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Temporal Effects of Incidents on Transit
Ridership in Orange County, California

Erik FERGUSON

Aggregate level transit ridership forecasting models often are
based on time series data, with potential serial autocorrelation
properties that can bias parameter estimates upward and error
estimates downward, and skew forecasting confidence intervals
and their resulting interpretation significantly. A combined time
series and cross-sectional regression model of transit ridership is
developed that incorporates temporal variations as well as supply,
demand, and pricing characteristics of the market for transit ser-
vices in Orange County, California, between 1973 and 1989. It
was found that Orange County transit ridership exhibits signifi-
cant serial and seasonal fluctuations, which were captured in the
model. The temporary and lingering effects of incidents were also
tested. The 1979 oil shortage was shown to have a large positive
impact on transit ridership, which dwindled quite rapidly once
the oil shortage ended. A work stoppage of 6 weeks’ duration in
1981 had a large negative impact on transit ridership, which dwin-
dled only slowly. A shorter work stoppage in 1986, during which
limited service was provided by transit agency administrative per-
sonnel, had a much smaller negative impact than the 1981 work
stoppage, which dwindled much more rapidly. Transit farc and
gasoline pricing variables were found to have no significant effect
on transit ridership in the preferred temporally based model.
Transit fares did not increase much in real terms over the period
covered, and did not reflect variations in transit service provided,
being predicated on a simple county-wide flat fare basis. Over
70 percent of all Orange County transit riders were captive riders
in 1987, having no car available to them for commuting or other
travel purposes, making the price of gasoline basically irrelevant
to the majority of such transit riders in the shorter term.

Many problems in urban and regional transportation analysis
have important temporal dimensions. Forecasting changes in
employment, population, or travel behavior are just a few
examples of areas where temporal processes and interactions
may be important in identifying existing conditions, explain-
ing past trends, or forecasting future outcomes of urban and
regional policies and planning. Time series analysis is one
method of explicitly incorporating temporal phenomena in
regression analysis for forecasting purposes. Time series anal-
ysis often is used as a projection method, based exclusively
on the past performance of specific exogenous output varia-
bles. Policy input variables, such as spatial or socioeconomic
variations in demand, often are not included in time series
models, because of lack of data, lack of analysis software,
or both.

Cross-sectional models typically provide more opportuni-
ties for testing policy sensitivity. However, parameters and
confidence intervals estimated in cross-sectional models may
be biased significantly, if serial autocorrelation is present.
Combined time series and cross-sectional models offer the
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possibility of providing policy sensitivity and controlling for
temporal estimation biases simultaneously. Simultaneous
time-series and cross-sectional regression analysis are applied
to transit ridership forecasting, assuming only first-order, se-
rial autoregressive processes are involved (I). Three types of
temporal variability are included in this analysis:

1. First-order serially autoregressive impacts;

2. First-order seasonally autoregressive impacts; and

3. Permanent, temporary, and lingering impacts of inci-
dents over time.

Quarterly transit ridership data are used to demonstrate
how alternative model formulations can be evaluated in terms
of descriptive ability (overall goodness of fit), serial autocor-
relation (parameter estimation bias), and predictive ability
(forecast error).

First, some of the basic statistical and econometric princi-
ples required to conduct an exploratory analysis of this type
are described. Second, various transit ridership model vari-
ations formulated to test these ideas using original data col-
lected in Orange County, California, are compared and con-
trasted. Finally, some of the policy and research implications
derived from a comparative evaluation of the various model
results are reported.

DATA

The data used in this analysis were taken from the Orange
County Transit District (OCTD) aggregate, or system-wide,
transit ridership forecasting model. Variations on the tem-
poral model discussed here were tested by the author while
employed by OCTD from 1986 to 1988. A version of the
model discussed here was developed independently by the
Center for Economic Research at Chapman College (2), and
is now in use by OCTD for transit ridership forecasting pur-
poses. The Chapman College model is used to forecast transit
ridership in Orange County S years in advance for financial
and service planning purposes. In addition, the model is used
to comply with the requirements of the regional transportation
planning process, as administered by OCTD, the Southern
California Association of Governments, the Orange County
Transportation Commission, the State of California Depart-
ment of Transportation, and other responsible public agencies
in the region.

OCTD has been in operation for close to 20 years, begin-
ning in the fourth quarter of 1973, after the first Arab oil
embargo occurred. Quarterly transit ridership data are de-
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rived from a unique, stratified random sample of driver trip
sheets, and adjusted using method of fare payment and fare
data. The accuracy of this data is good, with an expected
annual statistical measurement error of not more than +2
percent at the 95 percent confidence interval (3). Vehicle
service miles, a supply measure, is even more accurate, as
the length of all bus runs driven is known, and measured to
within the nearest 10th of a vehicle-mile in service. Average
county-wide employment figures, used in this analysis both
as a reasonable and a reliable proxy measure of demand, are
derived from Chapman College’s annual forecast of Orange
County employment, and are equally reliable in measure-
ment. Over half of all person-trips made on the Orange County
transit system are work-related trips, with a large part of the
remainder school and recreational activities.

