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Temporal Effects of Incidents on Transit 
Ridership in Orange County, California 
ERIK FERGUSON 

Aggregate level transit ridership forecasting models often are 
based on time series data, with potential serial autocorrelation 
properties that can bias parameter estimates upward and error 
estimates downward , and skew forecasting confidence intervals 
and their resulting interpretation significantly. A combined time 
series and cross-sectional regression model of transit ridership is 
developed that incorporates temporal variations as well as supply, 
demand, and pricing characteristics of the market for transit ser­
vices in Orange County, California, between 1973 and 1989. It 
was found that Orange County transit ridership exhibits signifi­
cant serial and seasonal fluctuations, which were captured in the 
model. The temporary and lingering effects of incidents were also 
tested. The 1979 oil shortage was shown to have a large positive 
impact on transit ridership , which dwindled quite rapidly once 
the oil shortage ended . A work stoppage of 6 weeks' duration in 
1981 had a large negative impact on transit ridership, which dwin­
dled only slowly. A shorter work stoppage in 1986, during which 
limited service was provided by transit agency administrative pe r­
sonnel, had a much smaller negalive imp::ic1 lhan the 1981 work 
stoppage, which dwindled much more rapidly . Trnnsit fare and 
gasoline pricing variables were found to have no significant effect 
on transit ridership in the preferred temporally based model. 
Transit fares did not increase much in real terms over the period 
covered, and did not reflect variations in transit service provided, 
being predicated on a simple county-wide flat fare basis. Over 
70 percent of all Orange County transit riders were captive riders 
in 1987, having no car available to them for commuting or other 
travel purposes, making the price of gasoline basically irrelevant 
to the majority of such transit riders in the shorter term. 

Many problem in urban and regional transportation analysis 
have imp rtant temporal dimensions. Foreca ·ting changes in 
employment, population, or travel behavior are just a few 
examples of ;ire;is where temporal processes and interactions 
may be important in identifying existing conditions, explain­
ing past tr nds, or forecasting future outcome of urban and 
regional policies and planning. Time series analysis is one 
method of explicitly incorporating temporal phenomena in 
regression analysis for forecasting purposes. Time series anal­
ysis often ili used as a projection me thod, based exclusively 
on the past performance f specific exogenous output varia­
bles . Policy input variables, such as spatial or socioecon mic 
variations in demand, often are not included in time series 
models, because of lack of data, lack of analysis software, 
or both. 

Cross-sectional models typically provide more opportuni­
ties for testing policy sensitivity. However, pa_rameters and 

nfidence interval estimated in cross-sectional mod ls may 
bia ed ·ignificantly, if serial amocorrelation i present. 

mbined time series and cro · -s ctional models offer tbe 

Graduate City Planning Program , College of Architecture , Georgia 
Institute of Technology , Atlanta, Ga. 30332-0158. 

possibility of providing policy sensitivity and controlling for 
temporal estimation biases simultaneously. Simultaneous 
time-series and cross-sectional regression analysis are applied 
to transit ridership forecasting, assuming only first-order, se­
rial autoregressive processes are involved (J). Three types of 
temporal variability are included in this analysis: 

1. First-order serially autoregressive impacts; 
2. First-order seasonally autoregressive impacts; and 
3. Permanent, temporary, and lingering impacts of inci­

dents over time. 

Quarterly transit ridership data are used to demonstrate 
how alternative model formulations can be evaluated in terms 
of descriptive ability (overall goodness of fit), serial autocor­
relation (parameter estimation bias), and predictive ability 
(forecast error). 

First, some of Lhe basic statistical and econometric princi­
ples required to conduct an exploratory analysis of this type 
are described. Second, various transit ridership model vari­
ations formulated to test these ideas using original data col­
lected in Orange County, California, are compared and con­
trasted. Finally, some of the policy and research implications 
derived from a comparative evaluation of the various model 
results are reported. 

DATA 

The data u ·ed in this analysi were taken from the Orange 
County Transit Di ·trict (0 D) aggregate, or system-wide 
transit ridership forecasting model. Variations on the tem­
poral model discussed here were tested by the author while 
employed by OCTD from 1986 to 1988. A version of the 
model discussed here was developed independently by the 
Center for Economic Research at Chapman College (2), and 
is now in use by OCTD for transit ridership forecasting pur­
poses. The Chapman College model is used to forecast transit 
ridership in Orange County 5 years in advance for financial 
and service planning purposes. In addition, the model is used 
to comply with the requirements of the regional transportation 
planning process, as administered by OCTD, the Southern 

alifornia Association of Governments, the Orange ounty 
Tran ·portation Commission, the State of California Depart­
ment of Transportation, and other responsible public agencies 
in the region . 

OCTD has been in operation for close to 20 years, begin­
ning in the fourth quarter of 1973, after the first Arab oil 
embargo occurred . Quarterly transit ridership data are de-
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rived from a unique, stratified random sample of driver trip 
sheets, and adjusted using method of fare payment and fare 
data. The accuracy of this data is good, with an expected 
annual statistical measurement error of not more than ± 2 
percent at the 95 percent confidence interval (3). Vehicle 
service miles, a supply measure, is even more accurate, as 
the length of all bus runs driven is known, and measured to 
within the nearest 10th of a vehicle-mile in service. Average 
county-wide employment figures, used in this analysis both 
as a reasonable and a reliable proxy measure of demand, are 
derived from Chapman College's annual forecast of Orange 
County employment, and are equally reliable in measure­
ment. Over half of all person-trips made on the Orange County 
transit system are work-related trips, with a large part of the 
remainder school and recreational activities. 

