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Peak-Load-Congestion Pricing of Hub 
Airport Operations with Endogenous 
Scheduling and Traffic-Flow Adjustments 
at Minneapolis-St. Paul Airport 

JOSEPH DANIEL 

Hub airlines schedule banks of flights that create periodic demand 
peaks. During these peaks, arrival and departure rates approach 
or exceed airport capacity and queues develop. Under the current 
weight-based landing-fee structure, excessive delays result be
cause airlines ignore the delays their operations impose on other 
airlines and their passengers . Congestion-based airport pricing 
would encourage airlines to use larger aircraft with lower service 
frequency and to shift their operations away from the peak, thereby 
reducing congestion. A model is presented of the adjustment of 
flight schedules and traffic flows in response to weight-based and 
congestion-based fee structures. With data from the Minneapolis
St. Paul airport , the model is applied to calculate equilibrium 
congestion fees, schedule frequencies, traffic patterns, landing 
and takeoff costs, airport revenues, and resource savings from 
peak-load-congestion fees. 

Most major airports in the United States assess landing fees 
that are proportional to aircraft weight and independent of 
time of operation . The social cost of a landing or takeoff, 
however, consists primarily of the additional delay the op
eration imposes on all the aircraft and travelers using the 
airport at approximately the same time. These costs are es
sentially independent of aircraft weight and vary considerably 
with time of operation. Weight-based fees encourage frequent 
service by small aircraft during peak periods and fail to ap
propriately manage demand. Use of weight-based fees has 
led to unnecessarily high levels of congestion and delay . 

FAA estimates.that airport congestion delay costs the air
lines and their passengers $5 billion annually in increased 
operating costs and travel time. A Transportation Research 
Board report (J) indicates that 21 large hub airports each 
experience more than 20,000 plane-hours of flight delay an
nually and predicts that within the next decade 39 airports 
will exceed that level. Delays at Chicago, Atlanta, and Denver 
could approach 100,000 plane-hours annually. Air traffic is 
expected to double by early in the next century. In the past, 
the congestion problem has been addressed mainly by in
creasing capacity. Little effort has been made to manage de
mand. Expansion of an existing airport or construction of a 
new airport, however, can cost several billion dollars. Given 
the high cost of increasing capacity, it would seem wise to 
make efficient use of airports before resorting to expansions 
or new airport construction. 
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Economists have a standard solution to the congestion 
problem-use the price system to allocate scarce airport ca
pacity and bring demand into line with short-term supply . The 
optimal fee equals the marginal external delay costs that an 
airplane imposes on other airplanes and travelers using the 
airport at approximately the same time. Such fees would cause 
the airlines to internalize the congestion externality they cre
ate, thereby encouraging cost-minimizing scheduling deci
sions. It has been shown that if airport capacity exhibits con
stant returns to scale, congestion fees will yield revenues exactly 
sufficient to pay for optimal long-run capacity (2). 

The role of atomistic hub-and-spoke route networks (ones 
in which each route is served by a different airline) is examined 
as the cause of traffic peaks that exacerbate the congestion 
problem. Existing models of traffic flows in the transportation 
economics literature generally assume that the traffic is at
omistically operated-each car on the highway is owned and 
operated independently of other cars. Previous models of 
airport congestion also implicitly make this assumption 
(3-6). This paper continues in that tradition by modeling an 
airport serving an atomistic hub network. The model has his
torical relevance; the Civil Aeronautics Board prevented sin
gle airlines from dominating prederegulation hub airports. In 
the postderegulation environment, however, many airports 
are dominated by a single airline that accounts for more than 
half the airport's operations. In scheduling airport arrivals 
and departures, a profit-maximizing dominant airline would 
internalize the delay that one of its aircraft imposes on an
other. An atomistic airline, on the other hand, would take 
delay as parametric. Dominant airline operations, therefore, 
impose less external congestion than atomistic airline oper
ations. If a constrained-optimal fee structure is not to dis
criminate between dominant and atomistic airlines, it must 
be a compromise between a fee equal to the external conges
tion imposed by the dominant airline and a fee equal to the 
external congestion imposed by atomistic airlines. The model 
presented here is a preliminary step toward modeling the more 
difficult and realistic case of an airport with a dominant hub 
airline and an atomistic fringe. 

The model of atomistic hub scheduling (an adaptation of 
Mohring's (7) model of direct-service bus scheduling to an 
air-service network] is integrated with a model of traffic flows 
through an airport bottleneck. [The bottleneck model draws 
on the work of Vickrey (8).] In the scheduling model, the 
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airlines choose plane size and service frequency to minimize 
the sum of their own and their passengers' costs. In the bot
tleneck model , each airline chooses its flight's arrival time at 
the airport to minimize the sum of its queuing costs and lay
over costs. Traffic patterns at the bottleneck are determined 
endogenously. Previous congestion-based pricing models either 
treat traffic patterns as exogenous or assume zero intertem
poral cross-elasticity of demand (i.e ., demand is a function 
of the current period's price alone, and no shifting of demand 
to other periods occurs). The scheduling model captures the 
effects of intertemporal demand shifts and predicts changes 
in aircraft . i7.e and chedule frequency in response to conge -
tion fee . The bottleneck model captures the effects of pcak
spreading in response to the fees. Together, the models enable 
calculation of equilibrium fees and traffic patterns. Finally, 
the models introduce layover delay into the analysis of airport 
congestion and show that the hub airlines face a trade-off 
between congestion and layover delays. Gains from reduced 
congestion are partially offset by increased layover delays for 
the hub airline and its passengers. 