All other data used in this analysis are temporal in nature,
and are not subject to sampling or measurement errors, at
least not in the same sense that the cross-sectional variables
just described might be.

METHODOLOGY

A variety of models are described, tested, and compared in
this analysis. The principal types of models used include cross-
sectional models, first-order autoregressive models (4), com-
bined time series and cross-sectional models (5), seasonally
adjusted combined models, and incident impact models. Eval-
uation measures include the traditional cross-sectional mea-
sures of overall goodness-of-fit and the magnitude and direc-
tion of independent variable effects, as well as two measures
of serial autocorrelation, Durbin-Watson’s d (6), for models
without lagged endogenous variables (7), and Durbin’s /4 (8),
for models with lagged endogenous variables (9).

Basic Cross-Sectional and Time-Series Models

A traditional cross-sectional transit ridership forecasting model
is as follows:

PAS, = b, + b, * VSM, + b, * EMP, + e, (1)

where

PAS, = total transit ridership in time period ¢,
VSM, = total vehicle service miles in time period ¢,
EMP, = average service area employment in time pe-
riod ¢,
e, = error in prediction associated with the obser-
vation of total transit ridership in time period
t, and

by, by, b, = parameters to be estimated.

A slight modification of this equation results in the familiar
double-log econometric regression model, which provides di-
rect measures of the elasticity of demand for the dependent
variable (total transit ridership) with respect to each indepen-
dent variable (total vehicle service-miles and average quar-
terly employment). The double-log model has proven to be
useful for public and private policy sensitivity analysis in a
variety of cases, and will be relied on throughout the re-
mainder of this analysis:
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in(PAS,) = b, + b, * In(VSM,) + b, *In(EMP,) + ¢, )

If a time series variable, such as quarterly transit ridership,
is subject to serial autocorrelation of the error terms in pre-
diction, the resulting parameter estimates may be severely
biased, with overall goodness of fit measures and parameter
standard error terms similarly biased by the existence of serial
autocorrelation. A commonly used and powerful test of serial
autocorrelation in regression analysis is Durbin-Watson’s d:

2 e =)
d= T ®
2 (&)
where
d = Durbin-Watson’s d, and
e, , = error in prediction associated with the observation
of total transit ridership in the preceding time pe-
riod; ¢ — 1.

Values of d around 2 indicate the existence of no significant
serial autocorrelation. Values of d close to 0 suggest positive
serial autocorrelation, whereas values of d close to 4 suggest
negative serial autocorrelation. If significant serial autocor-
relation is identified, a lagged endogenous variable may be
used to estimate an autoregressive time series regression model,
on the basis of a normal first order autoregressive process, as
follows:

In(PAS,) = b, + b, * In(PAS, ) (4)

where PAS, | is the total transit ridership in the immediately
preceding time period, t — 1.

Such a model may still be biased by residual or higher order
levels of serial autocorrelation. Durbin-Watson’s d does not
provide a reliable measure of serial autocorrelation in models
that include lagged endogenous variables as independent var-
iables. In such cases, Durbin’s # may be used in place of
Durbin-Watson’s d, as a more reliable indicator of serial au-
tocorrelation:

T 172
= * -
%S¢ [1 — T *var (b.)] ®)
where
h = Durbin’s A;
p=1-4d72;
T = total number of observations on which the

regression model is based (not degrees of free-
dom), i.e., sample size; and

var(b.) = variance of b,, or square of the estimated stan-
dard error term for b., where b, is the parameter
estimate of the first-order lagged endogenous
variable [In(PAS, )], regardless of whether any
other serially related exogenous or endogenous
variables are included in the model.

A combined time series and cross-sectional transit ridership
forecasting model would be as follows:

In(PAS,) = by + b, * In(VSM,) + b, * In(EMP))
+ b, * In(PAS,_)) + e, 6)
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Other Types of Serial Processes

In addition to first-order autoregressive processes, many other
types of serial autocorrelation are theoretically possible. Dif-
ferenced models, in which the dependent variable is defined
as the difference between ridership in time period ¢ and ri-
dership in some previous time period, t — n, may also be
relevant in some cases, as are moving-average models, in
which the dependent variable is hypothesized to be influenced
by the weighted average of transit ridership over several time
periods, which may include before and after time periods in
estimation.

These analytically more complex types of models require
the estimation of error terms in separate models are the use
of instrumental variables in estimating final regression equa-
tions (4). Such models are usually neither necessary nor rel-
evant in practice, often do not require direct estimation in
any case, and are not further considered here. This implies
that the temporal processes influencing aggregate transit rid-
ership are relatively simple and straightforward, an assump-
tion that will be tested explicitly as part of the development
of the final recommended transit ridership forecasting model.