All other data used in this analysis are temporal in nature, 
and are not subject to sampling or measurement errors, at 
least not in the same sense that the cross-sectional variables 
just described might be . 

METHODOLOGY 

A variety of models are described, tested, and compared in 
this analysis. The principal types of models used include cross­
sectional models, first-order autoregressive models (4), com­
bined time series and cross-sectional models (5), seasonally 
adjusted combined models, and incident impact models. Eval­
uation measures include the traditional cross-sectional mea­
sures of overall goodness-of-fit and the magnitude and direc­
tion of independent variable effects, as well as two measures 
of serial autocorrelation, Durbin-Watson's d (6), for models 
without lagged endogenous variables (7), and Durbin's h (8), 
for models with lagged endogenous variables (9) . 

Basic Cross-Sectional and Time-Series Models 

A traditional cross-sectional transit ridership forecasting model 
is as follows: 

PAS, = b0 + b1 * VSM, + b2 • EMP, + e, (1) 

where 

PAS, = total transit ridership in time period I, 

VSM, = total vehicle service miles in time period t, 
EMP, = average service area employment in time pe-

riod t, 
e, = error in prediction associated with the obser­

vation of total transit ridership in time period 
t, and 

b0 , b1 , b2 = parameters to be estimated. 

A slight modification of this equation results in the familiar 
double-log econometric regression model, which provides di­
rect measures of the elasticity of demand for the dependent 
variable (total transit ridership) with respect to each indepen­
dent variable (total vehicle service-miles and average quar­
terly employment). The double-log model has proven to be 
useful for public and private policy sensitivity analysis in a 
variety of cases, and will be relied on throughout the re­
mainder of this analysis : 
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ln(P AS,) = b0 + b, • ln(VSM,) + b2 • ln(EMP,) + e, (2) 

If a time series variable, such as quarterly transit ridership, 
is subject to serial autocorrelation of the error terms in pre­
diction , the resulting parameter estimates may be severely 
biased, with overall goodness of fit measures and parameter 
standard error terms similarly biased by the existence of serial 
autocorrelation. A commonly used and powerful test of serial 
autocorrelation in regression analysis is Durbin-Watson's d: 

2: (e, - e,_, 2 

d = L (e,)2 (3) 

where 

d = Durbin-Watson's d, and 
e, _ 1 = error in prediction associated with the observation 

of total transit ridership in the preceding time pe­
riod, t - 1. 

Values of d around 2 indicate the existence of no significant 
serial autocorrelation. Values of d close to 0 suggest positive 
serial autocorrelation, whereas values of d close to 4 suggest 
negative serial autocorrelation. If significant serial autocor­
relation is identified, a lagged endogenous variable may be 
used to estimate an autoregressive time series regression model, 
on the basis of a normal first order autoregressive process, as 
follows: 

ln(PAS,) = b0 + b1 • ln(PAS,_ 1) (4) 

where PAS, _ 1 is the total transit ridership in the immediately 
preceding time period, t - 1. 

Such a model may still be biased by residual or higher order 
levels of serial autocorrelation. Durbin-Watson's d does not 
provide a reliable measure of serial autocorrelation in models 
that include lagged endogenous variables as independent var­
iables. In such cases, Durbin's h may be used in place of 
Durbin-Watson's d, as a more reliable indicator of serial au­
tocorrelation : 

[ 
T ]
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h = p * l - T • vaT (b.) 

where 

h = Durbin 's h; 
p = 1 - d/2; 

(5) 

T = total number of observations on which the 
regression model is based (not degrees of free­
dom), i.e., sample size; and 

var(b.) variance of b. , or square of the estimated stan­
dard error term for b., where b. is the parameter 
estimate of the first-order lagged endogenous 
variable [In(PAS, _ 1)] , regardless of whether any 
other serially related exogenous or endogenous 
variables are included in the model. 

A combined time series and cross-sectional transit ridership 
forecasting model would be as follows: 

ln(PAS,) = b0 + b 1 * ln(VSM,) + b2 * ln(EMP,) 

+ b3 * In(PAS,_ 1) + e, (6) 
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Other Types of Serial Processes 

In addition to first-order autoregressive processes, many other 
types of serial autocorrelation are theoretically possible. Dif­
ferenced models, in which the dependent variable is defined 
as the difference between ridership in time period t and ri­
dership in some previous time period, t - n, may also be 
relevant in some cases, as are moving-average models, in 
which the dependent variable is hypothesized to be influenced 
by the weighted average of transit ridership over several time 
periods, which may include before and after time periods in 
estimation. 

These analytically more complex types of models require 
the estimation of error terms in separate models are the use 
of instrumental variables in estimating final regression equa­
tions ( 4). Such models are usually neither necessary nor rel­
evant in practice, often do not require direct estimation in 
any case, and are not further considered here. This implies 
that the temporal processes influencing aggregate transit rid­
ership are relatively simple and straightforward, an assump­
tion that will be tested explicitly as part of the development 
of the final recommended transit ridership forecasting model. 