The model is applied to traffic data from the tower logs of 
Minneapolis-St. Paul (MSP) airport. The data set gives the 
time of every operation at the airport during the first week 
of May 1990. Because no reliable data on actual queue lengths 
exist, a queuing model is used to infer the expected queue 
lengths given the actual arrival rates . A discrete time version 
of a bottleneck model is then fit to the arrival and queuing 
data. The model estimates the equilibrium conge ·tion fees, 
traffic patterns, queuing delays, layover costs, airport's rev
enues, real resource savings from reduced congestion, and 
changes in the airlines' schedule frequency and aircraft size. 

ECONOMICS OF HUB-AND-SPOKE NETWORKS 

Airlines face significant economies of scale and scope in pro
viding their services . The fundament:il sr.:ile economy arises 
at the conveyance level. The cost of an airplane anti its crew 
increases less than proportionately with increases in plane 
size, so cost per seat-mile decreases as the number of seats 
on a plane increases. Economies of scope result from joint 
production of trips between many different city pairs. Hub
and-spoke route ne tworks enable airlines to fly passengers 
witb the same origin but different destinations on a single 
flight to the hub. Similarly, passengers with the same desti
nation but different origins can be combined on a single flight 
from the hub. Because a given number of passengers can be 
served more frequently with fewer flights on larger planes, 
the cost to an airline of conveying each passenger in a hub
and-spoke network is less than that by direct service. This 
reduction in cost is partially offset, however, by the increased 
circuity of routes and by the introduction of layover delay. 

Airline passengers play both a consuming and a producing 
role in air travel. They combine airline services with their own 
time inputs to produce trips . The passengers' time inputs con
sist of time in transit and schedule, congestion, and layover 
delay. (Time in transit is the time passengers actually spend 
on the plane, exclusive of the time spent because of congestion 
delay. Schedule delay is the difference in time between the 
passengers' preferred departure time and the closest sched-
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uled departure time. Congestion delay is the time spent sitting 
at the gate or on the taxiway waiting for clea rance to take off 
plu the time spent circling in the ai r waiting for clearance t 
land. Layover de lay is the time that connecting pa, sengers 
spend at a hub airport between their first flight 's arrival and 
their second flight · departure. ) 

The passengers' time inputs required to complete a trip 
depend on tile rate at which the ai rline provid its services. 
If the airline increases its schedule frequency it · pas engers' 
schedul delay decrea ·e, on average , but its co t per eat 
increa es on the ·mailer air planes. Similarly if the airlines 
schedule more frequent landings a11d lakt::offs at the hub , the 
average layover delay will decrease but the average congestion 
delay will increa e. The full co l of a flight is the sum of the 
pas engers' time costs and the airline' s operating costs. 

Given equal elasticities of demand across groups of pas
st::ngers with different time values, a profit-maximizing airline 
will choose the socially optimal service frequency-that which 
minimizes the sum of its own and its passengers' costs. An 
intuitive explanation of this fact is as follows. Suppose that, 
by increasing its service frequency , the airline could reduce 
its passengers' costs by more than the increase in its own costs. 
Then a simultaneous increase in frequency and price by an 
amount equal to the reduction in its passengers' costs would 
not change the full cost of service to passengers and, hence, 
the rate at which they travel. The simultaneous change in 
frequency and price, therefore, would increase its profits. The 
airline's profit-maximizing scheduling departs from socially 
optimal scheduling, however, insofar as uncompensated 
congestion externalities are imposed on other airlines and 
their passengers . 

If the airport had unlimited capacity and flights were always 
on schedule, airlines would schedule all their planes to arrive 
at the hub airport at the same instant. There would be a brief 
interchange period while passengers transferred to their con
necting flights. All planes would then depart at the same 
instant. Unfortunately, flights deviate randomly from their 
expected arrival times, and airport can accommodate only a 
limited number of landings or takeoffs in a given period of 
time. As the volume of traffic increases, landing and takeoff 
queues develop . If the airlines scheduled all flights to arrive 
precisely at the beginning of the intercliange period , the flights 
that arrived close to their ched uled time would face long 
delay$ because of the high traffic volume near the beginning 
of tbe interchange. Some of the flights would arrive early and 
experience small queues but have to wait longer until the 
interchange period began. Others would arrive after the in
terchange began and these passengers would either delay or 
miss their connections. Each airline has an incentive to adjust 
its flight's arrival chedule to minimize the sum of its expected 
costs of arriving early , waiting in the queue, and arriving late . 
An equilibrium traffic flow results when the arrival schedules 
and expected queue lengths are such that no airline can reduce 
its flight's expected co ts by changing its schedule. Assuming 
that all aircraft have identical co ts, the equilibrium expected 
cost of scheduling an arrival at all periods must be identical
otherwise, flights scheduled at high-cost periods could reduce 
costs by moving to low-cost periods. These observations about 
airline scheduling will be formalized in a model in the next 
two sections. 
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MODEL OF ATOMISTIC HUB-AND-SPOKE 
ROUTE NETWORK SCHEDULING 

Atomistic airlines operate a hub-and-spoke route network 
that serves a large hub city located at the center of a circular 
market and n rim cities located at equal intervals around the 
circle's circumference. It takes h hours to fly from hub to rim. 
The cost per hour of flying an airplane with P passengers is 
aPb, where a and b are cost parameters . A bank of 2*n flights 
can convey travelers between all cities in the route network. 
The cost to the network of flying all the airplanes in one bank 
from the rim cities to the hub and back again is $2naPbh. 