Seasonal Models

A second type of direct serial autocorrelation is seasonal au-
toregressivity. In this example, the length of seasonality is 4,
because there are four quarters in each year. Onc formulation
of such a seasonal model, which retains a first-order, lagged
endogenous variable and cross-sectional variables as before,
is as follows:

In(PAS,) = b, + by * In(VSM,) + b, * In(EMP,)
+ by * In(PAS,_,)
+ b, * In(PAS,_,) + e, (7

where n is the length of seasonality.

Alternatively, seasonality may be included in the model
through the use of dummy variables. Each seasonal dummy
variable tests for differences in transit ridership between Lhal
season and an arbitrary reference season, which may be any
of the four quarters, as follows:

In(PAS,) = b, + by * In(VSM,) + b, * In(EMP,)
+ b, * In(PAS, ,) + b, * SEA,

+ bs * SEA, ... + b, *SEA,_| + ¢ (8)
where SEA_ is 1 if the observed total transit ridership occurred
in season n, and is 0 otherwise.

The choice of which alternative seasonal model formulation
to use may be influenced by the length of seasonality. When
the number of seasons (quarters, months, weeks, days, hours,
etc.) is relatively small, collinearity between the first-order
autoregressive term and the seasonal term will tend to be
higher, suggesting the use of seasonal dummy variables. When
the number of seasons is relatively high, the loss of efficiency
in model estimation because of the necessary inclusion of
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n — 1independent variables will tend to be higher, suggesting
the use of a seasonally differenced term as an independent
variable.

Incident Models

An incident is any event that disturbs the observed relation-
ships between a dependent variable and any or all of its as-
sociated time-series and cross-sectional explanatory variables.
Examples of incidents in the transit industry might include a
large scale restructuring of transit services (the introduction
of a new rail service, where before there was none, for ex-
ample), significant fare restructuring, gas shortages, oil price
increases, ambitious marketing programs, and perhaps the
classic example, the transit work stoppage, or labor strike
(10). Such incidents may have transit ridership impacts which
are positive or negative, abrupt or gradual, temporary or
permanent, in nature. A simple model of any or all of these
types of effects is as follows:

In(PAS,) = by + b, * In(VSM,) + b, * In(EMP,)
+ by * In(PAS, ,) + b, * SEA,
+ bs * SEA, + bg * SEA,
+ by * INC, * et~ 4 ¢ )]

where

INC, = 1 in time period s, during which the incident ac-
tually occurred and in all subsequent time periods
as well, 0 otherwise;

s = time period, where s is measured in the standard
time periods used in model construction, beginning
with s = 1 in that time period during which the
incident actually occurred; and

d = exponential decay parameter, theoretically or em-
pirically derived, which provides a measure of the
(constant) rate at which an incident’s effect changes
over time (Table 1).

It is possible that an incident may have one level of impact
in the time period during which it occurs, and an entirely
different level of impact in subsequent time periods. A good
example of this is the effect of a work stoppage on transit
ridership. It is common knowledge in the transit industry that
work stoppages can affect transit ridership long after a strike
has ended. While the strike is in progress, no transit service
is provided at all, and thus no one may ride transit anywhere
in the affected service area. Transit riders must then seek out
alternative means of transportation (automobile, walking,
etc.), or forgo their customary travel behavior. After the strike
ends, individuals may choose to take one or more of the
following actions for different types of trips:

1. They may revert immediately to their former customary
travel behavior (i.c., get back on the bus);

2. They may permanently change their travel behavior (i.e.,
purchase a private automobile for their own personal use; or

3. They may delay changing their behavior, but ultimately
wind up reverting to their former customary travel behavior
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TABLE 1 NUMERICAL RELATIONSHIP BETWEEN DELTA AND INCIDENT

EFFECTS

Value of delta
(decay factor)

Effect of incident over time

Positive Permanent, and increasing over time.
0 Permanent, and constant over time.
Negative Temporary and lingering, that is, decreasing constantly over time.

Negative and very large Temporary and abrupt, because the effect vanishes immediately,

i.e., negative infinity)

once the stimulus has been removed.

(e.g., to keep up their end of a carpool arrangement for a
certain length of time).

Depending on the length and severity of the incident, indi-
vidual travellers may wait longer or shorter periods of time
before returning to their former customary behavior patterns.
It is difficult if not impossible to model different kinds of
temporal processes that occur simultaneously, explicitly in the
context of time series analysis, just as the effects of separate
incidents that occur at the same time cannot be isolated in a
single aggregate forecasting model. It is possible to separate
the temporary effect of one incident from the more or less
permanent aftereffects of that same incident as follows:

In(PAS) = by + b, * In(VSM,) + b, * In(EMP,)
+ b, *In(PAS,_,) + b, * SEA,
+ by * SEA, + bs * SEA,
+ by * INC, + INC,,, * 0~V + ¢, (10)

where

INC, = 1 in time period s only, when the incident ac-
tually occurred, 0 otherwise; and
INC,,, = 1 in time period s + 1, immediately after the
incident occurred, and 1 in all subsequent time
periods, 0 otherwise.