Seasonal Models 

A second type of direct serial autocorrelation is seasonal au­
toregressivity. In this example, the length of seasonality is 4, 
because there are four quarters in each year. One formulation 
of such a seasonal model, which retains a first-order, lagged 
endogenous variable and cross-sectional variables as before, 
is as follows: 

ln(PAS,) = b0 + b 1 * ln(VSM,) + b2 * ln(EMP,) 

+ b, * ln(PAS,_ 1) 

+ b4 * ln(PAS,_") + e, 

where n is the length of seasonality. 

(7) 

Alternatively, seasonality may be included in the model 
through the use of dummy variables. Each seasonal dummy 
variable tests for differences in transit ridership betweeu Lhal 
season and an arbitrary reference season, which may be any 
of the four quarters, as follows: 

ln(PAS,) = b0 + b, * ln(VSM,) + b2 • ln(EMP,) 

+ b3 * ln(PAS,_ 1) + b4 *SEA, 

+ b5 * SEA2 ... + bx* SEA"_, + e, (8) 

where SEAx is 1 if the observed total transit ridership or.r.mred 
in season n, and is 0 otherwise. 

The choice of which alternative seasonal model formulation 
to use may be influenced by the length of seasonality. When 
the number of seasons (quarters, months , weeks, days, hours, 
etc.) is relatively small, collinearity between the first-order 
autoregressive term and the seasonal term will tend to be 
higher, suggesting the use of seasonal dummy variables. When 
the number of seasons is relatively high, the loss of efficiency 
in model estimation because of the necessary inclusion of 
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n - 1 independent variables will tend to be higher, suggesting 
the use of a seasonally differenced term as an independent 
variable. 

Incident Models 

An incident is any event that disturbs the observed relation­
ships between a dependent variable and any or all of its as­
sociated time-series and cross-sectional explanatory variables. 
Examples of incidents in the transit industry might include a 
large scale restructuring of transit services (the introduction 
of a new rail service, where before there was none, for ex­
ample), significant fare restructuring, gas shortages, oil price 
increases, ambitious marketing programs, and perhaps the 
classic example, the transit work stoppage, or labor strike 
(JO). Such incidents may have transit ridership impacts which 
are positive or negative, abrupt or gradual, temporary or 
permanent, in nature. A simple model of any or all of these 
types of effects is as follows: 

ln(PAS,) = b0 + b 1 * ln(VSM,) + b2 * ln(EMP,) 

+ b1 * INCs * eCs - 1)•5 + e, (9) 

where 

IN Cs = 1 in time period s, during which the incident ac­
tually occurred and in all subsequent time periods 
as well, 0 otherwise; 

s time period, where s is measured in the standard 
time periods used in model construction, beginning 
with s = 1 in that time period during which the 
incident actually occurred; and 

o exponential decay parameter, theoretically or em­
pirically derived, which provides a measure of the 
(constant) rate at which an incident's effect changes 
over time (Table 1). 

It is possible thrit ;in inr.in~nt m:iy h;we one level of impact 
in the time period during which it occurs, and an entirely 
different level of impact in subsequent time periods. A good 
example of this is the effect of a work stoppage on transit 
ridership. It is common knowledge in the transit industry that 
work stoppages can affect transit ridership long after a strike 
has ended. While the strike is in progress, no transit service 
is provided at all, and thus no one may ride transit anywhere 
in the affected service area. Transit riders must then seek out 
alternative means of transportation (automobile, walking, 
etc.), or forgo their customary travel behavior. After the strike 
ends, individuals may choose to take one or more of the 
following actions for different types of trips : 

1. They may revert immediately to their former customary 
travel behavior (i.e., get back on the bus); 

2. They may permanently change their travel behavior (i.e., 
purchase a private automobile for their own personal use; or 

3. They may delay changing their behavior, but ultimately 
wind up reverting to their former customary travel behavior 
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TABLE I NUMERICAL RELATIONSHIP BETWEEN DELTA AND INCIDENT 
EFFECTS 

Value of delta 
(decay factor) Effect of incident over time 

Positive Permanent, and increasing over time. 

0 Permanent, and constant over time. 

Negative Temporary and lingering, that is, decreasing constantly over time. 

Negative and very large 
i.e., negative infinity) 

Temporary and abrupt, because the effect v~rnishes immediately, 
once the stimulus has been removed. 

(e.g., to keep up their end of a carpool arrangement for a 
certain length of time). 

Depending on the length and severity of the incident, indi­
vidual travellers may wait longer or shorter periods of time 
before returning to their former customary behavior patterns. 
It is difficult if not impossible to model different kinds of 
temporal processes that occur simultaneously, explicitly in the 
context of time series analysis, just as the effects of separate 
incidents that occur at the same time cannot be isolated in a 
single aggregate forecasting model. It is possible to separate 
the temporary effect of one incident from the more or less 
permanent aftereffects of that same incident as follows: 

ln(P AS,) = b0 + b1 * ln(VSM,) + b2 * ln(EMP,) 

where 

+ b3 * ln(PASr-1) + b4 *SEA, 

+ b5 * SEA2 + b6 * SEA3 

+ b7 * INCS + INCs+l * efS - l)•o + e, (10) 

IN Cs = 1 in time period s only, when the incident ac­
tually occurred, 0 otherwise; and 

INCs+ 1 = 1 in time period s + 1, immediately after the 
incident occurred, and 1 in all subsequent time 
periods, 0 otherwise. 

