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Assessing Tiltrotor Technology: A Total 
Logistics Cost Approach 

MARK HANSEN 

The fea ibility and competitive potential of tiltrotor ai rcraft tech­
nology in the short-haul scbeduled passenger tran portation mar­
ket is studied through ptimiza tion of tran port y tem combin­
ing riltrotor and turboprop service. A total logistic co t function 
i used, the arguments for which are tiltrotor frequency, wrbo· 
prop frequency , tiltrotor market share and in one case the num­
ber of veniport . When the system involves one center city verti­
port and one airport at the city periphery total co t may be 
minimized when tiltrotor market share is either greater than SO 
percent or 0. Condit-ion when tiltroror i definitely feasible or 
definitely infea iblc are represented by functional relationship 
between the difference in per seat aircraft opera ting cost and the 
ratio of per flight aircraft operating cost, the parameters of which 
reflect the size of the market, traveler valuat ions of the cost of 
airport-verriport access, and traveler val.uatio.ns of time pent 
waiting for flight . Curve relating optimal tiltrotor market share 
to tiltrotor per seat operating cost exhibit discontinuities a th 
optimum shifts from exclusive tiltrotor service, to mixed service , 
to exclusive turboprop service. When multiple vertiport. are al­
lowed , the optimum number i. almost always 10 or fewer and , 
for most markets , fewer than 4. However, the total logi ti · cost 
is fairly insen ·itive to the number f vertiports, as 10L1g as fre· 
quencies at an.y given number are et to their optimum value . 
Even under extreme conditions when the optimum number of 
vertiport is 16, the multiple vertiport sy·tem market hare i in 
mo t ca e , nly marginally greater than that of a system involving 
ju tone vcrtipon. However th multiple vertiport ·y tern i bet­
ter able to compensate for constraint on ti.ltrotor aircraf1 size. 
Thi is particularly important becau e the sizes receiving the most 
consideration are smaller than optimum for markets of several 
hundred pa sengers or more. lf at all po ible, however, civil 
tiltrotor aircraft should be upsized to reduce total aircraft oper­
ating cost. 

The ability to take off and land vertically, while attammg 
turboprop performance during cruise , makes tiltrotor aircraft 
a promising civil aircraft technology . The prospects for civil 
application depend on two sets of factors . The first set-not 
the subject of this paper-concerns how obstacles to tech­
nological change, particularly of large-scale public systems, 
can be surmounted. Issues of certification, industry and public 
confidence, and infrastructure provision are to be included 
here. 

The second set of factors concerns the inherent capabilities 
of the aircraft and how these capabilities fit the service pref­
erences of the traveling public. The purpose of this paper is 
to explore these. In particular, we ask whether and under 
what conditions tiltrotor technology would reduce the total 
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logistics cost of air travel when introduced into scheduled 
passenger service. In order to do this we will optimize, with 
respect to total logistics cost, systems that include both tilt­
rotor and conventional turboprop technology as travel op­
tions. 

The term "total logistics cost" refers to the total cost as­
sociated with air travel. For present purposes, total logistics 
cost is assumed to have four components: (a) the cost of 
owning and operating aircraft, (b) the cost to passengers of 
accessing airports and vertiports , (c) the cost to passengers 
of waiting for a scheduled flight, and ( d) the cost to passengers 
of spending time in the aircraft during the flight . Excluded 
from consideration are various exterrial costs, in particular 
those deriving from noise and air pollution. Also excluded 
are accident costs and costs associated with marginal delay 
increases that result from operating at congested airports. 

The sole focus of this research, then, is on tiltrotor feasi­
bility in the context of the cost-frequency-accessibility trade­
off in the short-haul scheduled air transportation market. 
Previous studies have explored the potential of tiltrotor tech­
nology in other markets , such as corporate flying (J) , oil 
exploration (2), and as a direct substitute (that is, providing 
airport-to-airport service) for conventional takeoff and land­
ing aircraft (3 ,4). The use of tiltrotor flying from vertiports 
in scheduled service has also received some attention (2 ,3), 
but in these studies frequency levels were assumed rather than 
considered as an inherent element of the trade-offs that must 
be considered. By ignoring the impact of frequency on total 
logistics cost, former analyses have overlooked a source of 
scale economies that tends to encourage service concentra­
tion. Additionally, key supply variables, the determination of 
which is heavily influenced by frequency considerations, such 
as aircraft size and the number of vertiports, have received 
scant attention. This research seeks to fill some of these de­
ficiencies. 

The "total" logistics cost model used here , in addition to 
excluding some cost items, makes simplifying assumptions 
about the structure of included costs. For example, we assume 
that the ownership and operation costs for a given aircraft 
technology can be represented by a linear function involving 
only two parameters. Similarly, passenger costs are linearized: 
access cost on a per unit distance basis and waiting cost on a 
per unit time basis . It is recognized that passenger costs may 
not be fully linear as depicted, and furthermore that the im­
portance of access and waiting elements varies from passenger 
to passenger. At least at the initial stages of an inquiry, how­
ever, the assumption of linear, homogeneous waiting and ac­
cess costs is appropriate. 
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CENTER-CITY VERTIPORT 

This model considers the idealized situation depicted in Figure 
1. We assume a square urban area of constant density with a 
vertiport located in the center and an airport on the periphery. 
Conventional turboprop aircraft operate out of the airport 
and tiltrotor aircraft use the vertiport. We explore how these 
two services compete with each other in a hypothetical point­
to-point market where the destination lacks a separate verti­
port facility. Such a destination could be envisioned either as 
a smaller city or as one in which separate vertiport infrastruc­
ture has yet to be deployed. 

