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Sight Distance Models for Unsymmetrical 
Sag Curves 

SAID M. EASA 

Unsymmetrical sag (vertical) curves may be required at complex 
interchanges and other highway locations because of clearance 
and other controls. No relationships are available for designing 
or evaluating these curves on the basis of sight distance needs, 
so sight distance models for unsymmetrical sag curves are de
veloped for headlight and overhead obstacle controls. For head
light control, the model relates the minimum sight distance (Sm), 
vertical curve parameters, and vehicle and object characteristics. 
For overhead control, the model relates the available sight dis
tance, sag curve parameters, vertical clearance and location of 
overhead obstacle, and locations and heights of driver eye and 
object. A procedure for calculating Sm is presented. The distinct 
characteristics of sight distance on unsymmetrical sag curves are 
examined. To facilitate practical use, graphs and tables of the 
minimum sight distance for headlight and overhead controls are 
established. The length requirements and sight distance charac
teristics of symmetrical and unsymmetrical sag curves were found 
to be quite different. The developed models should be valuable 
in the evaluation of safety and operation of unsymmetrical sag 
curves. 

The current AASHTO models for designing sag curves based 
on stopping sight distance (SSD) consider two cases: headlight 
control and overhead obstacle control (1-4). The headlight 
sight distance depends on the position of the headlights and 
the direction of the light beam. Generally, the headlight height 
is 2.0 ft and the upward divergence of the light beam from 
the longitudinal axis of the vehicle is 1 degree. The AASHTO 
model defines SSD as the distance between the eye of the 
driver and the point where the light beam intersects the road 
surface. 

For overhead obstacle control, as in the case of a sag curve 
at an underpass, the structure may restrict the sight distance. 
The 1965 AASHO policy (2) presents formulas for checking 
the available sight distance or computing the required curve 
length assuming that the structure is centered over the vertical 
point of intersection (PVI). Derivation of these formulas can 
be found in work by Hickerson (5) and Ives and Kissam (6). 
The 1965 AASHO policy suggests a truck driver eye height 
of 6.0 ft and an object height of 1.5 ft, which may represent 
the vehicle taillight or a discernible portion of an oncoming 
vehicle. Olson et al. (7) evaluated the AASHO equations for 
a driver eye height of 9 ft, which is typical for cab-over-engine 
tractors, and an object height of 0.5 ft. They found that the 
resulting curves were about 10 percent longer than those found 
in the AASHO policy. 

Sag curves are normally designed for headlight control based 
on SSD. The available sight distance at an undercrossing sag 
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curve is then checked when special conditions exist; for ex
ample, at a two-lane undercrossing without ramps where pass
ing sight distance (PSD) is desirable (2). In addition, at com
plex locations where information is difficult to perceive, the 
decision sight distance (DSD) should be provided. DSD val
ues are presented in the AASHTO Policy on Geometric De
sign of Highways and Streets (Green Book) (4). Revised de
sign values have been developed recently for SSD by Neuman 
(8) and Olson et al. (7); for PSD by Harwood and Glennon 
(9), based on a model by Glennon (10); and for DSD by 
Neuman (8) and McGee (11). A methodology for operational 
and cost-effectiveness analysis of locations with sight distance 
restriction has been presented by Neuman et al. (12) and 
Neuman and Glennon (13). The effects of sight distance on 
highway safety have been reviewed by Glennon (14). 

Both the headlight and overhead control models assume 
that the sag curve is a symmetrical parabola whose tangents 
have equal horizontal projections. In some situations, such 
as at interchanges, an unsymmetrical curve may be required 
because of clearance or other design controls [ AASHTO ( 4)). 
The formulas for laying out unsymmetrical curves have been 
presented in a number of highway engineering texts (5,15); 
however, the available sight distance on these curves has not 
been addressed in the literature. Although the use of unsym
metrical curves in practice is infrequent, it is essential to en
sure that they provide safe operations. 