The analytical results of each of these types of transit ridership 
forecasting models will be compared in the next section, with 
conclusions drawn concerning model validity, and their po­
tential utility in public policy analysis. The primary data used 
in the model are shown in Figure 1. Orange County employ­
ment increased with few interruptions, from less than 500,000 
in 1973 to well over 1,000,000 in 1989. OCTD transit service 
(VSM) expanded rapidly during the 1970s, but remained vir­
tually constant during the 1980s. OCTD ridership nonetheless 
continued to increase in the 1980s, though at a much lower 
annual growth rate than in the 1970s. 

RESULTS 

Analytical results from a variety of model formulations are 
compared in terms of internal validity. Internal validity is 
composed of the statistical measures that explain the signif­
icance of estimated parameters, and the existence of measure­
ment errors associated with collinearity or serial autocorre-
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FIGURE 1 Orange County, California, trends. 

Iation. External validity could also be checked by comparing 
these model results with those from other transit ridership 
forecasting models, and actual transit performance in future 
time periods. 

Basic Models 

Table 2 presents results for basic cross-sectional, autoregres­
sive time-series, and combined transit ridership forecasting 
models. All three models show significant serial autocorre­
lation in the distribution of error terms, indicating that model 
parameters may be biased in terms of magnitude, confidence 
level, or both. Parameter estimates for the simple cross­
sectional and time series models are clearly too high by in­
dustry standards. Transit service elasticities generally range 
from + 0.3 to + 0. 7, whereas the estimated parameter for 
VSM in Model 1.1 is greater than + 1. The Model 1.2 results 
suggest that 90 percent of transit ridership is retained from 
one quarter to the next, but this is probably much too high 
as a measure of elasticity for individual transit riders . Model 
1.3 is clearly preferred, with more appropriate parameter es­
timates for all three of the included variables. However, serial 
autocorrelation appears to be a slight problem even in Model 
1.3. 

A few observations in each model indicate relatively high 
studentized residuals, identifying such observations as out­
liers. Heteroskedasticity (ordinary dependent variable auto­
correlation) does not appear to be a problem in any of the 
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TABLE 2 BASIC CROSS-SECTIONAL, TIME SERIES, AND COMBINED TRANSIT 
RIDERSHIP FORECASTING MODELS 

Alternative Model Formulations 1 

Model 1.1 1.2 1.3 

I ndependenl Cross- Time-
Variables Sectiona12 Series3 Combined4 

Intercept -4.708 0.926 -2.888 
ln(VSM1) 1.037 (0.043) 0.678 (0.095) 
ln(EMP1) 0.740 (0.082) 0.511 (0.101) 
ln(PAS1_1) 0.896 (0.023) 0.304 (0.078) 

Number of Observations 63 62 62 
Degrees of Freedom 60 60 58 
R2 0.9808 0.9633 0.9820 
Durbin-Watson's d 0.89 
Durbin's h 2.30 2.03 

1. The dependent variable in each case is ln(PAS1). 

2. Basic cross-sectional model, including measures of supply and cJern:mcJ. 
3. Basic first order autoregressive time-series model. 
4. Combined cross-sectional and time-series model. 

Note: Standard errors for all independent variables are given in parentheses next to each 
parameter estimate. All parameter estimates listed in this table are significant at the 0.05 
level of confidence or higher, using a one-tailed test. 

models. Serial autocorrelation is indicated when error terms 
tend to stay on one side or another of the origin (0), rather 
than bouncing back and fo1 th 1 amlumly. All three models 
exhibit serial autocorrelation. An additional step would be 
necessary to correct for continued serial autocorrelation in 
the combined model. However, error models and instrumen­
tal variables are to be avoided because of complexity and 
inconvenience in spreadsheet applications . Analysts might re­
fer to more sophisticated application techniques and computer 
software programs in such cases. 

Seasonal Models 

Table 3 presents results from combined cross-sectional and 
time series models with additional seasonally autoregressive 
terms introduced . There are two methods for incorporating 
seasonal autoregressivity into regression analysis, one using 
seasonally differenced variables, the other using seasonal 
dummy variables. Model 2.1 uses a seasonally differenced 
variable with the combined transit ridership forecasting model. 
Parameter estimates are generally lower for combined model 
variables, though Durbin 's his extremely high. This model is 
overdifferenced; collinearity between the seasonally and non­
seasonally differenced variables has biased parameter esti­
mates severely. Model 2.7. uses three seasonal dummy vari­
ables to account for ridership differences among quarters , 
with the fourth quarter as the implied baseline. Two of the 
three quarterly dummy variables are not significant, yet Dur­
bin's h is less than 1.64, implying that serial autocorrelation 
in the distribution of error terms is no longer a significant 
problem in model estimation. Thus, Model 2.2 is preferred 
over Model 2.1. 

Figures 2 and 3 show serial autocorrelation for Models 2.1 
and 2.2. Figure 2 shows the effect of overdifferencing on error 

terms in estimation. Figure 3 shows a notable reduction· in 
serial autocorrelation, but two observations associated with 
incidents clearly act as outliers in model estimation. In both 
graphs, error terms in prediction are shown in relation to the 
dependent variable on the x-axis, and temporally with a linear 
time path. 