Travelers in each direction on hub-to-rim (or rim-to-hub) 
and rim-to-rim routes have desired departure times that are 
uniformly distributed at the rate of Dh and D, per hour, re
spectively . Random variations in demand are ignored. On 
each airplane, the hub combines passengers on a hub-to-rim 
(or rim-to-hub) route with passengers on (n - 1) rim-to-rim 
routes. The effective demand density for each flight in a bank 
is therefore D = Dh + D, (n - 1) travelers per hour. If the 
airplanes all have P passengers , there will be DIP banks per 
hour and the interval between banks will be PID hours . On 
average, a passenger will experience a schedule delay equal 
to 1/cx of the interval between banks, where 1/a is in the 
interval Y4::; 1/cx ::; Y2. If all passengers choose the flight closest 
to their desired departure time, then l/cx = Y4, and if all 
passengers pick the flight that will arrive at a destination 
before a given time, then l/cx = Y2. Let r = D,(n - 1)/D be 
the fraction of indirect passengers on each flight. In each bank 
there are nP passengers originating at the rim cities and 
(1 - r)nP passengers originating at the hub. If the average 
passengers pays $v0 per hour to avoid schedule delay, then 
the total cost of all passengers' schedule delay is [(2 - r)nPv0 ]PI 
(cxD) per bank. 

There are rnP indirect passengers in each bank who have 
to spend 2h hours in transit and 2(1 - r)nP direct passengers 
in each bank who spend only h hours in transit . If the average 
passenger pays $v1 per hour to shorten the length of a trip, 
then the total cost of all passengers' time in transit is 2nPhv 1 

per bank. 
The airlines and their passengers also experience costs caused 

by congestion and layovers at the hub airport. Let C" and Cd 
denote the sum of congestion and layover costs experienced 
by an airplane and its passengers on landing at and taking off 
from the hub airport. Let C; denote the cost of time spent 
during the interchange period. c. and Cd are determined be
low in the bottleneck model and C; is a parameter. The total 
cost of congestion and layover is n( C0 + Cd + C;). 

The sum of the passengers' and airlines' cost of operating 
the hub-and-spoke network for an hour is 

D p 
p {2naPbh + [(2 - r)nPv0 ] aD 

+ 2nPhv1 + n(C0 + Cd + C;)} (1) 

A profit-maximizing or full-cost-minimizing hub network would 
choose P to minimize expression 1. 

To simplify the previous scheduling problem, all the rim 
cities in the hub-and-spoke network are assumed to be equi-
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distant from the hub, and all have identical demand densities. 
As a result, the optimal plane sizes and service frequencies 
are identical for all the hub's routes . This· greatly simplifies 
the mathematics of the model. In reality, however, the airline 
faces different demand densities and different flight distances, 
so its bank interval cannot simultaneously optimize service 
on each route. Some cities with low demand density may not 
be served in every bank. Increasing airport fees may cause 
some cities to be served in fewer banks, resulting in lower 
congestion and higher schedule delay. The model does not 
capture this effect and therefore tends to underestimate the 
reduction in congestion costs that would result from conges
tion pricing. 

DISCRETE TIME BOTTLENECK MODEL WITH 
STOCHASTIC ARRIVALS 

Let S, denote the number of flights scheduled to arrive during 
period t and p1 the probability that a flight will arrive j periods 
from its scheduled time. If A, denotes the expected number 
of arrivals during period t, then 

Let Q, = Q(Q,_ 1, A,_ 1) denote the expected length of the 
queue at the beginning of period t, a function of the expected 
queue at the beginning of the previous period and the ex
pected number of arrivals during the previous period. Let k 
be the number of airport operations that can be performed 
in one period. The expected delay, D,, experienced by planes 
arriving in period tis D, = (Q, + Q,+1)/(2k). Let Cq be the 
amount that an airline and its passengers would be willing to 
pay to avoid one period of queuing delay . Similarly, let c. 
and C1 be the amount that they would be willing to pay to 
avoid a period of earliness or lateness . The beginning of the 
interchange period occurs at period T0• The expected cost of 
a landing scheduled for period t is 

C, = Cq L p1 D,+1 + C. L pJTo - (t + j 
J Js. To - r-Dr +; 

+ D,+)] + C, L pJ(t + j + D,+) - T0 ] 
j > To-r-Dr+ j 

A no-fee atomistic bottleneck equilibrium is a sequence {S,, 
A,, Q,, D,, C,}, T = ( - oo . .. oo), that, given p , Cq , C., C" k , 
and a queuing process , Q (-) , satisfies 

D, = (Q, + Q,+ 1)1(2k) 

C, = Cq L p1D,+1 
I 

+ C. L p1 [To - (t + j + D,+) ] 
j s.To- 1-D1+j 

+ C, L p1 [(t + j + D,+) - To] 
j > TO - t-D1+j 

(2a) 

(2b) 

(2c) 

(2d) 
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and 

(S, > 0) ~ (C, ~ C,.) for all t and t' (2e) 

The optimal congestion fee, F,, is equal to the marginal 
external congestion imposed by a landing in period t. Define 
the sequence A' such that A; =A; for i<>t and A; = A; + 
r for i = t. Define the sequence Q' such that Q; = Q(Q;_ 1 , 