The essential trade-off here is between accessibility and 
operating cost: how much additional operating cost is the 
central location of the vertiport worth? To approach this ques­
tion, we imagine that the airport and the vertiport have re­
spective market areas, as shown in Figure 1. Within a given 
market area, it is assumed that all trips will be made using 
the appropriate facility. The relative size of the two market 
are;is thus determines the relative market shares of the two 
services. We then seek to minimize total logistics cost by 
choosing optimum values for three decision variables: the 
location of the boundary, or equivalently the market share of 
the tiltrotor service; the frequency of flights from the airport; 
and the frequency of flights from the vertiport. These vari­
ables will be chosen so as to minimize the total logistics cost 
of transporting a fixed number of passengers, whose true 
origins are assumed to be distributed uniformly about the city, 
to a single destination. Optimum aircraft size, a function of 
the three decision variables, will also be determined. 

In analyzing this problem, we do not mean to imply that 
some government official is or should be authorized to de­
termine values for the three decision variables. Instead, we 
might imagine some commuter airline wishing to optimize its 
mix of turboprop and tiltrotor services. We might even hope 
that the optimum could be achieved without any central de­
cision maker, perhaps with a set of government interventions 
to eliminate market failures . Thus the optimization problem 
previously defined is relevant even in the context of a market 
economy. 

It is also recognized that the concept of a market area in 
which all trips are made fro·m the same facility is an oversim­
plification. There will be cases in which costs can be reduced 
by allowing some trips originating at a certain point to use 
one facility and some to use the other, depending on the 

Market Boundar)' 

FIGURE 1 Square city. 
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specifics of flight schedules and desired travel times. Such 
possibilities are very difficult to treat analytically, and are 
better handled using computer simulation techniques. The 
philosophy here is to rely on simple analytic techniques that 
yield a clear, if approximate, representation of the system and 
the variables to which it is sensitive. The use of sharply de­
lineated market area boundaries, which may compromise re­
alism to some extent, greatly facilitates the analysis. 

Before proceeding further, it is useful to define a set of 
variables that influence the solution to the problem. We first 
define a full set of variables and then use them to define a 
reduced set that will be used in subsequent calculations. 

Let 

C, = cost/flight for tiltrotor, 
Cc = cost/flight for conventional (turboprop) aircraft, 
S, = cost/seat for tiltrotor, 
Sc = cost/seat for conventional (turboprop) aircraft, 
L the length of a side of the city, 
T. = passenger access cost for a trip of length L, 
Tw = average passenger waiting time cost when flight fre­

quency is 2/day, 
N = the number of passenger trips/day, and 

LF = aircraft load factor. 

This set of parameters can be reduced by observing that 
solutions depend on the relative magnitudes of the four cost 
parameters only. Also, because we treat load factor para­
metrically, it is useful to divide it into S, and Sc to get a cost 
per passenger. We therefore define 

s; S,ILF Cc 

Our decision variables are 

F, = tiltrotor frequency (flights/day), 

Fe = conventional aircraft frequency (flights/day) , and 

P = tiltrotor market share. 

We now derive the logistics cost function for the problem. As 
already noted: 

TLC(F0 F,,P) = AOC(F0 F,,P) + PAC(P) 

+ PWC(Fc,F, ,P) + PTC(P) 

where 

TLC = total logistics cost, 
AOC = aircraft operating cost, 
PAC = passenger access cost, 
PWC = passenger waiting cost, and 
PTC = passenger in-aircraft time cost. 

(1) 

We will assume that the travel time for tiltrotor and con­
ventional aircraft are equal. Boeing estimates that tiltrotor 
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would have at most a 9-min travel time advantage for the 200 
nautical mile (NM) stage length considered in this analysis 
(2). It is unlikely that passengers' valuation of this difference 
would be very high in relation to the other costs involved . 
Therefore, only the first three terms on the right-hand side 
of Equation 1 need be considered. We now turn tD specifying 
each of these in terms of the variables already defined. 

The cost to operate an aircraft for a given stage length 
depends on the size of the aircraft. The cost is approximated 
as a .linear function of the number of seats, with a positive 
intercept. The intercept reflects econOftlies of scale: one 40-
seat flight costs less than two 20-seat flights. On the other 
hand, the linear coefficient reflects the fact that one 40-seat 
flight costs more than one 20-seat flight. Analysis of Boeing 
cost data for turboprops and tiltrotor shows that this linear 
function approximates operating costs of both aircraft quite 
well. 

As previously noted, size is not an explicit decision variable 
in our problem. Rather, the size is obtained by assuming a 
particular load factor and then determining the number of 
seats necessary to accommodate the passenger traffic at the 
assumed load factor with the optimum service frequency. Thus, 

I . h NP 
Tiltrotor seats fl1g t = LF . F 

I 

N · (1 - P) 
Turboprop seats/flight = LF . F 

c 

(2) 

Therefore, the aircraft operating cost, in terms of the nor­
malized parameters, in which the cost of a turboprop flight 
is set to unity , is given by 

AOC(Fc,F/)P) = Fe + c: F, 

+ N[PS; + (1 - P)S ;] (3) 

Passenger access cost (PAC), depends on the market 
boundary, and also how we measure distance. For analytical 
simplicity, we assume that the city has a street system con­
sisting of an infinitely dense square grid oriented parallel to 
the city boundary. Distance between two points X and Y, 
with coordinates (X1 , X 2 ) and (Y1 , Y2), is given by 

(4) 

The market area should be shaped so that at any point 
along the boundary the difference in access cost to the airport 
and the vertiport is the same. Under the geometry and dis­
tance metric assumed, this implies that the rectangular market 
areas are as depicted in Figure 1. Other distance metrics, such 
as the Euclidian, would yield curvilinear market area bound­
aries. 