Incident Models: Theoretical Tests 

Table 4 presents results from the combined model with sea­
sonal dummy variables and incident effects included. Model 
3.1 assumes the effects of all three incidents , the 1979 gas 
shortage and the 1981 and 1986 work stoppages, to be tem­
porary and abrupt, that is, that all effects vanish as soon as 
thl:' incident is over. Model 3.3 asmme& that the effects of all 
three incidents are permanent and abrupt, that is, that each 
incident has the same effect in all subsequent quarters that it 
has in the quarter in which it actually occurs. Model 3.2 as­
sumes that the effects of all three incidents are temporary but 
lingering, with the rate of decay (delta) arbitrarily set at -1, 
which assumes a constant decline in parameter significance 
of 68 percent per quarter. Signs are as expected for every 
variable in all three models, although the 1986 strike effect 
is not significant for either extreme case, nor is the 1979 gas 
shortage effect significant under a permanent effects scenario. 
The temporary, lingering effects scenario (Model 3.2) pro­
vides the best overall goodness of fit, and the lowest Durbin's 
h value, with all variables significant and all signs as expected. 

Incident Models: Empirical Tests 

Table 5 presents results from the combined model based on 
empirically tested (or bootstrapped) best-fit identification of 
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TABLE 3 SEASONAL TRANSIT RIDERSHIP FORECASTING MODELS 

Model 

Independent 
Variables 

Intercept 
ln(VSM) 
ln(EMP) 
ln(PAS1_1) 

ln(PAS1_4) 

SEA1 
SEA2 
SEA3 

Number of Observations 
Degrees of Freedom 
R2 
Durbin's h 

Alternative Model Formulations 1 

2.1 

Seasonal 
Difference 
Variable2 

-1.530 
0.467 (0.115) 
0.521 (0.116) 
0.106 (0.094 )® 
0.233 (0.077) 

59 
54 
0.9739 
7.92 

2.2 

Seasonal 
Dummy 
Vnriables3 

-2.252 
0.535 (0.085) 
0.430 (0.088) 
0.423 (0.071) 

0.022 (0.023)® 
0.124 (0.025) 
0.040 (0.024 )® 

62 
55 
0.9880 
1.30 

1. Tiie dcpcmlent variable in each case is 111(1' AS1). 

2. Including a seasonally differenced measure of 1ran. it ride rsh ip as an indepcmlem variable, 
in addition to the first orde r autoregressive term. 

3. Including three dummy variables represe nting relative tra nsit ridersh ip diffe rences between 
the first ;111d rourth, second a nd fqurth, and third and fourth quaner. of the year, 
respectively. 

Note: Standard errors for all independent variables are given in parentheses next to each 
parameter estimate. All parameter estimates listed in this table are significant at the 0.05 
level of confidence or higher, using a one-tailed test. Those pa rameter estimates marked 
with an @ are not significant at the 0.05 level. 
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FIGURE 2 Serial autocorrelation, Model 2.1. 

decay parameter values for each incident. Model 4.1 assumes 
exponential decay parameters to be the same for all incidents, 
whereas Model 4.2 relaxes this restriction, allowing all decay 
parameters to vary independently. Both of these models have 
higher R2 values, but also greater serial autocorrelation mea­
sures, than Model 3.3. Without any guidance on how to com­
bine these two model evaluation measures into one unique 
qualifier, modelers will have to choose between them when 
ambiguous results are achieved , as in this case. 

6.4 6.8 7.2 7.6 8 8 .4 8.8 9.2 
TRANSIT RIDER SHI P, In (000) 

FIGURE 3 Serial autocorrelation, Model 2.2. 

Incident Models: Abrupt and Lingering Effects 
Separated 

Table 6 presents analytical results with temporary (abrupt) 
and lingering (permanent) effects of each incident modeled 
separately using independent variables for each such effect. 
Model 5.1 includes all available observations in estimation, 
whereas Model 5.2 excludes the first two observations in the 
temporal sequence of quarterly OCTD ridership that has oc-



TABLE 4 INCIDENT-RELATED TRANSIT RIDERSHIP FORECASTING MODELS: 
THEORETICALLY DERIVED COMBINED EFFECTS 

Alternative Model Formulations 1 

Model 3.1 3.2 3.3 

Temporary Temporary, Constant, 
Independent Abrupt Lingering Permanent 
Variables EITects2 EITects3 EITects~ 

Intercept -1.853 -2.458 -4.500 
Jn(VSM) 0.441 (0.072) 0.549 (0.067) 0.689 (0.077) 
Jn(EMP) 0.380 (0.070) 0.462 (0.069) 0.783 (0.137) 
ln(PAS1_1) 0.504 (0.060). 0.408 (0.056) 0.271 (0.067) 
SEA1 0.033 (0.019) 0.032 (0.018) 0.032 (0.019) 
SEA2 0.113 (0.020) 0.108 (0.019) 0.111 (0.021) 
SEA3 0.033 (0.019) 0.032 (0.018) 0.048 (0.020) 
GAS79 •. I 0.217 (0.053) 0.234 (0.049) 0.038 (0.032)® 
STR81 -0.253 (0.056) -0.192 (0.049) -0.146 (0.027) a,I 
STR86 •. 1 -0.073 (0.054)® -0.091 (0.050) -0.020 (0.029)® 

Number of Observations 62 62 62 
Degrees of Freedom 52 52 52 
R2 0.9932 0.9935 0.9923 
Durbin's h 0.42 0.16 1.61 

1. The dependent variable in each cru;e is l11(PAS1). 

2. Assuming that the exponential decay parameter for each independent lingering effect 
variable i equal to negative infinity. In essence, each incident affects transit ridership 
on ly in that quarter in which the incident actually occurs. Immediately thereafter, the 
incident's effect on transit ridership reduce to zero, and remains there. 

