simulation model
achieves a strong man-machine communication. A combi
nation of text and static or dynamic graphics or animation
makes a significant difference in the user's ability to under
stand data, perceive trends, and visualize the simulation in
totality . The user interaction is designed to

1. Provide a consistent interaction sequence,
2. Limit and control the number of options required for

direct communication with the program and exhibit available
options in a hierarchical manner,

3. Prompt the user at each stage of the interaction process,
4. Provide appropriate feedback to help the user evaluate

the trends of the simulation process, and
5. Make the user interface crash-proof and recover grace

fully from mistakes. It should issue warnings by beeping and
provide a feedback on the error and possible solutions.

The simulation environment communicates back to the user
through a CRT, a dot matrix printer, or through an output
file. Additional facilities like capturing the screen and pro
ducing a hard copy can be helpful in documenting the process
and subprocesses.

REPRESENTATIVE HIERARCHY OF AN
AIRPORT TERMINAL SYSTEM

The passenger terminal system can be represented as a hi
erarchy based on the activities. The major subsystems of a
passenger terminal system are the access interface , the process
interface, and the flight interface.

• Access interface is a situation in which the passengers
transfer from the ground transportation access mode to the
terminal complex. The representative activities of this sub
system are curb-side loading and unloading of passengers,
circulation, and parking. The facilities that constitute this sub
system are the roads, arrival and departure curbs, long- and

18

short-term parking spaces, walkways, and public ground
transport facilities.

• Processing interface is the center of the passenger terminal
system. Here the passenger is processed at the start or end
of the trip. The primary activities that constitute this subsys
tem are ticketing, baggage check in, baggage claim, seat as
signment, federal inspections, and security. This subsystem
consists of facilities such as ticket counters and baggage check
in facilities, public and nonpublic concessions, lobbies, cir
culation spaces (such as corridors, stairways, escalators, and
elevators), baggage-handling facilities and devices, security
facilities and devices, and federal inspection facilities.

• Flight interface is the situation in which the "processed"
passenger transfers to the aircraft. The activities conducted
in this subsystem are assembly, conveyance to and from the
aircraft, and security checks. The facilities provided for these
activities are the concourse, departure lounge or gate hold
room passenger boarding devices, airline operations, and space
and security-checking equipment and facilities (12). The com
ponents of a prototypical passenger terminal system and the
hierarchy of the components are shown in Figure 2.

Each node in the representative tree of the prototypical
airport can be considered as an object in the same hierarchy
as shown in Figure 3. The lines connecting these nodes rep
resent the relationship of ancestor-descendants in the direc
tion from top to bottom. The root of this hierarchical rep
resentation is the generic airport object. The first generation
objects are the three subsystems, their descendants are the
individual facilities, and the end node of this system is the
queue_ object. The basic components of each object are the

ACCESS
INTERFACE

TRANSPORTATION RESEARCH RECORD 1296

variables that hold the data and statistics of the subsystem
they parent and the procedures needed to process passengers
within a subsystem or a specific node. The processing pro
cedures are more general near the root of the tree and get
increasingly specific and complex lower down the tree. This
is helpful in establishing default procedures and overall sta
tistics of a subsystem. The property of polymorphism of ob
jects is exploited to achieve the hierarchical complexity of the
object-processing procedures that act on the pax_object.

DESCRIPTION OF INTERACTIVE AIRPORT
LANDSIDE SIMULATION MODEL

Currently, the model consists of the following five interfaces
integrated in a common environment:

1. Flight Schedule Interface is a window-based utility used
to generate flight schedules interactively. The user can create,
retrieve, store, and manipulate originating, terminating, or
transit flight schedules interactively. The schedules are main
tained in separate files in the binary format and are merged
together at run time. Through interactive windows and screen
menus, the user can operate on these schedules. Through this
interface, the user can also assign passenger characteristics to
a specific flight.

2. Passenger Path Interface is a menu-driven interactive
graphic interface used to represent passenger processing paths
required in the simulation environment. The prototypical flow
diagrams representing the typical processing facilities and pro
cessing paths are selected from the IATA manual (13). These

GENERIC
AIRPORT

PROCESS
INTERFACE

FLIGHT
INTERFACE

Lounge BoBrdng
Hold Rm. Devices

FIGURE 2 Hierarchic arrangement of landside processing facilities.