When the market area boundary is between the airport and 
the vertiport, total access can be derived by dividing the city 
into three regions: the airport market area, the portion of the 
vertiport market area between the vertiport and the airport, 
and the rest of the city (the portion below the vertiport in 
Figure 1). It is seen that the total access cost is 

PAC(P) = NT~ {(1 - P)[t + !(1 - P)] 

+ (P - !)[! + !(P - !)] + ~} (5) 
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in which the three terms included in the brackets correspond 
to the three regions. Simplifying this expression yields 

(6) 

Note that PAC is minimized when P = %, that PAC(\12) = 
NT~/2, and that PAC(l) = NT~/2. All of these results can 
be easily verified from inspection of Figure 1. However, the 
expression is valid only when P ~ \12. It will presently be 
shown that all cost-minimizing solutions have P either in this 
range or equal to 0. For completeness, we note that when 
P < \12, the access cost is 

PAC(P) = NT~G- ~)(o ~ P < ~) (7) 

The evaluation of PWC requires an understanding of how 
waiting cost varies with the number of flights. We assume 
that for service to be viable, at least two flights/day-one at 
the beginning and one at the end-must be offered. Other 
flights would be scheduled throughout the day. If preferred 
travel times were uniformly distributed over time, the third 
flight would be scheduled in the middle of the day and would 
cut the average difference between a passenger's preferred 
travel time and the time when a flight is available by 50 per­
cent. Likewise , if four flights were available, the optimum 
schedule would be to have one of the midday flights in the 
morning and one in the afternoon, and this would yield an 
average time difference of \13 that under the two-flights/day 
scenario. Thus, 

(8) 

Equations 3, 5, and 8 define the total logistics cost, exclusive 
of in-plane travel time, given in Equation 1. Before turning 
to the question of optimization, it is useful to get a sense of 
the magnitudes of the different variables included in this func­
tion. These are summarized in Table 1. 

The per flight costs of turboprop were obtained by regress­
ing total costs-capital, ownership, and operating-for a 200-
NM mission against the number of seats for a set of hypo­
thetical aircraft of sizes ranging from 8 to 75 seats , based on 
the Boeing data. The estimates of the intercept and slope are 
$300 and $25, respectively. Boeing provides similar costs for 
a set of tiltrotor aircraft of varying sizes. Regression on these 
yields an intercept of $700 and a slope of $40. Civil tiltrotor 
cost estimates are highly uncertain, however, and more recent 
(to date unpublished) figures are reported to be substantially 
lower. In this analysis, we will assume as a baseline that tilt­
rotor per flight and per seat costs are 40 percent higher than 
those for turboprop technology. 

The waiting cost parameter, Tw, is the cost a traveler would 
attribute to waiting if the service frequency were two/day. 
The average time difference between preferred and actual 
flight times depends on whether passengers opt for the flight 
scheduled nearest to their preferred time, or choose the first 
flight before (or after) that time. In the first case, a uniform 
distribution of preferred travel times spread over a 16-hr day 
yields an average time difference of 16/4 or 4 hr, whereas in 
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TABLE 1 ESTIMATED VALUES OF KEY VARIABLES 

Variable (Symbol) 

Turboprop Cost per Flight (CJ 

Turboprop Cost per Seat (SJ 

Tiltrotor Cost per Flight (C.) 

Tiltrotor Cost per Seat (S.) 

Waiting Cost @ 2 Flights per day (T wl 

Access Cost @ Distance = L (T,) 

t?e s~cond case it would be 8 hr. Assuming that this waiting 
time is ~alued at roughly half an average $20/hr wage rate, 
we obtam a Tw between $40 and $80. Recognizing that these 
estimates are quite "soft," we widen the range to be consid­
ered from $30 to $120, with $60 assumed for the baseline. 

The access cost parameter, Ta, depends on the size of the 
urban area, average travel speeds, and unit costs for expendi­
tures and travel time. We consider a large urban area, 30 mi 
across. Assuming an average travel speed of 30 mi/hr, we 
obtain a time to cross the city of 1 hr. Because access time 
tends to be unpleasant and, unlike waiting time, cannot be 
used for other activities, it is valued at the full wage rate. This 
results in an access time cost of $20. The expenditure depends 
on the mode of access. If this were a taxi, it would be roughly 
$1.25/mi, or $40, whereas for a private automobile it would 
be $10 to $20, depending on the specific vehicle and whether 
ownership costs are included. This implies a total access cost 
for a cross-city trip of $30 to $60. Again, widening the range 
to reflect the uncertainty of these estimates, we assume that 
Ta falls in the $20 to $80 range. For our baseline case, we let 
Ta be $45. 

The market size, N, is highly variable. Most origin­
destination (0-D) markets are very small-1 passenger/day 
or less-but the vast majority of total passenger traffic is in 
markets of 100 passengers/day or more. An upper limit-for 
a market such as New York to Boston-is about 10,000 pas­
sengers/day. The subsequent analysis will treat N paramet­
rically, assuming 10,000 passengers/day as an upper limit. 
Final!~, the load factor, LF, is set at 65 percent. This is repre­
sentative of the load factors of major airlines but may be 
somewhat high for short-haul services. On the other hand, 
load factors throughout the industry have generally been in­
creasing, so that by the time civil tiltrotor service becomes 
available, load factors of 65 percent may be quite realistic. 