3. A~suming that the exponential decay parameter for each independent lingering eCfect 
variable is equal to -1.0. 

4. Assuming that the exponential decay parameter for each independent lingering effect 
vnrinhl~ i~ l'.x;irtly i:-qunl to zero. In essence, each incident uffccts transit ridership 
permanently by a given percentage, beginning in that quarter in which the incident 
actually occurs, and continuing forever arter. 

Note: Standard errors for all independent variables are given in parentheses next to each 
parameter estimate. All parameter estimates listed in this table are significant at the 0.05 
level of confidence or higher, using a one-tailed test. Those parameter estimates marked 
with an @ are not significant at the 0.05 level. 



TABLE 5 INCIDENT-RELATED TRANSIT RIDERSHIP FORECASTING MODELS: 
EMPIRICALLY DERIVED COMBINED EFFECTS 

Model 

Independent 
Variables 

Intercept 
ln(VSM) 
ln(EMP) 
ln(PAS1_1) 

SEA1 
SEA2 
SEA3 
GAS790 •1 
STR8 l0 •1 
STR860 ,1 

Numher of Observations 
Degrees of Freedom 
R2 
Durbin's h 

Alternative Model Formulations 1 

4.1 

Equal Exponential 
Decay Paramelers2 

-3.529 
0.714 (0.064) 
0.609 (0.073) 
0.265 (0.054) 
0.034 (0.016) 
0.105 (0.017) 
0.041 (0.017) 
0.159 (0.031) 

-0.191 (0.031) 
-0.094 (0.036) 

62 
52 
0.9946 
0.27 

4.2 

Varying Exponential 
Decay Paramctcrs3 

-4.237 
0.772 (0.059) 
0.694 (0.0(i7) 
0.229 (0.048) 
O.O:l2 (0.014) 
O.IJ95 (0.016) 
O.OJ9 (0.015) 
0.200 (0.039) 

-0.157 (0.024) 
-0.129 (0.033) 

62 
52 
0.9957 
1.47 

1. The dependent viiriahle in each cusi: is ln(PAS ). 
2. Assuming that the exponential decay parameter for each combined abrupt, lingering effect 

variable is equal w -0.20. This as. umption maximizes goodness of fit (R 2
), given that 

the exponential decay parameters for all incident variahles must be exactly identical. 
Derived through iteration. 

3. Assuming that the exponential decay parameter for the 1979 gas shortage variable is 
equal to -0.68. for the 1911 I work stoppage v:1riahlc is equal to -0.0(>, aml for the 1986 
work stoppage variahle i~ equal to -0.21. These assumptions ma~imizc gonuncs.-of-fi t 
(R2), given tli~1t exponential decay parameters for incident vari11hlcs arc :tlluwc<.I to vary 
in<.lepen<.lently. This solution was arrive<.! at through an itera tive process, beginning with 
marginal adju. tmcn1s in the exponential decay parameters fo r each of the 1hree Incident 
v;1ri;ihles sequcniially, and enuing when no further exponential uccay parameter 
adjustment yielded an increase in R~. The itcrutive order in which :1Llj l1s t111ents were 
made did not affect the final oulcome in this example. Fuilure to converge to a unique 
solution, independent of the path taken, might have intlicat d model specification 
problems, which were not in evidence here. 

Note: Standard errors for all independent variables are given in parentheses next to each 
parameter estimate. All parameter estimates listed in this table are significant at the 0.05 
level of confidence or higher, using a one-tailed test. 
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TABLE 6 INCIDENT-RELATED TRANSIT RIDERSHIP FORECASTING MODELS: 
ABRUPT AND LINGERING EFFECTS SEPARATED 

Alternative Model Formulations1 

Model S.l S.2 

All First Two 
Independent Observations Observations 
Variables Employed2 Removed3 

Intercept -4.215 -4.532 
ln(VSM) 0.725 (0.072) 0.824 (0.072) 
ln(EMP) 0.707 (0.077) 0.707 (0.071) 
ln(PAS,_,) 0.262 (0.060) 0.207 (0.055) 
SEA1 0.040 (0.014) 0.030 (0.013) 
SE~ 0.101 (0.015) 0.094 (0.014) 
SEA3 0.039 (0.015) 0.038 (0.013) 
GAS798 

0.187 (0.041) 0.192 (0.036) 
STR8l4 

-0.227 (0.044) -0.197 (0.039) 
STR86A -0.073 (0.042) -0.068 (0.037) 
GAS791 0.110 (0.042) 0.119 (0.037) 
STR811 -0.131 (0.025) -0.152 (0.024) 
STR861 -0.151 (0.037) -0.154 (0.033) 

Number of Observations 62 60 
Degrees of Freedom 49 47 
R2 0.9962 0.9957 
Durbin's h 1.56 0.89 

1. The dependent vari11hlc in each case is ln(PAS,). 
2. The empirically derived exponential decay parameters which provided the best overall 

goodness-of-fi t in Model 5.1 were -infinity for the 1979 gas shortage lingering effects 
variable, -0.040 for the 1981 work stoppage lingering cffe ts vari:1ble, and -0.32 for the 
1986 work s10ppage lingering effects variable. 