A;_ 1) and the sequence D' such that D; = (Q; + Q;+ 1)/(2k). 
The delay cost incurred by a flight that actually arrives at 
period tis 

and 

Define the sequence C' such that 

and 

Now the optimal congestion fee can be written as 

F, - L (A;C; - A;C;)IE 
t 5 i 

A congestion-fee atomistic bottleneck equilibrium is a se
quence {S,, A,, Q,, D,, C,}, t = ( - oo . .. oo), that, given p, Cq, 
C., Cl> k, and Q(·) , satisfies Equations 2a, 2b, 2c, 2e, and 

C, = c . 2,p;D,+; + C0 2, pJT0 - (t + j + D, ,;)] 
I j :s. Tn -t-Dr+j 

+ C, 2, P; [(t + j + D, +;) - T0] + LP;F1 +; (2d') 
j> TO-t - Dr +j j 

Identical equilibriums can be defined for takeoff schedules, 
exce.pt that p, Cq, C., C1, k, and Q(·) may take different 
values . There is much less randomness in the departure than 
the arrival process, sop has a different distribution . Similarly, 
cq changes because the cost of being in the takeoff queue is 
lower than that of being in the landing queue. The relative 
values of Ce and C, in the takeoff schedule problem are the 
reverse of those in the landing problem. As stated previously, 
the equilibrium values of the expected cost of a scheduled 
landing (takeoff) are identical for all tin which arrivals (de
partures) are scheduled. The equilibrium values of C, for ar
rivals antl departures are the c. and Cd that appear in the 
scheduling model. 

Two assumptions made previously greatly simplify the bot
tleneck model-that all flights have identical cost parameters, 
Cq, C., and C1, and that all flights are part of the hub route 
network with the same desired arrival and departure times. 
As a consequence of these assumptions, the model ignores 
cost savings resulting from a relatively greater incentive for 
small flights and nonhub flights to shift their arrival and de
parture times away from the peaks. More will be said about 
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this point subsequently. Much of a typical airport's traffic , 
however, is part of its hub network. Code-sharing airlines 
cooperate with the dominant hub airline in scheduling and 
marketing their flights-they clearly are part of the network . 
Some unaffiliated regional-carrier flights and general-aviation 
flights transfer passengers to the hub flights: they, too, prefer 
to operate close to the hub's interchange period. Although 
nonhub commercial carriers do nol carry many passengers 
who want to make interline transfers , these flights are often 
scheduled for times close to the hub's flights to match the 
hub's service times and because the hub's banks occur at 
popular times of the day for travel. The nonhub carriers must 
have a substantial preference for operating at the same time 
as the hub's bank, because they are willing to incur the sub
stantial delays associated with it. Assuming that they prefer 
to land at the interchange times exaggerates the costs of shift
ing these flights off the peak and tends to underestimate the 
benefits of congestion pricing but is probably not too un
realistic. 

DATA AND EMPIRICAL SPECIFICATION OF THE 
MODEL 

To implement the model requires estimation of Q(-), p, Cq, 
C., C1, and k . Landing and takeoff data were gathered from 
the tower logs of MSP airport for all operations on May 1, 
2, 3, 4, and 8, 1990. The data show the flight number, aircraft 
type, destination (if a departure), and time that the aircraft 
contacted the tower to join the landing or takeoff queues. 
Figure 1 shows the average number of arrivals and departures 
that occurred during each 10-min interval on those days. The 
different shading of the bars indicates how many of the op
erations were attributable to Northwest Airlines (NWA); its 
code-affiliates, Express (NWX) and Mesaba (MES); other 
national carriers (OTH); general-aviation (GA); or air freight, 
military, and independent regionals (MISC) . The importance 
of Northwest Airlines' (i .e., the hub's) banks in creating the 
peak demand periods is evident from the graphs. It is also 
clear, as discussed earlier, that large numbers of other aircraft 
are willing to incur delays and operate during the bank pe
riods. This implies that their preferred schedule time is during 
the bank. The double vertical lines indicate the scheduled 
interchange periods, which are generally 30 min long. An 
interesting feature is that many departures overlap the sub
sequent bank's arrivals, even when minor adjustments would 
seem to avoid the overlap. This suggests that a mix of landings 
and takeoffs may require little more time than would be re
quired for the landings alone . Note also that arrival peaks are 
lower and less steep than departure peaks-a fact attributable 
to the greater randomness in the arrival process. 

Table 1 summarizes the peak demand periods at MSP. 
Northwest operates nine banks of arrivals and departures in 
about 17 hr each day . The average interval between banks is 
approximately 1.9 hr. Northwest's banks alternate service be
tween east-to-west routes and west-to-east routes, so that a 
given route in a given direction is generally served on every 
other bank. The highest-density routes, however, may be served 
in each direction on virtually every bank, whereas the lowest
density routes may be served only once a day . The largest 
banks interchange passengers between nearly every city in the 
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FIGURE 1 Arrivals and departures by 10-min intervals. 

hub-and-spoke network, whereas the small banks serve only Previous studies of airport queues have assumed a single queue 
the denser routes. operated on a first-come, first-served basis with no distinction 

Unfortunately, no reliable data exist about the lengths of between landings and takeoffs. It is more convenient here to 
the landing and takeoff queues. It is necessary, therefore, to assume a polar-opposite queuing discipline-two indepen-
use a queuing model to infer the lengths of the queues given dent queues, each operated on a first-come, first-served basis 
airport capacity, the arrival and departure process, and sev- with no interaction between landings and takeoffs. The truth 
era! simplifying assumptions about the queuing discipline. probably lies somewhere between these poles. Using hourly 