Mumayiz and Jain

GENERIC
AIRPORT

19

ACC ESS
INTERFACE

PROCESS
INTERFACE

FLIGHT

KEY (sample objects)

Path of passenger P1.

--- Path of pBssenger P2.

Tcket Example of Transaction
Counter Obj act

~ PE1sseng0r Ob ject

(§:} Queue Object

FIGURE 3 Hierarchic arrangement of objects in the simulation environment.

flow diagrams are displayed graphically on the screen . From
an interactive mouse-driven menu, the user can choose from
four flow diagrams. Further details on the flow charts are
available in the IATA manual (13) (pp. 3-7 to 3-10). The
selected diagram is displayed on the screen and the user has
five selection choices from the menu:

• Add a new path to the processing path _list (by interac
tively linking the displayed processing facilities);

• Assign parameters like traveling distances, mode of travel
(corridor, stairway escalator , etc.), or the percentage of pas
sengers on a specific path (either to an existing path or a new
path);

• Assign or alter the default parameters of the processing
facilities (objects);

• Edit an existing path; or
• Delete an existing path. These paths can be stored in a

file and retrieved for future use.

3. Airport Parameter lntetface is used to assign global pa
rameters to the simulation environment. Default passenger

characteristics can be assigned globally to be used by passen
gers of flights that do not have a specific passenger charac
teristic assigned to them . Other global parameters like service
time distribution, passenger loading and unloading at arrival
and departure curb, baggage transport time to baggage claim
devices , and so on, can be provided to the simulation envi
ronment to override default values . These input requirements
are based on the requirements of ALSIM and Transport Can
ada's simulation model. Further details can be found in the
references (2-4).

4. Simulation Environment is a graphics-based, user
interactive, menu-driven , mouse-assisted interface of the whole
simulation process. It is a probabilistic, multiple event-based
simulation environment that operates on the parameters and
inputs determined by the other systems. The model is de
signed to run in three modes: representative, evaluative, and
optimization.

• In the representative mode, graphical representation of
the airport landside scenario is generated and displayed on

20

the CRT. Representative assembly of the different compo
nents of the simulation environment and the interaction among
them are shown in Figure le. In this mode, no evaluation is
made and the simulation environment graphically reflects the
execution of the process. The representative mode is the basic
simulation process; it is a "state" generative-representative
environment that forms the deterministic parameters for the
other two modes.

• The evaluative mode is the working of the simulation
process in the dynamic threshold evaluator shell. This is shown
diagrammatically in Figure 4. At run time the threshold eval
uator will check for the performance levels of the processing
facilities and periodically indicate the performance of these
facilities through an output channel (screen or printer). At
the end of the run, the statistics of individual facilities are
generated. In the evaluative mode the simulation system can
(a) generate transactions of the different processes, (b) keep
track of the passengers in the system and the time spent at
individual facilities, (c) evaluate operational performances at
the individual processing facilities of the whole subsystem or
the whole airport, and (d) represent queues and compute
waiting times for individual passengers or give an overall per
spective on the level of service.

•In the optimization mode (Figure 5), the dynamic facility
optimization is an integral part and works with the threshold
evaluator. The threshold evaluator triggers the dynamic fa
cility optimization manager if a processing facility is over
burdened or underused. The facility optimization manager
either increases or decreases capacity at run time. A statistical
result helps to establish capacities for a new design or eval
uates capacities of an existing situation. In this mode, the
simulation system , apart from what it can do in the evaluative
mode, can also (a) recognize points of bottlenecks or unde-

TRANSPORTATION RESEARCH RECORD 1296

ruse, and (b) increase or decrease the number of facilities
dependent on the demand and need based on the level of
service established for that run . Actions are indicated graph
ically. The simulation process can be interrupted at any mo
ment during its run to alter parameters or request status re
ports through the output subsystem.

5. Output Control Interface, as the name implies, is a utility
to generate outputs of the simulation environment. These
outputs can be directed to the CRT or filed on the disk or
the printer. The output can be obtained at run time, user
interrupts, and at the end of the simulation run. It can also
generate outputs of the schedule files and passenger flow
paths.