3. The empirically derived exponcutial uecay parameters which provided the best overall 
goodness-of-fit in Model 5.2 were -l.I ror the 1979 gas shortage lingering effects variable, 
-0.051 for the 1981 work stoppage lingering effects variable, and -0.32 for the 1986 work 
stoppage lingering effects variable. 

Note: Standard errors for all independent variables are given in parentheses next to each 
paral'neter estima te. All parameter estim(lles listed in this table are significant at the 0.05 
level of confidence or higher, using a one-tailed test. Those parameter estimates marked 
with an @ are not significant at the 0.05 level. 

curred since 1973. In this case, Model 5.2 has lower serial 
autocorrelation, but al ·o a lower R2 , than Model 5.1. Figure 
4 how erial autocorrelation for Model 5.1 , the theoretically 
least re. tric:l~rl . ::1nrl thu preferred mod I. with full incident 
effects, and all observations included . Although serial auto-

correlation is ace ptable (barely) and the independent effect 
of au three incident has been accounted for ucce sfully 
three new ob crvations appear a outlier ·, all three occurring 
rel,1livdy t:.arly in OCTD' history. 'I he. e three l>servation 
cannot be m deled ea ii as incident-, although they may be 
related to the 1973 oil crisis , or major service expansion . The 
primary reason for this inability to model uch incidents is 
lack of data. OCTD did not begin operations until 1973. It is 
thus impossible to know exactly what equilibrium transit rid­
ership would have been in Orange County before start-up in 
1973. Without prio r data , it is dangerous and sometimes highly 
inaccurate to try to model the aftereffects of specific incidents. 
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FIGURE 4 Serial autocorrelation, Model S.l. 

Another method of dealing with outlier observation. is to 
eliminate them from the analysis. In the case of time series 
analy ·is how ver, bservation cannot be plucked at random 
from lhe data ba e. A continuou stream of. data is required. 
Tbis suggests that ob ervations could le modified in valu to 
conform to model predicti ns (a omewhat dubious practice), 
or entire segments of data including outliers could be elimi­
nated from the beginning or end of the contiguous time eries. 
Model 5.1 was ree timated with the first 2, 5, and 11 obser­
vation. eliminated. With the first two ob ervations removed, 
R2 decreased burs did Durbin's h. It wa fe lt by the author 
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that the loss in R2 was more than made up for by the reduction 
in serial autocorrelation in Model 5.2. Removing additional 
observations from the data resulted in additional reductions 
in R2

, and also increasing serial autocorrelation in relationship 
to Model 5.2, and are not further considered. 

The effects of incidents on transit ridership using Model 5.2 
as the basis for comparison are shown graphically in Figure 
5. The 1979 gas shortage is shown to have a large, abrupt, 
and temporary effect on transit ridership, which virtually dis­
appears once gasoline is no longer in short supply. The 1981 
work stoppage was prolonged. No service was provided to 
patrons during this strike. The result was a large decrease in 
transit ridership, which did not return to normal for a long 
time. The 1986 work stoppage was much shorter, and limited 
service was provided to patrons by trained supervisorial and 
management personnel under a well-kept secret contingency 
plan during the strike. The result was a similar loss in ridership 
to the 1986 work stoppage, which rebounded toward normal 
levels of patronage much more quickly. Note that the abrupt 
effect of the 1986 work stoppage was smaller than might be 
expected, presumably because this strike occurred at the very 
end of a quarter. 

Role of Pricing in Determining Orange County Transit 
Ridership Trends 

The economist in the audience will have noted already the 
absence of a pricing variable in any of the forecasting models 
so far presented . This omission was not accidental, but the 
result of preliminary model testing that found pricing variables 
to have no significant effect on transit ridership in Orange 
County, once the effect of incidents had been included. Figure 
6 shows pricing trends for automobile (average gasoline price) 
and transit (average bus fare) over the 15-year study period. 
Inclusion of a transit price variable in the first and second 
series of models (Tables 2 and 3) produced significant price 
elasticities varying around - 0.3, the industry standard. How­
ever, serial correlation remained a problem in these models. 
When transit pricing was included in the incident impact models 
(Tables 4-6), the elasticities dropped to a range of about 
-0.03 to -0.06, and were no longer found to be significant. 
Similarly, gasoline prices were not found to have a significant 
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FIGURE 5 Effects of incidents on transit ridership. 
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FIGURE 6 Trends in pricing. 

independent effect on transit ridership in any of the models 
considered here. 

The Chapman forecasting model developed for use by OCTD 
used a transit/automobile price ratio variable that was signif­
icant, had a value of -0.3, and was associated with significant 
serial correlation and parameter biases (J) . Why does pricing 
seem to have little if any effect on OCTD transit ridership at 
the aggregate level of analysis? A review of secular trends in 
the characteristics of OCTD transit patrons may reveal part 
of the answer (11-13). As Table 7 shows, OCTD patrons 
increasingly are captive riders making nondiscretionary trips . 
In 1987, 58 percent of all trips made were work trips, 70 
percent of riders were regular users of the system, and 80 
percent of patrons had no car available to them to make the 
trip . Captive riders have low price elasticities of demand for 
nondiscretionary trips, and virtually zero cross-price elastic­
ities for competitive modes that, like the automobile, are out 
of reach for them, at least in the near term (14) . Flat fare 
systems such as the one used in Orange County often con­
tribute to this lack of price sensitivity on the part of transit 
patrons (15) . 