The minimization of the logistics cost function occurs in 
two steps. First, we find optimum frequency values as a func­
tion of P. The appropriate first order conditions are 

a TLC 

I 

== ( NT~(l - P) r + 1 (9) 

Dollar 
Range 

- -

--

--

--

30-120 

20- 80 

a TLC 
aF, 

Value in Baseline Scenario 
Dollar Normalized 

300 J.00 

25 O.l 3 

420 l.40 

35 O.l 8 

60 0.20 

45 0.15 

C
, NT~P __ 

o~ F; 
I F~ 

I 

(
NT;,.P)2 --,- + 1 ., (10) 

Note that these conditions are valid for O < P < 1. When 
P = 1, then F: is clearly 0, as is Ft* when P = 0. 

Substituting these expressions into the logistics cost func­
tion, we obtain a function involving only Pas a decision vari­
able: 

1 1 l 

TLC*(P) = 2(T;,N)2[(C;P)2 + (1 - P)2] 

+ N[PS; + (1 - P)S;] 

+ T~N[ D,(p2 - 3; + 1) + D2G- ~) J 
+ D 3C; + D4 

D, = 1 when P 2: 1
/2 and 0 otherwise, 

D2 = 1 when P < V2 and 0 otherwise, 
D3 = 1 when P > 0 and 0 otherwise, and 
D4 = 1 when P < 1 and 0 otherwise. 

(11) 

We are now concerned with minimizing this function. Be­
fore deriving the first order conditions, it is useful to plot the 
function in Equation 10. This is done in Figures 2 and 3 for 
different values of the various parameters. This exercise dem­
onstrates that the minimum of the function can occur at one 
of three locations: at P = 0, at P = 1, or at V2 < P < 1. No 
minimum can occur at 0 < P s: V2 because the second deriv­
~tive. of TLC is always negative in this interval. Thus, any 
mtenor extremum less than V2 must be a maximum and not 
a minimum. The intuitive explanation for this is that for P < 
%, any boundary has the same accessibility differential. 

A local minimum does not always exist in the region where 
P > Vz. Although the second derivative is positive over most 
of the region between 0.5 and 1.0 in all of the cases shown 
it becomes negative as P approaches 0.1, and sometimes th~ 
inflection point occurs before a minimum is reached. In other 
cases, the local minimum of the variant of Equation 1 that 
applies for V2 :s P < 1 (that is, where D, = D3 = D4 = 1) 
occurs when P < V2. 

The first order condition on P is 
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FIGURE 2 Total logistics cost versus tiltrotor market share under alternative demand 
scenarios. Unless otherwise noted, these curves are based on the baseline values for Table 
I. 
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FIGURE 3 Total logistics cost versus tiltrotor market share under alternative tiltrotor cost 
scenarios. Unless otherwise noted, these curves are based on the baseline values for Table 
I. 

35 

dTLC .. = N(S' - S') - NT'(2P - ~) 
dP ' c " 2 

This condition is a necessary one for an interior minimum 
of TLC. As already observed, such an interior minimum need 
not exist, and if it does, it need not be the global minimum . 
For the tiltrotor to be economically feasible in the system 
being considered, it must have cost characteristics such that 
some P* > 0 minimizes TLC. This may occur under one of 
two conditions: either TLC*(l) < TLC*(O), or a local min­
imum of TLC*(•) exists and that local minimum is less than 
TLC*(O). The first of these conditions implies that 

.!. [ (C')~ ( 1 )~] + (T'fl)2 j - 1 - p 

3 c~ 2 1 2 

[( )
.!. ( ).!.] 

= 4 - K P* - 1 - P* - ll.S 

where 

1 

( r: .. )1 
K = 4NT:,2 

and 

AS = s: - s; 
2r; 

(12) 

(13) 

(14) 

1 .!. I - 1 
!::.S < S - 2K[(C;J2 - 1] - ;NT;, (15) 

The second condition is not so easily represented because 
the first order condition for P does not yield an explicit expres­
sion for P* . It is , however, possible to define a condition 
under which the interior minimum does not exist. This occurs 
if the solution to Equation 12 occurs when P ~ 0.5. Substi­
tuting P = 0.5 into the first order condition, we obtain the 
inequality: 

1 .!. .!. 
!::.S > 4 - (2)2K[(C;)2 - 1] (16) 
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This defines a sufficient condition for there being no local 
minimum greater than 0.5; and hence a guarantee that such 
a minimum will not produce a lower cost solution than TLC(O). 

Comparing inequalities (Equations 15 and 16), note that 
for C; > 1, the right-hand side of Equation 16 is always 
greater. Thus, a sufficient condition for tiltrotor to be feasible 
(assuming c; > 1) is given by Equation 15. On the other 
hand, the inequality (Equation 16) defines a sufficient con­
dition for the infeasibility of tiltrotor. The feasibility frontiers 
for the tiltrotor defined by inequalities Equation 15 and Equa­
tion 16 are plotted in Figure 4. Combinations of t::,.S and c; 
to the inside of the inner curve are definitely feasible, whereas 
those to the norttieast of the outer curve are definitely in­
feasible. Obviously, feasibility depends on the market con­
ditions represented by T~, T~, and N. All three of these vari­
ables define the variable K (see Equation 13), which com­
pletely defines the outer curve. Kand the quantity NT~ define 
the inner curve. It can been seen in Figure 4 how a change 
in the value of T~ causes the feasibility curves to shift. 