These systems are interactive and can be selected at any
time during the simulation process (Figure le). At present,
the simulation is based on process relationship and is not
related to the geometry of the airport. There is a provision
in the design of the data structure to incorporate the geometric
relationship of an airport terminal floor plan .

The sequence of logic of the simulation process is as follows:

• At the start of each cycle the event_ handler_ object checks
the status, parameters, and flags to establish existence of events
such as arrival of planes or user interrupt.

• If a plane is attached to the gate, it evokes the demon_object
to deplane the pax_objects from the plane_object and puts
the pax_objects into the terminal network.

•Each generated pax_object is assigned a processing path
by the stochastic_deplaning_demon. The pax_object travels
through the processing path until it reaches the end of the
access interface .

,- - --- -- ---- --------- --- - -- -- -- ------- ------ --------- ---- ~

: DYNAMIC THRESHOLD :
i EVALUATOR '

USER
INPUT

I

: INTEGRATED
I
I
I
I

I
I - I
I

----1
I
I
I
I
I .

JO LIGHT ENVIRONMENT
PAX

SCHEDULE PATH
INTERFACE INTERFACE

"'
,.
//

SIMULATION

ENVIRONMENT

// '"' AIRPORT OUTPUT
PARAM'S CONTROL

INTERFACE INTERFACE

I
I
I

~ CRT
I PRINTER
f--- PLOTTER
I

•
• I

•
'

.
-----~-------- --- --~----r--,---------- --- -- --- ---- - - -- ·

FILE

FIGURE 4 Evaluative mode environment.

Mumayiz and Jain

DYNAMIC PERFORMANCE
THRESHOLD EVALUATOR

21

INTEGRATED

FLIGHT
ENVIRONMENT

PAX

.
I
I

SCHEDLLE
INTERFACE

'"
PATH

!NTE.Rf" ACE

//
' '

USER
INPUT

__;T_l_ SIMULATION :..__ CRT -i--l-' i PRINTER J __ - ENVIRONMENT _ •. _;- PLOTTER

// ' AIRPORT
PARAM'S

INTERFACE

OUTPUT
CONTROL

INTERFACE

I
I
I
I
I

DYNAMIC FACILITY
OPTIMISATION MANAGER I

' ·-------------------------l---r----------------- ------~
FILE

FIGURE 5 Optimization mode environment.

•In the end, destructor_ demons update the necessary sta
tistics and destroy the pax_object to make room in the limited
memory resource.

• The evaluation of performance of a state is achieved by
computing the parameters at that instance; for example, if
the queue length at time t at facility f was needed , then the
physical count of the pax _objects at that facility f had to be
taken.

SUMMARY AND CONCLUSIONS

Presented in this paper is a new approach to airport landside
simulation using the concepts from artificial intelligence and
computer-aided design . Comparison of the present approach
with the conventional approach indicates many drawbacks
that inhibited efficient use of earlier simulation systems. Those
systems had high "number crunching" capabilities , but ex
hibited limited and ineffective use of logic-based computation
and great difficulty in programming and debugging. In par
ticular, the object-oriented approach is capable of providing
immense programming flexibility, greater reduction of input
requirements, is easier to operate and user friendly, and offers
fully interactive execution with a high degree of animation
graphics capability. Preliminary findings of the performance
of the object-oriented Iandside simulation model indicated
the following:

1. The ability to represent concepts in program code and
other properties of object-oriented programming greatly en
hances the flexibility, versatility , and use of Iandside simu
lation.

2. A prototypical (generic) simulation model can be rep
resented and extended for a wide variation of airport types,
sizes, and complexity without the need to change the source
code.

3. Animation, graphics, run-time user interface, and inter
action can increase the capabilities of the model and offer
wide possibilities for manipulation and checks that can make
landside simulation closer to reality.