Sight distance models were developed for unsymmetrical 
sag curves for both headlight and overhead controls. For over
head control, the structure may lie at any point on the curve 
or tangent. The models can be used to design the required 
length of a new curve or to check the adequacy of the available 
sight distance on existing curves. A brief description of the 
unsymmetrical curve follows. 

The unsymmetrical vertical curve consists of two parabolic 
arcs with a common tangent at the intersection point, PVI, 
of the initial and final tangents (Figure 1). The horizontal 
projections of the two arcs, which are unequal, are denoted 
by L, and L 2 • The grades of these tangents are g 1 and g2 , 

respectively. The grade is positive if it is upward to the right 
and negative if it is downward to the right. The beginning 
point of the vertical curve (BVC) lies on the initial tangent 
with the adjacent arc designated as the first arc. The end point 
(EVC) lies on the final tangent with the adjacent arc desig
nated as the second arc. The second arc represents the smaller 
arc. These vertical curve terminologies are used regardless of 
the travel direction. The rates of change in grade of the two 
parabolic arcs are given by Hickerson (5). Let the ratio of 
the length of the second arc to the length of the curve be 
denoted by R. That is, 
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FIGURE 1 Geometry of sight distance for headlight control on an 
unsymmetrical sag curve. 
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(1) 

Then, Hickerson's formulas for the rates of change in grade 
can be written in terms of R as follows: 

r1 = (A/L)Rl(l - R) 

r 2 = (A/L)(l - R)IR 

where 

(2) 

(3) 

r1 , r2 = rates of change in grade of the first and second 
parabolic arcs, respectively, 

A = algebraic difference in grades (g2 - g1), and 
L = length of the vertical curve. 

For symmetrical curves, L 1 = L 2 , R of Equation 1 equals 
0.5, and Equations 2 and 3 yield equal rates of change in 
grade of AIL. The radius of vertical curvature (a measure of 
sharpness) equals the inverse of the rate of change in grade. 
Thus, for the unsymmetrical curve, the radius of the first and 
second arcs K 1 = l/r1 and K2 = 1/r2 . The radius of vertical 
curvature of the symmetrical curve K = l/r = LIA. There
fore, if L2 is the smaller arc, the second arc will be sharper 
and the first arc will be flatter than a symmetrical curve with 
the same length. Note that the variables g1 , g2 , and A are 
assumed to be in decimals in the developed relationships. 

HEADLIGHT CONTROL 

The geometry of sight distance for headlight control on an 
unsymmetrical sag curve is shown in Figure 1. The critical 
direction of travel for headlight control is generally from the 
smaller to the longer arc. The minimum sight distance, Sm, 
occurs when the driver is at EVC. For some cases, however, 
Sm will be the same in both travel directions. 

Geometric Relationships 

Relationships for the minimum sight distance are developed 
for three cases: 

•Case 1: Sight distance greater than curve length, 
• Case 2: sight distance less than curve length but greater 

than length of the smaller arc, and 
• Case 3: Sight distance less than length of the smaller arc. 

In all cases, h1 and u denote the headlight height and the 
upward divergence (in degrees) of the light beam from the 
longitudinal axis of the vehicle, respectively. The variable y 
is given by 

Case 1: Sight Distance Greater Than Curve Length 
(Sm ::=: L) 

(4) 

The geometry of Case 1 is shown in Figure la. The variable 
y is also written as 
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(5) 

Equating the right-hand sides of Equations 4 and 5 and 
substituting for L 2 from Equation 1 gives 

Case 2: Sight Distance Less than Curve Length but 
Greater Than Length of Smaller Arc (L2 :s: Sm :s: L) 

The variable y in Figure lb is written as 

(6) 

(7) 

Equating the right-hand sides of Equations 4 and 7 and 
substituting for L 2 and r1 from Equations 1 and 2 gives 

aU + bL + c = 0 (8) 

where 

a = (1 - 2R)RA (9) 

b = 2(1 - R)(h1 + Sm tan u) - 2(1 - 2R)S~ (10) 

c = -ARS;;, (11) 