The analytical results of each of these types of transit ridership
forecasting models will be compared in the next section, with
conclusions drawn concerning model validity, and their po-
tential utility in public policy analysis. The primary data used
in the model are shown in Figure 1. Orange County employ-
ment increased with few interruptions, from less than 500,000
in 1973 to well over 1,000,000 in 1989. OCTD transit service
(VSM) expanded rapidly during the 1970s, but remained vir-
tually constant during the 1980s. OCTD ridership nonetheless
continued to increase in the 1980s, though at a much lower
annual growth rate than in the 1970s.

RESULTS

Analytical results from a variety of model formulations are
compared in terms of internal validity. Internal validity is
composed of the statistical measures that explain the signif-
icance of estimated parameters, and the existence of measure-
ment errors associated with collinearity or serial autocorre-
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FIGURE 1 Orange County, California, trends.

lation. External validity could also be checked by comparing
these model results with those from other transit ridership
forecasting models, and actual transit performance in future
time periods.

Basic Models

Table 2 presents results for basic cross-sectional, autoregres-
sive time-series, and combined transit ridership forecasting
models. All three models show significant serial autocorre-
lation in the distribution of error terms, indicating that model
parameters may be biased in terms of magnitude, confidence
level, or both. Parameter estimates for the simple cross-
sectional and time series models are clearly too high by in-
dustry standards. Transit service elasticities generally range
from +0.3 to +0.7, whereas the estimated parameter for
VSM in Model 1.1 is greater than +1. The Model 1.2 results
suggest that 90 percent of transit ridership is retained from
one quarter to the next, but this is probably much too high
as a measure of elasticity for individual transit riders. Model
1.3 is clearly preferred, with more appropriate parameter es-
timates for all three of the included variables. However, serial
autocorrelation appears to be a slight problem even in Model
1.3.

A few observations in each model indicate relatively high
studentized residuals, identifying such observations as out-
liers. Heteroskedasticity (ordinary dependent variable auto-
correlation) does not appear to be a problem in any of the
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TABLE 2 BASIC CROSS-SECTIONAL, TIME SERIES, AND COMBINED TRANSIT
RIDERSHIP FORECASTING MODELS

Alternative Model Formulations'

Model 1.1 1.2 1.3
Independent Cross- Time-

Variables Sectional? Series® Combined*
Intercept -4.708 0.926 -2.888
In(VSM,) 1.037 (0.043) 0.678 (0.095)
In(EMP,) 0.740 (0.082) 0.511 (0.101)
In(PAS, ;) 0.896 (0.023) 0.304 (0.078)
Number of Observations 63 62 62
Degrees of Freedom 60 60 58

R? 0.9808 0.9633 0.9820
Durbin-Watson’s d 0.89

Durbin’s h 2.30 2.03

= The dependent variable in each case is In(PAS,).

2. Basic cross-sectional model, including measures of supply and demand.

3 Basic first order autoregressive time-series model.

4, Combined cross-sectional and time-series model.

Note: Standard errors for all independent variables are given in parentheses next to each
parameter estimate. All parameter estimates listed in this table are significant at the 0.05
level of confidence or higher, using a one-tailed test.

models. Serial autocorrelation is indicated when error terms
tend to stay on one side or another of the origin (0), rather
than bouncing back and forth randomly. All three models
exhibit serial autocorrelation. An additional step would be
necessary to correct for continued serial autocorrelation in
the combined model. However, error models and instrumen-
tal variables are to be avoided because of complexity and
inconvenience in spreadsheet applications. Analysts might re-
fer to more sophisticated application techniques and computer
software programs in such cases.

Seasonal Models

Table 3 presents results from combined cross-sectional and
time series models with additional seasonally autoregressive
terms introduced. There are two methods for incorporating
seasonal autoregressivity into regression analysis, one using
seasonally differenced variables, the other using seasonal
dummy variables. Model 2.1 uses a scasonally differenced
variable with the combined transit ridership forecasting model.
Parameter estimates are generally lower for combined model
variables, though Durbin’s £ is extremely high. This model is
overdifferenced; collinearity between the seasonally and non-
seasonally differenced variables has biased parameter esti-
mates severely. Model 2.2 uses three seasonal dummy vari-
ables to account for ridership differences among quarters,
with the fourth quarter as the implied baseline. Two of the
three quarterly dummy variables are not significant, yet Dur-
bin’s 4 is less than 1.64, implying that serial autocorrelation
in the distribution of error terms is no longer a significant
problem in model estimation. Thus, Model 2.2 is preferred
over Model 2.1.

Figures 2 and 3 show serial autocorrelation for Models 2.1
and 2.2. Figure 2 shows the effect of overdifferencing on error

terms in estimation. Figure 3 shows a notable reduction in
serial autocorrelation, but two observations associated with
incidents clearly act as outliers in model estimation. In both
graphs, error terms in prediction are shown in relation to the
dependent variable on the x-axis, and temporally with a linear
time path.