Combinations of t::,.S and c; between the two curves may 
or may not be feasible. There appears to be no simple repre­
sentation of which will be the case. One could take Taylor 

0.25 

0.2 

0.15 

0.1 
'"'t;:._ 

............. ~--·--. '· --·---·--. 
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series to arrive at a closed form approximation of the solution 
to Equation 12 and then use it to arrive at an inequality that 
precisely (subject to the Taylor approximation) defines the 
conditions under which the tiltrotor is feasible, but this ap­
pears to be more trouble than it is worth. It is far simpler to 
evaluate TLC(O), TLC(l), and TLC(P*) to determine which 
is the least. To do this, one can find P* either by iterating (if 
P* exists, the convergence is very rapid when one starts at 
P = % - /:::,.S) or using a Taylor series. 

The heuristic previously mentioned was used to trace the 
dependence of the cost-minimizing tiltrotor market share on 
different cost and demand factors, using the baseline scenario 
defined in Table 1. The minimizing tiltrotor market share was 
then plotted against tiltrotor cost per seat, S,, for the baseline 
and for different scenarios in which one of the variables de­
fining the baseline was set to an alternative value. The results 
are shown in Figures 5 and 6. 

The baseline market share curve (which is plotted on both 
figures) indicates that when S, is very close to the $25 assumed 
for S0 minimum cost is attained by having the tiltrotor serve 
100 percent of the market. However, when S, reaches $27, 
the minimum cost solution becomes one in which the market 

·•· Ta=45 
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............ ·--·-·--
........... ~ ·-·--·-- ·"Ta=80 
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FIGURE 4 Feasibility boundaries under alternative access cost scenarios. Unless otherwise 
noted, these curves are based on the baseline values for Table I. 
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FIGURE 5 Market share versus cost per seat under alternative demand scenarios. Unless 
otherwise noted, these curves are based on the baseline values for Table I. 
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FIGURE 6 Market share versus cost per seat under alternative cost per flight scenarios. 
Unless otherwise noted, these curves are based on the baseline values for Table 1. 

is shared . The optimum market share for tiltrotor then de­
creases roughly linearly, reflecting a case in which variation 
in AS drives the solution to Equation 12. When S, reaches 
$34, 36 percent more than Sc, minimum cost is attained through 
exclusive use of turboprop aircraft. 

The steeply sloped portions of the market share curves are 
not strictly accurate. Rather, the portions reflect disconti­
nuities when the solution shifts from P = 1 to P = P* to 
P = 0. For the baseline case, these discontinuities occur be­
tween $26 and $27, and between $33 and $34, respectively. 

The sensitivity of the market share curve to market size, 
access cost , and waiting cost is indicated in Figure 5. For a 
market of 100 passengers/day (as opposed to the 1,000/day 
assumed for the baseline), the cost-minimizing solution shifts 
directly from P = 1 to P = 0. For such a small market , 
competing services cannot be economically justified in the 
face of the waiting time reduction that could be attained from 
service consolidation. Changing the value of Tw from $60 to 
$120 also has the effect of favoring service monopoly, al­
though in this case market sharing does minimize cost for a 
small range of tiltrotor cost per seat values . In contrast, a Tn 
value of $80 (compared with the $45 assumed for the base­
line), extends the range over which market sharing is the 
minimum cost solution by increasing the benefit of assigning 
passengers to a nearby facility. 

The sensitivity of the market share curve to tiltrotor cost 
per flight, C, is shown in Figure 6. The major effect of chang­
ing this parameter is to shift the points where the solution 
shifts from P = 1 to P = P*. The value of P* itself is quite 
insensitive to variation in C,. This again shows that, under 
the baseline assumptions, 6.S is the critical determinant of the 
solution to Equation 11. 

DIAMOND-SHAPED CITY 

We now alter the geometry of the problem so that the city, 
although still square, is now oriented diagonally to the rect­
angular street system so that the square looks like a diamond. 
The vertiport is still in the center of the city, but the airport 
is now located in a corner. The new geometry is indicated in 
Figure 7. 

The new system has two advantages over the earlier one . 
First, if we draw an axis through the vertiport and the airport, 
it is clear that the width of the city diminishes as we move 
toward the latter. The effect is qualitatively similar to having 
the density of demand be higher near the center of the city , 
a condition we observe in the real world. Second, the new 
system is better suited to the analysis of multiple vertiports, 
discussed in the next section. The city-center vertiport in the 
diamond-shaped city thus provides a more suitable compar­
ison with the multi-vertiport system. 

The new problem differs from the old one only in how 
access cost varies with P. As before, the market area bound­
aries are straight lines perpendicular to a line connecting the 
airport and vertiport. In this case, one can show that the access 
cost is related to P by 

I 

PAC(P) = NT~ (2)~{-(S(_l_P_)3_]2 + !:_ - !} 
3 2 6 

PAC(P) !(2 p) NT~(2)2 3 - z (17) 

Airport 

FIGURE 7 Diamond city. 
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As before, the solution proceeds by first optimizing the 
frequency variables and deriving a univariate function be­
tween TLC and P. In this case, the function is 

1 1 1 

TLC*(P) = 2(T:.N)2[(C;P)2 + (1 - P)i] 

+ N[PS; + (1- P)S;] 
1 

.!.{ ([8(l - P)
3
]2 p 1) 

+ NT;(2)2 D1 3 
+ z - (j 

+ D2(~ - ~)} + D3C; + D4 (18) 

The relationship between TLC and P for the diamond­
shaped city and the square city under the same assumed values 
for the demand and cost variables is indicated in Figure 8. 
The advantage of tiltrotor vertiport service is substantially 
greater under the diamond geometry, with the minimum cost 
occurring when Pis roughly 0.8. This difference reflects the 
greater accessibility advantage afforded by a center-city lo­
cation under the diamond geometry. 