TABLE 1 TIMING AND SIZE OF FLIGHT BANKS AT MSP 

Time Type NWA NWX MES am GA MISC TOTAL 

06:00-07:00 Arrivals 1 5 7 8 4 7 0 41 
07:40-08:30 Departures 28 7 6 I 1 9 I 62 
07:30-08:40 Arrivals 27 6 2 4 1 0 I 50 
09:00-09:20 Departures 26 5 6 4 7 0 48 
09 :40-11 :00 Arrivals 28 8 5 1 1 7 3 62 
11 :30-12:00 Departures 26 6 2 7 4 0 45 
11 :40-12:20 Arrivals 29 4 6 9 9 0 57 
12:50-13:30 Departures 33 6 9 6 3 0 57 
13:00-14:00 Arrivals 20 7 2 1 2 4 0 45 
14:30-15:00 Departures 1 9 6 2 7 2 0 36 
16:00-17:20 Arrivals 34 7 9 1 5 1 6 2 83 
17:40-18:20 Departures 30 9 7 9 4 I 60 
17:40-18:40 Arrivals 32 6 5 4 9 3 59 
19:20-19:40 Departures 30 2 5 3 1 0 4 I 
19:00-20:10 Arrivals 1 7 2 2 9 1 0 8 48 
20:30-21:10 Departures 1 9 4 3 3 3 1 33 
20:20-22:00 Arrivals 28 4 5 1 0 6 9 62 
22:30-22:50 Departures 1 2 5 3 2 4 27 
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FIGURE 2 Landing and takeoff capacity for 10-min intervals. 

arrival, departure, and delay data, Morrison and Winston (9) 
found that landings have about twice the effect of takeoffs on 
delays experienced by an arriving airplane. Similarly, takeoffs 
have about twice the effect of landings on delays experienced 
by a departing airplane. Figure 2 shows the number of land
ings and takeoffs performed at MSP during 10-min intervals 
on the afternoon of April 24, 1990. The graph of the landing 
and takeoff possibilities frontier indicates some interdepen
dence between landing and takeoffs, but it is not linear as 
implied by the single-queue model. In the absence of adequate 
data to calibrate a more complicated queuing model, the as
sumption of two independent queues is adopted. 

Arrivals and departures are assumed to be Poisson distrib
uted, with time-varying Poisson parameters equal to the av
erage arrival and departure rates for each 10-min interval as 
given in Figure 1. The expected queue lengths are calculated 
for the given arrival and departure distributions using Omo
sigho and Worthington's (10) discrete time queuing model for 
single-server queues with inhomogeneous arrival rates and 
discrete service time distributions. The model uses the prob
ability distribution on queue lengths as a state vector and uses 
recurrence relations to calculate the state vector for each ser
vice interval given the time-varying arrival rate distributions. 
Because constant capacity is assumed, the model is similar to 
a Markov transition model, with the probability distribution 
on queue sizes as the state and transition matrices for each 
service interval, which change every 10 min to reflect the 
current distribution of arrivals. The calculations are based on 
an assumed airport capacity, k, of nine landings and nine 
takeoffs per 10-min interval. 

Figure 3 shows the arrival and departure rates and the 
resulting expected queue lengths at the beginning of each 
10-min interval. The arrival banks tend to peak and plateau 
at between 10 and 12 arrivals per 10-min interval. Arrival 
queues develop only during the hub banks and return to nearly 
zero as the bank ends. Their peaks do not plateau, and range 
in height from about 4 to 10 aircraft, depending on the size 
of the bank. The arrival rates and queue sizes increase and 
decrease at roughly the same rates across banks with different 
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numbers of flights. The departure rates and queue sizes are 
relatively more highly peaked, and increase and decrease more 
quickly. The rates of departure peak at between 10 and 18 
flights per interval, and the queue sizes achieve similar mag
nitude. Departure queues are significant only during the hub 
banks. 

Although the queuing model is necessary for initial esti
mation of expected q11e11e lengths, it is too computation<illy 
cumbersome to use in the bottleneck model. A regression 
model, however, can be fit to the queue estimates and the 
arrival and departure data . The regression equation is 

The regression estimates (with t-values in parentheses) are 

QI= -0.046 + 0.07QI-) + 0.021A/-l + 0.045Q/-I A t-I 
(-1.012) (4.093) (1.363) (33.739) 

+ 0.027Q~_ 1 + 0.028A~_ 1 Rz .995 
(26.384) (23 .676) 

Figure 4 compares the evolution of the queuing systems as 
estimated by the queuing model and the regression model. 
The simple regression model appears to describe the evolution 
of the queues remarkably well. 

To estimate the probabilities that tht: actual arrival anti 
departure times deviate from the scheduled time by j periods 
(i.e., p;), the actual arrival and departure times reported in 
the tower log were matched with the flights' scheduled times 
reported in the Official Airline Guide (11). The p1 histogram 
for arrivals is shown in Figure 5. The histogram indicates the 
probability that a flight scheduled to arrive at the gate at 
period t = 0 actually arrives at the queue during periods t = 
- 5 to 2, where each period is 10 min long. For example, 5 
percent of all flights arrive at the landing queue during the 
10-min interval centered on the time they arc scheduled to 
arrive at the gate. On average, flights arrive at the queue 1 R 
min before their scheduled arrival time at the gate, to allow 
ample time to land and taxi to the gate. For departing flights, 
97 percent of the times reported in the tower logs were within 
the same 10-min interval as their scheduled departme times. 
The tower log reports a few deviations from scheduled de
parture times, but no other time interval accounted for as 
much as 1 percent of the deviations. Frequent fliers will be 
excused for suspecting that the logs do not tell the whole 
story, but in the absence of better information, all flights are 
assumed to depart at their scheduled time (i .e., p 0 = 1). 