Incident Models: Theoretical Tests

Table 4 presents results from the combined model with sea-
sonal dummy variables and incident effects included. Modcl
3.1 assumes the effects of all three incidents, the 1979 gas
shortage and the 1981 and 1986 work stoppages, to be tem-
porary and abrupt, that is, that all effects vanish as soon as
the incident is over. Model 3.3 assumes that the effects of all
three incidents are permanent and abrupt, that is, that each
incident has the same effect in all subsequent quarters that it
has in the quarter in which it actually occurs. Model 3.2 as-
sumes that the effects of all three incidents are temporary but
lingering, with the rate of decay (delta) arbitrarily set at —1,
which assumes a constant decline in parameter significance
of 68 percent per quarter. Signs are as expected for every
variable in all three models, although the 1986 strike effect
is not significant for either extreme case, nor is the 1979 gas
shortage effect significant under a permanent effects scenario.
The temporary, lingering effects scenario (Model 3.2) pro-
vides the best overall goodness of fit, and the lowest Durbin’s
h value, with all variables significant and all signs as expected.

Incident Models: Empirical Tests

Table 5 presents results from the combined model based on
empirically tested (or bootstrapped) best-fit identification of
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TABLE 3 SEASONAL TRANSIT RIDERSHIP FORECASTING MODELS
Alternative Model Formulations'
Model 2.1 22
Seasonal Seasonal
Independent Difference Dummy
Variables Variable? Variables®
Intercept -1.530 -2.252
In(VSM) 0.467 (0.115) 0.535 (0.085)
In(EMP) 0.521 (0.116) 0.430 (0.088)
In(PAS, ,) 0.106 (0.094)® 0.423 (0.071)
In(PAS, ) 0.233 (0.077)
SEA 0.022 (0.023)@
SEA, 0.124 (0.025)
SEA, 0.040 (0.024)@
Number of Observations 59 62
Degrees of Freedom 54 §5
R? 0.9739 0.9880
Durbin’s h 7.92 1.30
1. The dependent variable in each case is In(PAS,).
Including a seasonally differenced measure of transit ridership as an independent variable,
in addition to the first order autoregressive term,
3 Including three dummy variables representing relative transit ridership differences between
the first and fourth, second and fourth, and third and fourth quarters of the year,
respectively.
Note: Standard errors for all independent variables are given in parentheses next to each
parameter estimate. All parameter estimates listed in this table are significant at the 0.05
level of confidence or higher, using a one-tailed test. Those parameter estimates marked
with an @ are not significant at the 0.05 level.
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FIGURE 2 Serial autocorrelation, Model 2.1.

decay parameter values for each incident. Model 4.1 assumes
exponential decay parameters to be the same for all incidents,
whereas Model 4.2 relaxes this restriction, allowing all decay
parameters to vary independently. Both of these models have
higher R? values, but also greater serial autocorrelation mea-
sures, than Model 3.3. Without any guidance on how to com-
bine these two model evaluation measures into one unique
qualifier, modelers will have to choose between them when
ambiguous results are achieved, as in this case.

6.4 6.8 72 7.6 8 8.4 8.8 92
TRANSIT RIDERSHIP, In (000)

FIGURE 3 Serial autocorrelation, Model 2.2.

Incident Models: Abrupt and Lingering Effects
Separated

Table 6 presents analytical results with temporary (abrupt)
and lingering (permanent) effects of each incident modeled
separately using independent variables for each such effect.
Model 5.1 includes all available observations in estimation,
whereas Model 5.2 excludes the first two observations in the
temporal sequence of quarterly OCTD ridership that has oc-



TABLE 4 INCIDENT-RELATED TRANSIT RIDERSHIP FORECASTING MODELS:
THEORETICALLY DERIVED COMBINED EFFECTS

Alternative Model Formulations'

Model 31 3.2 33
Temporary, Temporary, Constant,
Independent Abrupt Lingering Permanent
Variables E(fects? Effects® Effects®
Intercept -1.853 -2.458 -4.500
In(VSM) 0.441 (0.072) 0.549 (0.067) 0.689 (0.077)
In(EMP) 0.380 (0.070) 0.462 (0.069) 0.783 (0.137)
In(PAS, ,) 0.504 (0.060) 0.408 (0.056) 0.271 (0.067)
SEA, 0.033 (0.019) 0.032 (0.018) 0.032 (0.019)
SEA, 0.113 (0.020) 0.108 (0.019) 0.111 (0.021)
SEA, 0.033 (0.019) 0.032 (0.018) 0.048 (0.020)
GAS79, | 0.217 (0.053) 0.234 (0.049) 0.038 (0.032)@
STR81,, -0.253 (0.056) -0.192 (0.049) -0.146 (0.027)
STR86,, -0.073 (0.054)® -0.091 (0.050) -0.020 (0.029)@
Number of Observations 62 62 62
Degrees of Freedom 52 52 52
R? 0.9932 0.9935 0.9923
Durbin’s h 0.42 0.16 1.61
1. The dependent variable in each case is In(PAS)).
2. Assuming that the exponential decay parameter for each independent lingering effect

variable is equal to negative infinity. In essence, each incident affects transit ridership
only in that quarter in which the incident actually occurs. Immediately thereafter, the

incident's effect on transit ridership reduces to zero, and remains there.