The solution of Equation 8 is given by (considering the pos
itive root) 

L = [ - b + (b 2 
- 4ac) 112]/2a 

Case 3: Sight Distance Less than Length of Smaller 
Arc (Sm :S: L2 ) 

The variable y in Figure le is written as 

(12) 

(13) 

Equating the right-hand sides of Equations 4 and 13 and 
substituting for r2 from Equation 3 gives 

L = [(1 - R)IR]AS;;,!2(h 1 + Sm tan u) 

Comparison with Symmetrical Curves 

For symmetrical sag curves, where R 
Case 1 reduces to 

(14) 

0.5, Equation 6 of 

(15) 

where Ls = length of the symmetrical curve. For Case 2, for 
R = 0.5, Equations 9-11 give a = 0, b = h 1 + Sm tan u, 
and c = -0.5AS;;,. Substituting these variables into Equation 
8 gives 

Ls = AS~/2(h 1 + Sm tan u) (16) 
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Equations 15 and 16 are the known formulas for symme
trical curves for Sm ::>: Ls and S,,, s L,, respectively (6,16). 
For Case 3, Equation 14 also reduces to Equation 16 for R 
= 0.5, as expected. 

A comparison of the length requirements of symmetrical 
and unsymmetrical curves is shown in Figure 2. As noted, the 
ratio of the length of an unsymmetrical curve and that of a 
symmetrical curve (providing the same sight distance) is much 
greater than one for smaller values of R. The lower and upper 
bounds of this ratio are given by 

(1/2R) s LILS s (1 - R)IR (17) 

The lower bound corresponds to Case 1 and the upper 
bound corresponds to Case 3. 

Design Length Requirements 

For headlight control, Figures 3 and 4 show the design length 
requirements of unsymmetrical sag curves for R = 0.3 and 
0.4, respectively, based on SSD requirements of AASHTO. 
Figure 5, which is similar to that of AASHTO (4), shows the 
length requirements for symmetrical curves (R = 0.5). For 
other values of R, the length requirements can be interpolated 
from these figures. The vertical lines at the lower left of figures 
represent the minimum curve length, which equals three times 
the design speed in miles per hour. If the designer wishes to 
use other SSD design values [see, for example, Neuman (8)], 
the length requirements can be determined approximately 
from Figures 3-5. In this case, the speeds associated with the 
curves are ignored and the curve for the specified SSD value 
is interpolated using the adjacent curves. 

' ' 

TRANSPORTATION RESEARCH RECORD 1303 

There are drainage requirements for curbed pavements on 
symmetrical sag curves, whose first and second grades have 
different signs. The AASHTO policy requires a minimum 
grade of 0.3 percent at a point about 50 ft from the level point 
( 4). This corresponds to a K value equal to 5010.3 = 167. For 
unsymmetrical sag curves, the drainage requirements may be 
controlled by the first or second arc, depending on the location 
of the level point. The first arc controls if the level point lies 
on it, which occurs when the grade of the tangent at PCC is 
positive (g1 + r 1L 1 > 0). The second arc controls if the grade 
of the tangent at PCC is negative (g1 + r 1L 1 < 0). 

When the first arc controls, K 1 equals 167. This yields a 
maximum curve length equal to 167 AR/(l - R), based on 
Equation 2. Similarly, when the second arc controls, K 2 equals 
167 and the maximum curve length equals 167 A(l - R)IR, 
based on Equation 3. These maximum values for drainage 
requirements are shown by dashed lines in Figures 3-5. All 
combinations above and to the left of the dashed line would 
satisfy the drainage criterion. For the combinations below and 
to the right of the line, pavement drainage must be carefully 
designed. For R = 0.4, for example, if the first arc controls, 
the maximum length for the drainage criterion is less than the 
minimum length for the headlight criterion for speeds of about 
45 mph and greater. For symmetrical sag curves, the drainage 
criterion is not critical for almost all the speeds. 