The cost parameters Cq, C., and C, can be estimated from 
observations of expected queue lengths, expected early-time 
deviation, and expected late-time deviation. Manipulating the 
equilibrium cost equation yields 

" D = C* _ C, ~ [ 
L.,, P; 1+; C C L.,, P; To - (t + j + D1+)] 

j q q i""'To-1-D1+1 

c, ~ . 
+ c L.,, P;[(t + J + D1+) - T0] 

q j > To-1-D1 +J 

It follows that least squares estimates of C) Cq and C1/Cq can 
be obtained by regressing observations of expected delay 
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FIGURE 3 Arrivals, departures, and queue lengths. 

"i,ipiD• +i on observations of expected early time 

L Pi [T0 - (t + j + D,+)] 
js.To - 1- D1 + j 

and expected late time 

L Pi [(t + j + D,+;) - T0 ] 
j > To - t - D1 + j 

Only time periods during which arrivals or departures were 
actually scheduled can be used in the regression. Because C* 
may vary for each bank, a dummy variable must be entered 
in the regression for each bank (except the first) from which 
data are used. The regression constant plus the relevant dummy 
coefficient can be interpreted as an estimate of C*/Cq for that 
bank. Using data from the six largest arrival banks, the es
timates for the arrival costs and their t-values are 

Exp delay= 0.673 + 0.03782 + 0.034B3 + 0.28284 + 0.39285 + 0.51386 

(6.317) (0.872) (0.81) (6.416) (9.239) (10.831) 

+ 0.134 (exp early time) + 0.932 (exp late time) 
(5 .405) (1.112) R' = .961 

Arrivals & Queues 

Depanures & Queues 

• Queues 

D Arrivals 

T ime 

•Queues 

[] Departures 

u 

Time 

7 

Because actual departure periods deviate practically not at 
all from scheduled departure periods and there are virtually 
no departures during the interchange periods, expected early 
time is omitted in the departure cost regression, and the early
time cost is assumed to be sufficiently large that no flights are 
scheduled to depart during the interchange. Using data from 
the seven largest departure banks, the estimates for the de
parture costs are 

Exp delay= 0.826 + 0.11482 - 0.28483 + 0.30884 - 0.72485 + 0.00886 

(5.425) (0.695) ( -1.731) (1.874) ( -4.311) (0.051) 

- 0.13187 + 0.169 (exp late time) R2 = .868 

(-0.8) (3.737) 

The high R2s in the regressions suggest that the airlines do 
trade off expected queuing delays against expected early and 
late times in accordance with the model. 

Although the bottleneck model depends only on the ratios 
C)Cq and C/Cq, the scheduling model requires assigning some 
monetary values to the parameters. Suppose that 10 min of 
queuing delay on landing costs the airlines and their passen
gers $350 per flight. Because early time on arrival is identical 
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FIGURE 4 Comparison of queues in regression model and queuing model. 
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FIGURE 5 Deviations of actual arrival times from scheduled arrival times. 
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to late time on departure, it follows that Cq = 350, Ce = 
46.9, and C1 = 326.2 on arrival and that Cq = 277.5 and C1 

= 46.9 on departure. 
Having estimated a queuing process, Q( ·), the probabili

ties, pi, and the cost parameters, Cq, C,, and C1, the equilib
rium S, A, Q, D, C, and F can be determined. The solution 
technique takes an initial sequence, S, and iteratively moves 
incrementally smaller numbers of scheduled arrivals from the 
highest-cost period to the lowest-cost period. After each 
iteration's change in S, the sequences A, Q, D, F, and Care 
recalculated. The algorithm quits when the expected cost of 
a landing (takeoff) in any period during which flights are 
scheduled converges to within 0.1 percent of all other such 
periods' costs. The system converges to the same equilibrium 
from widely differing initial sequences. 

RESULTS 

Figure 6 compares the equilibrium arrival and departure rates 
in the no-fee and congestion-fee equilibriums for hypothetical 
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banks of 40, 45, 50, 55, and 60 flights. The hypothetical no
fee arrival banks look quite similar to their similar-sized coun
terparts in Figure 3. In both, the banks begin to plateau at 
about 10 operations per 10 min, with larger banks spreading 
operations away from the interchange periods. As expected, 
the congestion-fee equilibrium arrival banks are more spread 
out than the no-fee banks. Their arrival rates peak more 
slowly and reach only 80 percent as high. 

As with the departure banks of Figure 3, the hypothetical 
no-fee departure banks of Figure 6 have much steeper and 
higher peaks than their corresponding arrival banks. In con
trast to Figure 3, however, they are much higher and oscillate 
between high departure rates and no departures. In the ab
sence of a fee, many flights attempt to leave immediately after 
the interchange period. A large queue develops, and no new 
flights join the departure queue until it diminishes. When the 
queue is short enough, there is another rush to leave and the 
process is repeated. These oscillations appear to dampen as 
the number of flights in a bank increases. The hypothetical 
congestion-fee banks, on the other hand, have quite modest 
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FIGURE 6 Effect of congestion fees on arrival and departure rates. 
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FIGURE 7 Effect of congestion fees on arrival and departure queue. 

peak-departure rates immediately following the interchange 
and very even and gradual tapering off of departures. 