Ironically, OCTD financial planning staff recommended 
implementing a 25-cent fare increase in 5-cent increments over 
5 years, to minimize potential transit ridership losses . Taking 
inflation into consideration, such a policy constitutes main­
taining a constant fare over time in real dollars , for which the 
price elasticity of demand should indeed be 0. These results 
also reconfirm the notion that OCTD transit ridership in­
creased in 1979 in response to a temporary shortage of gas­
oline, rather than to a more permanent increase in its price . 

CONCLUSIONS 

Cross-sectional models are generally evaluated on the basis 
of theoretical validity, conformance with theoretical expec­
tations concerning the magnitude and direction of change, 
and overall model goodness-of-fit. Individual parameter es­
timation error terms and confidence intervals may be signif­
icantly biased, if serial autocorrelation of the error terms in 
prediction is present, for time series dependent variables. In 
order to prevent temporally related biases from introducing 
major errors into forecasting models and procedures, various 
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TABLE 7 SECULAR TRENDS IN OCTD RIDER CHARACTERISTICS 

Year of On-Board Survey 
OCTD Rider 
Characteristics 19761 19791 19822 19873 

Regular Rider4 52% 63% 70% 70% 

Trip Purpose 
58%5 Work 35% 46% 46% 

School 35% 25% 26% 18% 
Shopping 10% 11% 10% 7% 
Recreation 7% 5% 4% 5% 
Other 13% 13% 14% 12% 

Age 
Under 16 12% 10% 8% 8% 
16-64 79% 80% 82% 83% 
Over 65 9% 10% 10% 9% 

Female 58% 58% 57% 54% 

Low ~ncome6 74% 55% 51% 45% 

No Car Available for Trip 76% 71% 74% 80% 

Ethnicity 
White not not 64% 46% 
Hispanic asked asked 21% 34% 
Asian 8% 7% 
Black 5% 6% 

Sample Size not 10,669 21,866 approx. 
available 17,000 

1. DMJM and COMSIS Corp., 1981. 
2. TRAM, 1983. 
3. NuStats, Inc., 1988. 
4. Rides five or more days per week. 
5. This figure may be high, in that the 1987 system-wide on-board survey sampled bus trips 

in the a.m. only, rather than all day. 
6. Annual household income less than $15,000, in cu"ent dollar.r. 

tech niques are available. Generally explicit rcpres ntation 
of the underlying theorelicaJ temporal proce es through tht: 
use of time series tran formation of the dependent variable , 
are required to reduce serial autocorrelation, absent the use 
of indirect estimation methods that are not discussed here. 
Ostram (4) provides an introduction to indirect estimation 
techniques, for those who might be interested. 

Time series methods include the use of serial and seasonal 
autoregressive terms, djfferenced or integrated equation , 
moving average models , etc. If the independent variables u ed 
in the model are influenced by temporal processes, these should 
be considered, particularly if such "independent" temporal 
processes are related to those endogenou temporal proces es 
that are known or hypothe ized to infiuence the dependent 
variable. 

Models of the type discussed in this paper may provide 
more reliable mea ures f policy sensitivity, as well as more 
accurate forecasts of future conditions with respect to the 
dependent variable. These improvem nts can be tested em­
pirically using ex ante or ex post comparative evaluation mea­
sures. Ex ante evaluation requires making a foreca t and 
waiting for the forecast period to expire before comparing 
foreca t and actual results. Ex post evaluation or backfore­
casting, is done by excluding some of the most recently avail­
able data from model estimation, and comparing this model 

output with actual results. Technically, only information on 
exogenous variables that was available before the backfore­
cast time period should be used in making ex post backfore­
casts, for the sake ::if methodological consi tency. The model 
di cus ed here will probably increase in utility to planners and 
µulicy analy cs as time series analys1 technique and data 
become more readily available and understood. Rand m sam­
ples of time series data can be used to lower data collection 
co ts, as long as sucb data are sampled systematically (16,17). 
The use of uch techniques in research and development eem 
to be increasing. Periodic updating, t tin , and valuati n 
of uch time series m del re ults a are in use by pra ticing 
planners will enhance under tanding and abi lity to use the e 
versatile methods in the future. Practical advantages of thi 
class of methods should include more accurate foreca ting 
abili ty, although this must await further testing of application. 
in the field for verification. 

In terms of policy, the effects of incidents on transit rider­
shlp can be modeled quite accurately to determine temporal 
variations in the lingering effect of such incident . The ability 
to measure pa t responses to incidents hould hel1 planner 
and decj ion makers in preparing for anticipated future hocks 
to transit performance, wheth r po itive or negative in nature. 
lr would be useful to know if the results reported here for 
incidents can be duplicated partially or wholly in other parts 
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of the country, with similar or different types of transit mar­
kets in operation. A 1966 transit strike in New York City 
resulted in permanent regular ridership losses of only 2.1 
percent for work trips, 2.6 percent for shopping trips, and 2.4 
percent for all other trips, on the basis of an ex post travel 
behavior survey (18). Are the measured results for Orange 
County reported here much greater because of differences in 
sampling procedures, differences in modeling procedures, dif­
ferences in the timing of work stoppage occurrence, differ­
ences in the spatial configuration of transit markets, or other 
factors? Additional study using data from multiple transit 
agencies might assist in answering some of these questions. 
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