3 Assuming that the exponential decay parameter for each independent lingering effect

variable is equal to -1.0.

4, Assuming that the exponential decay parameter for each independent lingering effect
In essence, each incident affeets transit ridership
permanently by a given percentage, beginning in that quarter in which the incident

variahle is exactly equal to zero.

actually occurs, and continuing forever after.

Note: Standard errors for all independent variables are given in parentheses next to each
parameter estimate. All parameter estimates listed in this table are significant at the 0.05
level of confidence or higher, using a one-tailed test. Those parameter estimates marked

with an @ are not significant at the 0.0§ level.




TABLE 5 INCIDENT-RELATED TRANSIT RIDERSHIP FORECASTING MODELS:
EMPIRICALLY DERIVED COMBINED EFFECTS

Alternative Model Formulations'

Model 4.1 4.2

Independent Equal Exponential Varying Exponential

Variables Decay Parameters® Decay Parameters®

Intercept -3.529 -4.237

In(VSM) 0.714 (0.064) 0.772 (0.059)

In(EMP) 0.609 (0.073) 0.694 (0.067)

In(PAS, ) 0.265 (0.054) 0.229 (0.048)

SEA, 0.034 (0.016) 0.032 (0.014)

SEA, 0.105 (0.017) 0.095 (0.0106)

SEA, 0.041 (0.017) 0.039 (0.015)

GASTY,, 0.159 (0.031) 0.200 (0.039)

STR81,, -0.191 (0.031) -0.157 (0.024)

STR86,, -0.094 (0.036) 0.129 (0.033)

Number of Observations 62 62

Degrees of Freedom 52 52

R? 0.9946 0.9957

Durbin’s h 0.27 1.47

1. The dependent variable in each case is In(PAS,).

2 Assuming that the exponential decay parameter for each combined abrupt, lingering effect
variable is equal to -0.20. This assumption maximizes goodness of fit (R?), given that
the exponential decay parameters for all incident variables must be exactly identical.
Derived through iteration.

3. Assuming that the exponential decay parameter for the 1979 gas shortage variable is
equal to -0.68, for the 1981 work stoppage variable is equul to -0.06, and for the 1986
work stoppage variable is equal to -0.21. These assumptions maximize goodness-of-fit
(R?), given that exponential decay parameters for incident variables are allowed 1o vary
independently. This solution was arrived at through an iterative process, heginning with
marginal adjustments in the exponential decay parameters for each of the three incident
variables sequentially, and ending when no further exponentinl decay parameter
adjustment yielded an increase in R%. The iterative order in which adjustments were
made did not affect the final outcome in this example. Failure to converge to a unique
solution, independent of the path taken, might have indicated model specification
problems, which were not in evidence here.

Note: Standard errors for all independent variables are given in parentheses next to each

parameter estimate. All parameter estimates listed in this table are significant at the 0.05
level of confidence or higher, using a one-tailed test.
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TABLE 6 INCIDENT-RELATED TRANSIT RIDERSHIP FORECASTING MODELS:
ABRUPT AND LINGERING EFFECTS SEPARATED

Alternative Model Formulations'

Model 5.1 52

All First Two
Independent Observations Observations
Variables Employed? Removed®
Intercept -4.215 -4.532
In(VSM) 0.725 (0.072) 0.824 (0.072)
In(EMP) 0.707 (0.077) 0.707 (0.071)
In(PAS, ,) 0.262 (0.060) 0.207 (0.055)
SEA, 0.040 (0.014) 0.030 (0.013)
SEA, 0.101 (0.015) 0.094 (0.014)
SEA, 0.039 (0.015) 0.038 (0.013)
GAS79, 0.187 (0.041) 0.192 (0.036)
STR81, -0.227 (0.044) -0.197 (0.039)
STRE6, -0.073 (0.042) -0.068 (0.037)
GAS?Y, 0.110 (0.042) 0.119 (0.037)
STR8], -0.131 (0.025) -0.152 (0.024)
STR86, -0.151 (0.037) -0.154 (0.033)
Number of Observations 62 60
Degrees of Freedom 49 47
R? 0.9962 0.9957
Durbin’s h 1.56 0.89
1. The dependent variable in each case is In(PAS).
2. The empirically derived exponential decay parameters which provided the best overall

goodness-of-fit in Model 5.1 were -infinity for the 1979 gas shortage lingering effects
variable, -0.040 for the 1981 work stoppage lingering effects variable, and -0.32 for the
1986 work stoppage lingering effects variable.