Figure 7 shows the changes in queues that result from im
posing equilibrium congestion fees. The no-fee hypothetical 
arrival queues look very similar in slope and magnitude to 
those of Figure 3. They tend to peak with similar slopes re
gardless of bank size; larger banks have progressively higher 
queue peaks. Congestion-fee arrival queues are more spread 
out and achieve only about 50 percent of the peak size of no
fee queues. The reduction in departure queues is much more 
dramatic. Because of more even spreading of the congestion
fee departure rates, the departure queues are very small. The 
peak congestion-fee departure queue is about 17 percent as 
long as the corresponding no-fee queue. On average, flights 
experience much less queuing delay in the congestion-fee 
equilibrium but experience higher early- and late-time costs 
because of the peak-spreading. Those familiar with standard 
formulations of bottleneck models may wonder why any queues 
exist in the congestion-fee equilibrium. The standard for
mulation assumes no randomness in the arrival or departure 
process. Queues only develop when traffic exceeds capacity. 
The queuing process used here is estimated from a queuing 
model with Poisson arrivals and departures that generate pos-

itive queues with arrival or departure rates below capacity. 
Eliminating the queues would require very low arrival or 
departure rates and very long layover delays. 

Figure 8 shows the change in marginal external congestion 
between the no-fee and congestion-fee equilibriums. The mar
ginal external congestion schedules in the congestion-fee cases 
are, of course, the equilibrium congestion-fee schedules. The 
peak external congestion costs caused by arrivals decrease by 
about 50 percent in response to the congestion fees . The peak 
external congestion costs caused by departures decrease by 
between 66 and 75 percent. The equilibrium arrival fee sched
ule increases almost linearly with time as flights approach the 
interchange period. It peaks just before the interchange and 
then decreases very quickly, almost linearly. The equilibrium 
departure fees peak in the period following the interchange 
and decrease gradually with time, almost linearly. Thus, the 
optimal fees can be approximated using a simple piecewise 
linear fee schedule. 

Two additional observations should be made regarding Fig
ures 6 through 8. Randomness in the arrival process appears 
to mitigate the congestion externality problem. Peak external 
congestion levels are 50 to 66 percent less for no-fee arrival 
banks than for no-fee departure banks. Bottleneck models 
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FIGURE 8 Comparison of external congestion and equilibrium fees. 

that ignore randomness in the arrival or departure processes 
may seriously overstate the levels of congestion and the ben
efits of congestion pricing. That departures may be more ran
dom than indicated by the tower log data may explain why 
the departure rates and queues for the hypothetical no-fee 
banks are much higher and steeper than those in Figure 3. A 
second explanation may be that internalization of delay by 
the hub airline accounts for the difference . The actual rates 
of departure shown in Figure 3 fall between the hypothetical 
no-fee and the congestion-fee departure rates, as might be 
expected if the hub airline were partially internalizing delays. 

Table 2 shows the changes in landing and takeoff costs per 
flight resulting from imposition o( congestion fees. Columns 
2 through 5 are the equilibrium values of Ca and Cd for the 
no-fee and congestion-fee equilibriums, respectively. Column 
5 is the sum of Ca, Cd, and the weight-based fee for an average
sized aircraft (130,000 lb). In 1990, the weight-based fee at 
MSP was $0.70/1,000 lb, so the average fee was $91. Column 
6 is the sum of C and Cd for the congestion-fee equilibrium . 
Column 7 shows the increase in cost per flight resulting from 
the congestion fees. Depending on bank size , the increase in 
cost is between 60 and 95 percent of the weight-based fee and 
about 10 percent of total landing and takeoff costs with a 
weight-based fee. 

Table 3 shows the changes in airport revenues and resource 
savings per flight bank resulting from switching to congestion 
pricing. Airport revenues from the fees would increase three
to four-fold. The average increase in airport revenue per flight 
more than offsets the additional landing and takeoff cost per 
flight, resulting in a resource savings per flight of $125 to 
$205, depending on the number of flights in the bank . These 
resource saving are 25 to 30 percent of the total landing and 
takeoff costs experienced under the weight-based fee structure. 

In addition to spreading out the airport's arrival and de
parture peaks, congestion fees may also change the frequency 
of arrival and departure banks. The airlines choose aircraft 
size and flight frequency to minimize the full cost of operating 
the hub network as given in expression 1. To minimize expres
sion 1 requires knowledge of how Ca and Cd vary with changes 
in aircraft size, P, which in turn requires knowledge of how 
Cq, C., and C, vary with P. The cost parameters, Cq, C., and 
C1, are composed of passenger time costs, which are essen
tially proportional to P, and aircraft costs, which increase at 
approximately the 0.75 power of P. So, for example, Cq = 

o.P + ~pi 75
. Unfortunately, the data do not enable estimation 

of the coefficients, o. and ~ , which apportion these costs be
tween passengers and airlines. Using what it is hoped are 
reasonable assumptions about these coefficients, the following 
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TABLE 2 COMPARISON OF LANDING AND TAKEOFF COSTS 

Landing and Takeoff Cost per 

Flights in 
Landing Costs per Flight ($) Takeoff Costs per Flight ($) Flight ($) 

Increase in 
Bank Weight Fee Congestion Fee Weight Fee Congestion Fee Weight Fee Congestion Fee Cost per Flight" ($) 