This function has the same possible minima as the one for 
the square city. We can again establish the conditions under 
which the first order and second order conditions on P are 
satisfied only for P ~ 0.5, as well as the conditions under 
which TLC(O) ~ TLC(l). 

In the case of the diamond shaped boundary, the first order 
condition on P is 

N(S; - s;) - NT;(2)~([2(1 - P)]~ ~) 

.!.[(C')~ ( 1 )~] +(T:.N)2 ; - l _ p o~ 

I 08 

1.06 

1.04 

TRANSPORTATION RESEARCH RECORD 1296 

P = 1 -2{! + M + ~ 
4 (2)2 

x [ (~)l (i ~ r)'J}' (19) 

The outer feasibility boundary for the diamond-shaped city 
is thus the same as /hat for the square

1 
city, except that Ta is 

replaced with Ta(2)2 and K with K/(2)2. The inner feasibility 
boundary is given by 

1 2K[ .!.] .iS < 6 - --.!: (C; - 1)2 
(2)2 

c: - 1 
1 

2(2)2NT; 
(20) 

These feasibility boundaries for both the square and diamond­
shaped cities are plotted in Figure 9. Both boundaries are 
shifted outward for the latter, reflecting the greater values of 
a center-city location in this geometry. 

Following the same procedure as for the square city, curves 
relating tiltrotor market share to various demand and cost 
parameter values were developed. The results, along with the 
comparable ones for the square city, are shown in Figure 10. 
Again, the greater accessibility advantage under the diamond 
geometry is evident. 

MULTIPLE VERTIPORTS 

The foregoing analyses assume systems consisting of one verti­
port and one airport. In these systems, the advantage of the 
tiltrotor technology derives from the ability to centrally locate 
the tiltrotor terminal facility. A second potential advantage 
of the technology is that, because vertiports are relatively 
inexpensive, tiltrotor services could be offered from multiple 
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FIGURE 8 Total logistic~ cost versus tiltrotor market share, square- and diamond­
shaped cities. Unless otherwise noted, these curves are based on the baseline values for 
Table 1. 
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FIGURE 10 Market share versus cost per seat for square- and diamond-shaped cities. 
Unless otherwise noted, these curves are based on the baseline values for Table 1. 

vertiports throughout an urban region. We now turn to the 
analysis of a system in which the number of vertiports is 
included as a decision variable. 

The multiple vertiport system is depicted in Figure 11. The 
shape of the city, location of the airport, and geometry of the 
street network are the same as for the diamond city, single 
vertiport case discussed in the last section. In addition to 
having more than one vertiport, the system is different in that 
the market area of the airport is depicted as square rather 
than triangular. As will be elaborated later in this paper , the 
shape is not entirely realistic, but is assumed in order to arrive 
at an approximation of the total logistics cost. 

To develop the total logistics cost function, imagine first 
that P = 1 so that the entire city is served by tiltrotor aircraft. 
If there were one vertiport, its optimal location would ob­
viously be the center of the city. If there were four vertiports, 
it is equally clear that the optimal location pattern would be 
to locate the vertiports along each diagonal at the center of 
each of the city's four quadrants. The optimal locations for 
nine vertiports would similarly be at the center of the nine 

squares created by trisecting the city along each direction. 
Thus, when the number of vertiports, n, is a perfect square, 
the access cost (assuming P = 1) would be 

I 

N(2)2T' 
PAC,= I . (21) 

3(n)2 

When n is not a perfect square, Equation 21 is only an 
approximation. The actual access cost will be somewhat higher 
in these cases because market areas can no longer be perfect 
squares. For example, when n = 2, optimal location of verti­
ports yields an access distance of about 12 percent greater 
than that predicted by Equation 21. As n increases, the ap­
proximation becomes more accurate. 

Waiting costs for the multiple vertiport system are the same 
as for the earlier ones, assuming that tiltrotor frequency is 
the same from each vertiport. Operating costs differ from the 
earlier cases only in that a given tiltrotor frequency F, entails 
n · F, flights. Thus , the total logistics cost function for the 
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Airport 

FIGURE 11 Diamond city with multiple 
vertiports. 

multiple vertiport system, assuming P = 1, is 

TLC,(n, F,) = nC;F, 
l 

+ N S: + __ w_ + __ la 

( 
T' (2)27" ) 

F, - l 3(n)2 
(22) 

Equation 22 excludes costs associated with the provision of 
vertiports. This is because our model is concerned with a 
specific 0-D market. Vertiports, on the other hand, would 
serve many such markets. Vertiport costs thus reµresent a 
joint cost that cannot be allocated to a specific market. To 
incorporate these costs, one would have to model all of the 
potential tiltrotor markets involving the city simultaneously. 
In general, we expect unit vertiport costs to be small enough 
to justify excluding them, thereby allowing modeling of in­
dividual markets. 

The first order condition on F, for this system is 

iJTLC, _ nC; _ NT;,. 
aF, (F, - 1)2 

I 

=0---+F= __ w +1 (NT')2 
I nc; (23) 
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Plugging the optimum value for F, into Equation 22, we 
obtain 

1 

TLC:(n) 2(nNT~C;)2 + nC; 

+ N( , + (2)~r~) 
1 

3(11 )~ 

First order conditions on n require 

dTLC: = 

dn 

1 1 

(
NT;c;)2 + c; - N(2)2~~ 

6(n3)2 
0 

1 

This is a cubic equation in the square root of l/(n)2. 