OVERHEAD OBSTACLE CONTROL 

The geometry of sight distance for overhead control on an 
unsymmetrical sag curve is shown is Figure 6. Suppose that 
L2 is smaller than L,, so that the second arc is sharper. The 
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direction of travel with the minimum sight distance depends 
on the location of the obstacle, as will be shown later. Geo
metric relationships for the available sight distance are de
veloped next, followed by a procedure for calculating the 
minimum sight distance and a comparison with symmetrical 
curves. In Figure 6, h1 and h2 may represent the driver eye 
or object height. However, to simplify the presentation these 
variables are considered to refer to the driver and object, 
respective! y. 

Geometric Relationships 

Suppose for now that the overhead obstacle lies on the second 
arc or beyond EVC. The following six cases are considered: 

•Case 1: Driver before BVC and object beyond EVC, 
• Case 2: Driver before BVC and object on second arc, 
•Case 3: Driver on first arc and object beyond EVC, 
• Case 4: Driver on first arc and object on second arc, 
•Case 5: Driver on second arc and object beyond EVC, 

and 
• Case 6: Driver and object on second arc . 

These cases are indicated by the numbers in circles in Figure 
6. The height of obstacle above the first tangent in given by 

(18a) 

(18b) 

where 

y3 = height of obstacle above the first tangent, 
c = height of obstacle above the sag curve, and 
d = distance between obstacle and BVC. 

The following relationship is also true for all cases: 

where 

y 1 height of driver eye above the first tangent, 
y2 height of top of object above the first tangent , 
sl distance between the obstacle and driver, and 
S2 distance between the obstacle and object. 

The sight distance component, S, and S2 , are given by 

(20) 

(21) 

where 

T = distance between the driver and BVC [Tis negative 
if the driver is before BVC (on tangent) and positive 
if the driver is beyond BVC (on curve)], and 

z = distance between the obstacle and PVI. 

The available sight distance , S, which is the sum of S1 and 
S2 , is given by 

S = L 1 + w - T (22) 
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The variables y 1 and y2 of Equation 19 are derived next for 
various cases and used along with Equations 18 and 19 to 
develop a relationship for w. 

Substituting for S2 and y 2 (Equations 21 and 26) into Equa
tion 19 and solving for w, 

Case 1: Driver Before BVC and Object Beyond EVC 

In this case, y 1 and y2 are given by 

where 

h1 = height of driver eye above the sag curve , 
h2 = height of object above the sag curve, and 
w = distance between the object and PVI. 

(23) 

(24) 

Substituting for S2 and y 2 (Equations 21and24) into Equation 
19 and solving for w, 

(25) 

in which y 1 is given by Equation 23. 

Case 2: Driver Before BVC and Object on Second Arc 

In this case, y 1 is given by Equation 23, and y2 is given by 

(26) 

w = [ - b + (b2 
- 4ac) 112 ]12a 

where 

b = y 1 - Y3 + S1[A - r2L2] 

c = z(y3 - Y1) + S 1[h2 + riL~/2 - y3] 

in which r2 and y 1 are given by Equations 2 and 23. 

Case 3: Driver on First Arc and Object Beyond EVC 

(27) 

(28) 

(29) 

(30) 

In this case, y2 is obtained using Equation 24, and y 1 is given 
by 

(31) 

This case is similar to Case 1. The relationship for w is given 
by Equation 25, where y 1 in this equation is obtained using 
Equation 31. 

Case 4: Driver on First Arc and Object on Second Arc 

In this case, y 1 and Yz are given by Equations 31 and 26. 
Similar to Case 2, the relationship for w is given by Equation 
27, where y 1 is obtained using Equation 31. 
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Case 5: Driver on Second Arc and Object Beyond 
EVC 

In this case, y2 is given by Equation 24, and y 1 is given by 

(32) 

Similar to Case 1, the relationship for w is given by Equation 
25, where y 1 is obtained using Equation 32. 

Case 6: Driver and Object on Second Arc 

In this case, y 1 and y2 are given in Equations 32 and 26. Similar 
to Case 2, the relationship for w is given by Equation 27, 
where y1 is obtained using Equation 32. 