3 The cmpirically derived exponential decay parameters which provided the best overall
goodness-of-fit in Model 5.2 were -1.1 for the 1979 gas shortage lingering effects variable,
-0.051 for the 1981 work stoppage lingering effects variable, and -0.32 for the 1986 work
stoppage lingering effects variable.

Note: Standard errors for all independent variables are given in parentheses next to each
parameter estimate. All parameter estimates listed in this table are significant at the 0.05
level of confidence or higher, using a one-tailed test. Those parameter estimates marked

with an @ are not significant at the 0.05 level.

curred since 1973. In this case, Model 5.2 has lower serial
autocorrelation, but also a lower R?, than Model 5.1. Figure
4 shows serial autocorrelation for Model 5.1, the theoretically
least restricted, and thus preferred, model, with full incident
effects, and all observations included. Although serial auto-
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FIGURE 4 Serial autocorrelation, Model 5.1.

correlation is acceptable (barely), and the independent effect
of all three incidents has been accounted for successfully,
three new observations appear as outliers, all three occurring
relatively early in OCTD's history. These three observations
cannot be modeled easily as incidents, although they may be
related to the 1973 oil crisis, or major service expansions. The
primary reason for this inability to model such incidents is
lack of data. OCTD did not begin operations until 1973. It is
thus impossible to know exactly what equilibrium transit rid-
ership would have been in Orange County before start-up in
1973. Without prior data, itis dangerous and sometimes highly
inaccurate to try to model the aftereffects of specific incidents.

Another method of dealing with outlier observations is to
eliminate them from the analysis. In the case of time series
analysis, however, observations cannot be plucked at random
from the data base. A continuous stream of data is required.
This suggests that observations could be modified in value to
conform to model predictions (a somewhat dubious practice),
or entire segments of data including outliers could be elimi-
nated from the beginning or end of the contiguous time series.
Model 5.1 was reestimated with the first 2, 5, and 11 obser-
vations eliminated. With the first two observations removed,
R? decreased, but so did Durbin’s A. It was felt by the author
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that the loss in R? was more than made up for by the reduction
in serial autocorrelation in Model 5.2. Removing additional
observations from the data resulted in additional reductions
in R?, and also increasing serial autocorrelation in relationship
to Model 5.2, and are not further considered.

The effects of incidents on transit ridership using Model 5.2
as the basis for comparison are shown graphically in Figure
5. The 1979 gas shortage is shown to have a large, abrupt,
and temporary effect on transit ridership, which virtually dis-
appears once gasoline is no longer in short supply. The 1981
work stoppage was prolonged. No service was provided to
patrons during this strike. The result was a large decrease in
transit ridership, which did not return to normal for a long
time. The 1986 work stoppage was much shorter, and limited
service was provided to patrons by trained supervisorial and
management personnel under a well-kept secret contingency
plan during the strike. The result was a similar loss in ridership
to the 1986 work stoppage, which rebounded toward normal
levels of patronage much more quickly. Note that the abrupt
effect of the 1986 work stoppage was smaller than might be
expected, presumably because this strike occurred at the very
end of a quarter.

Role of Pricing in Determining Orange County Transit
Ridership Trends

The economist in the audience will have noted already the
absence of a pricing variable in any of the forecasting models
so far presented. This omission was not accidental, but the
result of preliminary model testing that found pricing variables
to have no significant effect on transit ridership in Orange
County, once the effect of incidents had been included. Figure
6 shows pricing trends for automobile (average gasoline price)
and transit (average bus fare) over the 15-year study period.
Inclusion of a transit price variable in the first and second
series of models (Tables 2 and 3) produced significant price
elasticities varying around — 0.3, the industry standard. How-
ever, serial correlation remained a problem in these models.
When transit pricing was included in the incident impact models
(Tables 4-6), the elasticities dropped to a range of about
—0.03 to —0.06, and were no longer found to be significant.
Similarly, gasoline prices were not found to have a significant
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independent effect on transit ridership in any of the models
considered here.

The Chapman forecasting model developed for use by OCTD
used a transit/automobile price ratio variable that was signif-
icant, had a value of —0.3, and was associated with significant
serial correlation and parameter biases (/). Why does pricing
seem to have little if any effect on OCTD transit ridership at
the aggregate level of analysis? A review of secular trends in
the characteristics of OCTD transit patrons may reveal part
of the answer (/7/-13). As Table 7 shows, OCTD patrons
increasingly are captive riders making nondiscretionary trips.
In 1987, 58 percent of all trips made were work trips, 70
percent of riders were regular users of the system, and 80
percent of patrons had no car available to them to make the
trip. Captive riders have low price elasticities of demand for
nondiscretionary trips, and virtually zero cross-price elastic-
ities for competitive modes that, like the automobile, are out
of reach for them, at least in the near term (7/4). Flat fare
systems such as the one used in Orange County often con-
tribute to this lack of price sensitivity on the part of transit
patrons (/5).