40 282 332 314 320 
45 295 360 354 353 
so 322 391 391 389 
55 344 418 408 416 
60 363 446 444 448 

"Including fees. 

estimates of the relationship between landing and takeoff costs 
and aircraft size fit simulated data from the bottleneck model 
extremely well: 

C., + Cd = 13.558Po·834 for the no-fee equilibrium 

C0 + Cd = 13. 749Po 877 for the congestion-fee equilibrium 

The weight-based fees at MSP can also be estimated as a 
function of P : 

F = 0.24P1
·
23 

By substituting reasonable values for the parameters m 
expression 1, it can be rewritten as 

+ 2*60*P •2•25 + 60 [f*13.749 •Po 877 + 

(1 f)~ (13 .558-tPo·834 I 0.24*P 123) I (8•P I 4•Po·75)]} 

where f = 1 for congestion fees and f = 0 for weight-based 
fees . 

These parameters are chosen so that the solution for the 
weight-based-fee case is P = 117 and the interval between 
banks is 1.9 hr-the average values for MSP. The solution 
for the congestion-fee case is P = 117.625, which indicates 
that , given this parameterization of the model, the congestion 
fees have virtually no effect on service intervals. An inter
esting question is whether this result would hold for networks 
serving markets with different demand densities . Table 2 shows 
that significant reductions in cost per plane would result if 
there were fewer planes in a bank, but serving smaller markets 
with lower frequency than every bank would increase schedule 
delay in the small market. The current model does not answer 
whether the cost savings from smaller banks would exceed 
the increase in schedule-delay costs . 

TABLE 3 AIRPORT REVENUES AND RESOURCE SAVINGS 

596 652 56 
649 713 64 
713 780 67 
752 834 82 
807 894 87 

FURTHER RESEARCH AND CONCLUSIONS 

The model suggests a number of issues for further research . 
Foremost among these is the need to model the internalization 
of congestion by a dominant hub airline. Imposing atomistic 
fees on it would cause it to overinternalize the delay its air
planes impose on one another , thereby spreading its arrival 
and departure banks out too much. Because it would be un
acceptable to have fees that favor the hub airline , the 
constrained-optimal single-fee structure must balance over
internalization by the hub against underinternalization by the 
nonhub airlines. This issue has been overlooked in the past, 
but it must be significant at airports where a single airline 
accounts for more than half of the traffic. 

The model 's realism would be improved by relaxing the 
assumptions that all flights serve identical markets, are the 
same size, and have the same desired arrival and departure 
times at the hub. A primary political ubjecliun to imple
menting congestion pricing is its effect on service frequency 
in lower demand-density markets. The hub scheduling model 
could be extended to model networks in which some routes 
are served with less frequency than every bank , thereby pro
viding some insight about the effect of congestion pricing on 
service frequency in marginal markets. 

Allowing market density to vary would also require chang
ing the bottleneck model to accommodate flights of different 
sizes . Different-sized flights have different queuing and layover
delay costs. In a bottleneck model with flights of different 
sizes, the smaller planes with lower aggregate passenger and 
aircraft-delay costs would shift further away from the peak. 
In equilibrium, similar flights would still have identical costs 
regardless of arrival and departure time, but flights of differ
ent sizes would have different costs. (Smaller flights generally 
have smaller congestion fees than larger flights because they 
operate at less desirable times and because they impose delay 
mostly on other lower-cost fli ghts .) 

Finally, the model 's implications for optimal airport ca
pacity should be studied . Previous models of airport capacity 
have assumed that demand peaks are independent of capacity . 

Avg 
Total Airport Revenues ($) Increase in Avg Increase in Resource Resource Gain 

Flights in Airport Revenues Total Resource Gain as Percent of 
Bank Weight Fee Congestion Fee Revenues ($) per Plane ($) Gain ($) per Flight ($) No-Fee Costs 

40 3.640 10,867 7,227 181 4,987 125 24 .7 
45 4,095 13,460 9,365 208 6,485 144 25.8 
50 4,550 16.647 12,097 242 8,747 175 28.l 
55 5,005 19,508 14,503 264 9,993 182 27 .5 
60 5,460 22,951 17,491 292 12,27 1 205 28.6 
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The bottleneck model implies that additional capacity would 
increase the height and steepness of the demand peaks as 
airlines attempt to shorten the average layover period their 
passengers experience. Properly accounting for the benefits 
of additional capacity requires a model that includes layover 
costs and endogenous demand peaking. 

Several innovations m the airport congestion-pricing liter
ature have been introduced here. An atomistic hub-and-spoke 
network's scheduling problem is modeled, thereby explaining 
the underlying causes of the periodic demand peaking ex
perienced at hub airports. The model explains how airlines 
choose aircraft size and service frequency to minimize full 
costs of service and it captures changes in service frequency 
in response to congestion pricing. The hub-network model 
also motivates the use of a bottleneck model of the timing of 
arrivals and departures within the network's flight banks. The 
bottleneck model captures peak-spreading and the important 
trade-off between layover and congestion delay. The standard 
bottleneck model is extended to allow flights to deviate ran
domly from their schedules and is given a discrete-time spec
ification that facilitates empirical application of the model. 
Implementing the model for MSP describes the airport's ar
rival peaks quite well but overestimates the peak rates of 
departure and the resulting queues and congestion. The op
timal fees have a simple structure that leads to modest in
creases in airline and passenger costs and significant increases 
in airport revenues and net social welfare. 
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