As previously indicated, the obstacle was assumed to lie on 
the second arc or beyond EVC. If the obstacle lies on the 
first arc or before BVC, YJ of Equations 18a and 18b becomes 

0 s d s L, 

d<O 

(33a) 

(33b) 

The relationships of Cases 1-4 are then applied using y3 of 
Equations 33a and 33b. Cases 5 and 6 are not applicable in 
this situation, but two more cases need to be considered (when 
w of Equation 27 is negative). Case A has the driver before 
BVC and the object on the first arc, and Case B has the driver 
beyond BVC and the object on the first arc. The relationships 
for Cases A and B are the same as those for Cases 2 and 4, 
respectively, except that in Equations 28-30, r 2 and L 2 are 
replaced by r 1 and LI> and A is set equal to zero . After w has 
been computed (Equation 27), Sis computed using Equation 
22, with w being negative. 

Procedure for Calculating Sm 

The minimum sight distance is determined using an iterative 
procedure. The available sight distance S is computed for 
consecutive values of T until the minimum value is reached. 
The computation steps are as follows: 

1. Compute y 1 for Cases 1, 3, and 5 (Equations 23, 31, and 
32). 

2. Compute w for these three cases (Equation 25): 
a. If w > L2 , the object is beyond EVC. This corre

sponds to Case 1, 3, or 5 depending on whether the 
driver is before BVC, on first arc, or on second arc, 
respectively . 

b . If w s L 2 , the object is on the second arc. This 
corresponds to Case 2, 4, or 6 depending on the driv
er's location. Compute the corresponding w (Equa
tion 27). 

c. If w < 0, reverse the variables and set A = 0. Use 
Case 2 or 4, depending on the driver's location. Com
pute w (Equation 27) . 

3. Compute the available sight distance (Equation 22). 

A computer program implementing this procedure was pre
pared, and its logical flow is shown in Figure 7. The geometric 
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characteristics of the curve L, L, (or L2), and A and the 
location and height of the obstacle, d and c, must be known 
or measured. The available sight distance, S, is computed for 
an initial negative value of T. The procedure is repeated for 
successively smaller values of 'J' (using an increment 6.T) until 
S < S', where S ' is the available sight distance of the previous 
iteration. At this point, the minimum sight distance has just 
been reached and S'" = S'. The computer program can also 
be used to determine the required sag curve length that sat
isfies a desirable sight distance, given d, c, and other curve 
characteristics. 

Sight Distance Characteristics 

The sight distance for overhead control on unsymmetrical sag 
curves exhibits interesting characteristics. These are discussed 
in relation to a comparison with symmetrical curves and effect 
of obstacle location. 

Comparison with Symmetrical Curves 

As indicated, the relationships between the curve length and 
sight distance for symmetrical sag curves have been developed 
for situations in which the obstacle is located at PVI ( 4). These 
situations can be obtained by setting L 2 = L/2 in the devel
oped relationships. Figure 8 shows the variations of the avail
able sight distance along an unsymmetrical curve with an ob
stacle located at PVI. The variations of sight distance for a 
symmetrical curve (R = 0.5) with the same length are also 
shown. 

The sight distance profile and minimum sight distance on 
the unsymmetrical curve vary with the direction of travel as 
shown in Figure 8. In this case, where the overpass lies at 
PVI, the minimum sight distance is smaller when the driver 
travels from the.flatter to the sharper arc. For the symmetrical 
curve , the sight distance profile is the same in both directions 
of travel with Sm = 1,450 ft. For R = 0.3, S,,. = 1,167 ft, 
which differs from that of the symmetrical curve by about 
- 20 percent. This means that a larger length of the unsym
metrical curve is needed to satisfy a specific sight distance, 
under similar geometric and operating conditions. 