Ironically, OCTD financial planning staff recommended
implementing a 25-cent fare increase in 5-cent increments over
5 years, to minimize potential transit ridership losses. Taking
inflation into consideration, such a policy constitutes main-
taining a constant fare over time in real dollars, for which the
price elasticity of demand should indeed be 0. These results
also reconfirm the notion that OCTD transit ridership in-
creased in 1979 in response to a temporary shortage of gas-
oline, rather than to a more permanent increase in its price.

CONCLUSIONS

Cross-sectional models are generally evaluated on the basis
of theoretical validity, conformance with theoretical expec-
tations concerning the magnitude and direction of change,
and overall model goodness-of-fit. Individual parameter es-
timation error terms and confidence intervals may be signif-
icantly biased, if serial autocorrelation of the error terms in
prediction is present, for time series dependent variables. In
order to prevent temporally related biases from introducing
major errors into forecasting models and procedures, various
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TABLE 7 SECULAR TRENDS IN OCTD RIDER CHARACTERISTICS

Year of On-Board Survey

OCTD Rider
Characteristics 1976’ 1979' 19822 1987°
Regular Rider* 52% 63% 70% 70%
Trip Purpose
Work 35% 46% 46% 58%"°
School 35% 25% 26% 18%
Shopping 10% 11% 10% 7%
Recreation 7% 5% 4% 5%
Other 13% 13% 14% 12%
Age
Under 16 12% 10% 8% 8%
16-64 79% 80% 82% 83%
Over 65 9% 10% 10% 9%
Female 58% 58% 57% 54%
Low Income® 74% 55% 51% 45%
No Car Available for Trip 76% 1% 74% 80%
Ethnicity
White not not 64% 46%
Hispanic asked asked 21% 34%
Asian 8% 7%
Black 5% 6%
Sample Size not 10,669 21,866 approx.
available 17,000
1. DMIM and COMSIS Corp., 1981.
2. TRAM, 1983.
3. NuStats, Inc., 1988.
4, Rides five or more days per week.
5. This figure may be high, in that the 1987 system-wide on-board survey sampled bus trips
in the a.m. only, rather than all day.
6. Annual household income less than $15,000, in current dollars.

techniques are available. Generally, explicit representation
of the underlying theoretical temporal processes, through the
use of time series transformation of the dependent variable,
are required to reduce serial autocorrelation, absent the use
of indirect estimation methods that are not discussed here.
Ostram (4) provides an introduction to indircct cstimation
techniques, for those who might be interested.

Time series methods include the use of serial and seasonal
autoregressive terms, differenced or integrated equations,
moving average models, etc. If the independent variables used
in the model are influenced by temporal processes, these should
be considered, particularly if such “independent” temporal
processes are related to those endogenous temporal processes
that are known or hypothesized to influence the dependent
variable.

Models of the type discussed in this paper may provide
more reliable measures of policy sensitivity, as well as more
accurate forecasts of future conditions with respect to the
dependent variable. These improvements can be tested em-
pirically using ex ante or ex post comparative evaluation mea-
sures. Ex ante evaluation requires making a forecast, and
waiting for the forecast period to expire before comparing
forecast and actual results. Ex post evaluation, or backfore-
casting, is done by excluding some of the most recently avail-
able data from model estimation, and comparing this model

output with actual results. Technically, only information on
exogenous variables that was available before the backfore-
cast time period should be used in making ex post backfore-
casts, for the sake of methodological consistency. The model
discussed here will probably increase in utility to planners and
policy analysts as time series analysis techniques and data
become more readily available and understood. Random sam-
ples of time series data can be used to lower data collcction
costs, as long as such data are sampled systematically (16,17).
The use of such techniques in research and development seems
to be increasing. Periodic updating, testing, and evaluation
of such time series model results as are in use by practicing
planners will enhance understanding and ability to use these
versatile methods in the future. Practical advantages of this
class of methods should include more accurate forecasting
ability, although this must await further testing of applications
in the field for verification.

In terms of policy, the effects of incidents on transit rider-
ship can be modeled quite accurately to determine temporal
variations in the lingering effects of such incidents. The ability
to measure past responses to incidents should help planners
and decision makers in preparing for anticipated future shocks
to transit performance, whether positive or negative in nature.
It would be useful to know if the results reported here for
incidents can be duplicated partially or wholly in other parts



Ferguson

of the country, with similar or different types of transit mar-
kets in operation. A 1966 transit strike in New York City
resulted in permanent regular ridership losses of only 2.1
percent for work trips, 2.6 percent for shopping trips, and 2.4
percent for all other trips, on the basis of an ex post travel
behavior survey (18). Are the measured results for Orange
County reported here much greater because of differences in
sampling procedures, differences in modeling procedures, dif-
ferences in the timing of work stoppage occurrence, differ-
ences in the spatial configuration of transit markets, or other
factors? Additional study using data from multiple transit
agencies might assist in answering some of these questions.
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