(24) 

(25) 

Solving Equation 25 for our baseline case, we obtain an 
optimal value for n of approximately 2. TLC* and its various 
components against n are plotted in Figure 12. Observe that 
the cost curve is relatively flat, with TLC*(lO) only about 10 
percent greater than the minimum TLC*(2). 

In Figure 13 the sensitivity of n* to market size and to other 
demand and cost factors is indicated. n* increases roughly 
with the square root of N, an approximation that improves 
as the second term of Equation 25 becomes small in relation 
to the other two terms. A similar approximation holds for the 
relationship between n* and T~. On the other hand, n* is 
approximately inversely related to the square roots and T~ 
and C; , when the second term of Equation 25 is relatively 
small. 

The results shown in Figure 13 suggest that under most 
circumstances, cities would require 10 or fewer vertiports. For 
many cities, the optimal number of vertiports is more likely 
to be 4 or fewer. The fact that vertiport facility costs are 
excluded from this analysis means that these estimates are, if 
anything, on the high side. 

We now consider competition between the multiple verti­
port system and turboprop service from a single airport, again 
located at the corner of the city. A closed form approximation 
of the total logistics cost for the system, consisting of the 
multiple vertiports and the single airport, can be derived on 
the basis of Figure 11. From this, we observe that when n is 
a perfect square and (1 - P) = min, where m is a perfect 
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FIGURE 12 Cost per passenger versus number of vertiports. Unless otherwise noted, 
these curves are based on the baseline values for Table 1. 
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square, the airport market area can be approximated as a 
square consisting of the m tiltrotor market areas closest to 
the airport. In effect, tiltrotor service from these m vertiports 
disappears, while the service and market areas of the re­
maining n - m vertiports are unaffected. (In fact, market areas 
will be affected, with those of the remaining vertiports closest 
to the airport elongated in the direction of the airport But 
in light of the approximate nature of this analysis, requiring 
all vertiports to have market areas of the same shape is a 
worthwhile simplification.) 

It is therefore clear that, to a first approximation, the total 
logistics cost per passenger for the vertiport system is unaf­
fected by the market share of that system. Let this cost be 
TLC:*, where the** indicates that the cost assumes optimiza­
tion of both frequency and the number of vertiports per area 
of the city. The total logistics cost of the vertiport-airport 
system then becomes 

TLC(TLC:*,F0 P) = P · TLC:* 

~ 1 

2(2)27' N( ( 1 _ P)l]i 
+ " J + NS;(I - P) 

T~N(l - P) F' 
+ F; - 1 + ' (26) 

When morn are not perfect squares, Equation 25 is clearly 
an approximation, the accuracy of which increases as do n 
and P. 

As in the previous examples, minimization of Equation 21 
proceeds by solving the first order condition on frequency and 
using the results to define a relationship between TLC and 
P. The relationship obtained is 

TLC*(TLC;',P) = P · TLC,** 

~ 1 

+ 2(2)2T~Nl (l - P)3]2 

3 
1 

+ NS~(l - P) + 2(N(l - P)T;Ji + 1 (27) 

This resulting first order condition on P is 

dC 
dP 

1 

P)~ - 2( NT~ )2 
1 - p 

+ N(S; - C,) = 0 (28) 

We should also be concerned with the second order condition: 

~ 1 

dzc NT~(2)2 ( NT' )2 
--= 1 - •• >0 
dP2 2(1 - P)2 (1 - P)3 

(29) 

For relatively large N (100 or more), the second order 
condition on P will be met unless P is quite close to 1. As in 
the previous examples, tiltrotor market share can be opti­
mized by evaluating the logistics cost function at P = 0, 
P - 1 and P = P*. 

The feasibility condition for tiltrotor is obtained by substi­
tuting P = 0 into Equation 26. Note, however, that appli­
cation of this condition requires prior determination of the 
value of TLC,. Thus, while it is straightforward to use these 
results to evaluate the feasibility of a multiple vertiport tilt­
rotor system, it is not possible to construct the type of fea­
sibility boundaries that were used in the single vertiport cases. 

Furthermore, recall that under baseline conditions we found 
that the optimal number of vertiports per area of the city is 
2. Unfortunately, the approximations we have used to esti­
mate P* are not very accurate when n is so small. As a prac­
tical matter, cases involving very small n (e.g., less than 4), 
should be handled individually rather than with the approx­
imations used here. Optimal vertiport locations would have 
to be determined explicitly, and market areas would have 
more complicated shapes. Consequently, these problems would 
not yield meaningful closed form solutions, but would instead 
have to be handled numerically. 

Such techniques are beyond the scope of the present re­
search. Instead, we examine a case with very high demand 
(8,500/day), access cost at the upper limit of the plausible 
range, and waiting cost and per flight costs at the low ends 
of their sets of likely values. Under these conditions, the 
optimal number of vertiports is 16. Although this may well 
exceed the present requirements of any city, it does provide 
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a situation in which the approximations derived as described 
will be accurate. 

Tiltrotor market share against tiltrotor cost per seat for both 
the single and multiple vertiport cases under such conditions 
are plotted in Figure 14. Multiple vertiports clearly result in 
a higher market share for tiltrotor. However, the market share 
difference is less than 0.1 over most of the range of per seat 
costs. Only at very high costs per seat, when tiltrotor market 
share goes to 0 for the single vertiport case, is there a sub­
stantial difference. The result is somewhat surprising in light 
of the large number of facilities in the multiple vertiport sys­
tem, and the extreme assumptions concerning access and wait­
ing cost used to generate that large number. 