As an ending note, the question remains: Can simulation
be the ultimate in the process of design of airport terminals?
The computer has come a long way in assisting in daily re
quirements. In the last decade its role has been more com
putational; hence its use as a simulation tool was restricted
to evaluate or derive parameters that influence the quanti
tative aspects required for the design of airport terminals. The
objective is to develop a tool that can assist in the design
process that should not be limited to achieving quantitative
results only. It should also represent qualitative properties
and values and establish ways to evaluate them. This would
help in the optimization of performance of facilities, evaluate ,
make selections and judgments, and predict the quality of
performance standards. The computer should not be treated
as another computational tool because its potential can be
used in a decision-making capacity [i .e . , Expert Systems, in
the process of airport terminal design (14)]. Ultimately, the
computer may become an essential element in the airport
design process or even play the role of an equal partner. Some
of the areas in which simulation and computers can assist are
related to human factor issues of "way finding" at airport
terminals and "distress reaction" to emergencies. Some pi
oneering research in the domain of architecture and computer-

22

aided design (15-17) can make a strong and significant impact
on the modeling and simulation of airport landside. In the
opinion of the authors, this can be achieved through object
oriented tools and the use of artificial intelligence techniques
of representation, semantic network, and expert systems (14).
This paper provides a discussion of a preliminary ongoing
study; more details will be presented in subsequent publica
tions.

REFERENCES

1. S. Murnayiz. Overview of Airport Terminal Simulation Models.
In Transportation Research Record 1273, TRB, National Re
search Council, Washington, D.C., Jan. 1990, pp. 11-20.

2. Collection of Calibration and Validation Data for an Airport
Landside Dynamic Simulation Model. Prepared for Federal Avia
tion Administration by Research and Special Programs Admin
istration and Transportation Systems Center, FAA-EM-80-2,
Washington, D.C., Jan. 1980.

3. L. McCabe and M. Gorstein. Airport Landside. Vol. 11. The
Airport Landside Simulation Model (ALSJM), Description and
Users Guide. Federal Aviation Administration, Washington, D.C.,
June 1982.

4. Summary of Airport Planning Models-Background Paper.
Professional and Technical Services, Transport Canada, Ottawa,
Ontario, Canada, Jan. 1988.

5. G. Carrara, Y. E. Kalay, and G. Novernbri. A Conceptual Frame
work for Supporting Creative Architectural Design. Evaluating
and Predicting Design Performance. John Wiley & Sons, New
York, N.Y., 1990, pp. 303-322.

TRANSPORTATION RESEARCH RECORD 1296

6. H. A. Simon. The Sciences of the Artificial. MIT Press, Cam
bridge, Mass., 1989.

7. P.H. Winston. Artificial Intelligence. Addison-Wesley, New York,
N.Y., 1984.

8. B. Ezzell. Object-Oriented Programming in Turbo Pascal 5.5.
Addison-Wesley, New York, N.Y., Nov. 1989.

9. D. Hu. Object-Oriented Environment in C+ +:A User-Friendly
Interface. MIS Press, Portland, Oreg., 1990.

10. J. D. Smith. Reusability and Software Construction C and C+ +.
John Wiley & Sons, New York, N.Y., 1990.

11. A. Van Darn and J. D. Folley. Fundamentals of Interactive Com
puter Graphics. Addison-Wesley, New York, N.Y., 1984.

12. R. Horonjeff and F. X. McKelvey. Planning and Design of Air
ports. McGraw-Hill, New York, N.Y., 1982.

13. Airport Terminal Reference Manual. 7th ed. International Air
Transport Association, Geneva, Switzerland, Jan. 1989.

14. S. Murnayiz. Development of Airport Terminal Design Con
cepts: A New Perspective. Transportation Planning & Technol
ogy Journal, Vol. 13, pp. 303-320.

15. M. D. Gross and C. Zirnring. Predicting Wayfinding Behavior
in Buildings: A Schema-Based Approach. In Evaluating and Pre
dicting Design Performance (Y. Kalay, ed.). John Wiley & Sons,
New York, N.Y., 1990, pp. 293-302.

16. F. Nichols. Design for Pedestrians: a CAD-Network Analysis
Approach. In Evaluating and Predicting Design Performance (Y.
Kalay, ed.) John Wiley & Sons, New York, N.Y., 1990, pp. 303-
322.

17. M. O'Neill. A Neural Network Simulation as a Computer-Aided
Design Tool for Predicting Wayfinding Performance. In Evalu
ating and Predicting Design Performance. John Wiley & Sons,
New York, N.Y., 1990, pp. 275-291.

Publication of this paper sponsored by Committee on Airport Landside
Operations.