As a final basis of comparison between the single and mul­
tiple vertiport cases, optimal aircraft market size under var­
ious traveler and operator cost conditions is plotted in Figures 
15 and 16. Under baseline assumptions in the multiple verti­
port case, optimal size ranges from just over 20 (for a 100-
passenger/day market), to 140 for market with 10,000 pas­
senger trips/day. In the case of the single vertiport system, 
optimal size is undefined for low values of N, because, under 
baseline assumptions, tiltrotor aircraft would have zero share 
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of markets of this size range. When N reaches 500 or so, 
tiltrotor service becomes feasible with an optimal aircraft size 
of 60 to 70 seats. At 10,000 passengers/day, the optimal size 
reaches that of a widebody aircraft-between 250 and 300 
seats. 

Tiltrotor studies to date have focused on tiltrotor aircraft 
in the 20- to 40-seat size range, with 75 seats as an upper 
limit. Under our baseline assumptions, aircraft in the upper 
portion of this size range would be appropriate for markets 
of 1,000 passengers or fewer in a multiple vertiport system, 
or 500 passengers in a single vertiport system. In view of the 
relative insensitivity of total logistics cost to the number of 
vertiports (see Figure 10), larger markets could be served 
without great compromise in system performance by oper­
ating smaller than optimum aircraft out of more than the 
optimum number of vertiports. The single vertiport system 
lacks this flexibility, and its performance (competitiveness 
with turboprop service) would be greatly impaired if an op­
timally sized aircraft is unavailable. 

We do not present optimum sizes for the turboprop aircraft. 
In general, sizes are smaller than those of tiltrotors under the 
single vertiport scenario, because cost per flight (CJ is smaller, 
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FIGURE 14 Market share versus cost per seat for single and multiple 
vertiports. Unless otherwise noted, these curves are based on the baseline values 
for Table 1. 
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and larger than tiltrotor sizes under the multiple vertiport 
scenario. The size constraints of turboprop technology are 
comparatively unimportant, however, because of the availa­
bility of jet aircraft for missions for which turboprops are too 
small. 

CONCLUSION 

We have explored the operating cost, passenger cost, and 
market size conditions under which tiltrotor technology would 
and would not be feasible in scheduled passenger service. For 
single vertiport systems, these conditions can be represented 
as functional relationships between the difference in operating 
cost per seat and the ratio of operating cost per flight for 
tiltrotor and turboprop aircraft. These functional relationships 
include the other relevant variables as parameters. 

The accessibility advantage of tiltrotor technology is sub­
stantial, and enables the technology to be feasible even when 
its costs substantially exceed those of fixed-wing turboprop 
aircraft. A hypothetical tiltrotor technology, in which costs 
(both per seat and per flight) exceeded those of turboprops 
by 40 percent, would capture over 70 percent of the market 
under the diamond city scenario and "best guesses" concern­
ing passenger access and waiting costs. If multiple vertiports 
are permitted, the tiltrotor technology becomes somewhat 
more competitive. 

The analysis suggests that sizing of tiltrotor aircraft is an 
important issue. The 31-seat civil version favored by Boeing 
(2) is too small for markets of more than a couple of hundred 
daily passengers. Further, in such low-volume markets, it is 
unlikely that tiltrotor service would be viable unless it com­
pletely replaced conventional service. Under the multiple verti­
port system, much of the operating cost disadvantage of these 
small aircraft can be made up by the access cost reduction of 
multiple vertiport service. Undersized tiltrotor aircraft would 
be a substantial detriment in a single vertiport system, how­
ever. In any case, the prospects for tiltrotor technology would 
be substantially improved if a larger version were developed. 

No single size of tiltrotor aircraft can adequately serve all 
markets. The multiple vertiport system again helps resolve 
this dilemma, by introducing the number of vertiports from 
which service is offered as a degree of freedom that can re­
spond to market size variation. Nonetheless, the ability to 
"stretch" tiltrotor aircraft could be an important advantage, 
particularly given that this ability exists for the competing 
technology. 

There are several limitations to this analysis that require 
attention in subsequent research. The reliance on analytical 
models with closed form representations has, it is hoped, 
allowed insight to the trade-offs and sensitivities involved that 
numerical techniques frequently fail to provide. Yet it is clear 
that the latter could allow relaxation of the many assumptions 
and improve the accuracy of the many approximations that 
the analytical approach necessitates . This is particularly ob­
vious in the case in which there are multiple but "few" verti­
ports. Other assumptions that could be eliminated under a 
numerical approach include the uniform distribution of pre­
ferred travel times throughout the day, and that all trips from 
a given point must use the same vertiport. 

Our treatment has ignored issues related to market seg­
mentation. Clearly, some travelers value waiting and travel 
time more than others. Just as travelers' origins and desti­
nations are distributed throughout the physical space of the 
city, and their preferred travel times spread throughout the 
day, so are they also distributed in "time valuation space." 
A more detailed analysis would explicitly incorporate this 
variation, and might well extend the conditions under which 
tiltrotor service would be economically viable in scheduled 
service. In focusing on the average traveler, our analysis has 
been directed at the potential of tiltrotor technology to com­
pete in the main market rather than its ability to occupy 
smaller market niches. 

Finally, as noted at the outset, our analysis has focused on 
the "planner's solution" to the systems we have considered. 
In fact, passengers and airlines will make choices that optimize 
the system only when their individual objects are completely 
aligned with those of the system. This raises issues of pricing 
and profit that require further study. 
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