Effect of Obstacle Location 

The variations of minimum sight distance as the obstacle lo
cation changes are shown in Figure 9 for both travel directions 
on an unsymmetrical curve. As noted, if the overpass lies at 
PVI or on the first (flatter) arc, the critical travel direction is 
from the first to the second arc. If the overpass lies on the 
second arc, both travel directions may be critical depending 
on the overpass location. In Figure 9, the travel direction 
from the second to the first arc becomes critical when the 
overpass is on the second arc at about 300 ft or more from 
PVI. The circles in the figure are the points at which the 
driver or object is at the beginning or end of the curve, where 
a change in curvature in the sight distance profile occurs. 

For the symmetrical curve, the minimum sight distance does 
not depend on the location of obstacle when both the driver 
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FIGURE 7 Calculating minimum sight distance for overhead control 
on unsymmetrical sag curves-logical flow. 

and object are on the curve. For the unsymmetrical curve, 
the minimum sight distance occurs when the obstacle is some
where on the sharper arc. The minimum sight distance exceeds 
that of the symmetrical curve when the obstacle is located on 
the flatter arc at a distance greater than about 200 ft from 
PVI. 

Evaluation and Design Values 

For overhead control , Table 1 shows the minimum sight dis
tance for sag curve lengths ranging from 200 ft to 1,200 ft , 
for R = 0.4 and 0.5. The following five locations of the 
obstacle are considered: 

1. d = 0 (obstacle at BVC), 
2. d = L/2 (obstacle at the midpoint of first arc), 
3. d = L 1 (obstacle at PVI), 
4. d = L 1 + L212 (obstacle at the midpoint of second arc), 

and 
5. d = L (obstacle at EVC). 

Table 1, which is applicable to highways with trucks, is 
based on a truck driver eye height of 9 ft and an object height 
of 1.5 ft. This eye height is conservative because typically 
truck driver eye height ranges from 71.5 to 112.5 in. (9,17-

19) . The object height of l.S ft was suggested in the 1965 
AASHO policy (2). This height may represent the taillight or 
a discernible portion of an oncoming vehicle. Table 1 is based 
on a vertical clearance of 14.5 ft, which is the minimum value 
suggested by AASHTO (4). 

A comparison of the minimum sight distance for A = 12 
percent is shown in Figure 10 for R = 0.4 and 0.5 for three 
locations of the obstacle. There is almost no difference in S'" 
between symmetrical and unsymmetrical curves when the 
overpass lies at PVI. However , the sight distance of the un
symmetrical curve increases when the overpass lies at BVC 
(near the flatter arc) and decreases when the overpass lies at 
EVC (near the sharper arc). For example, for L = 1,200 ft, 
the increase in S,,, when the overpass lies at BVC is 25 percent 
and the decrease when it lies at EVC is 18 percent. 

SUMMARY AND CONCLUSIONS 

The AASHTO Green Book points out the need for using 
unsymmetrical vertical curves to accommodate clearance and 
other controls ( 4). For these curves, however, no relationships 
are available to relate the available sight distance to the curve 
parameters and other operating characteristics . Sight distance 
relationships for unsymmetrical sag curves are derived for 
both headlight and overhead obstacle controls. Simple design 
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FIGURE 9 Variations of minimum sight distance with obstacle location. 



TABLE l MINIMUM SIGHT DISTANCE FOR OVERHEAD CONTROL ON 
UNSYMMETRICAL SAG CURVES FOR HIGHWAYS WITH TRUCKS" 

Alfeb. Overp . Length of sag curve (ft) 
Di f. c 
Grade Loe. 

(%) 200 400 600 BOO 1000 1200 

R• .4bR•.5 R•.4 R•.5 R•.4 R•.5 R•.4 R• .5 R-.4 R=.5 R-.4 R=.5 

6 1 7BO 750 960 900 1130 1050 1300 1190 1460 1320 1620 1450 
6 2 720 700 B40 BlO 950 910 1070 1020 1190 1120 1300 1220 
6 3 700 700 BOO BOO 900 900 1010 1010 1100 1110 1200 1200 
6 4 6BO 700 770 BlO B60 910 950 1020 1030 1120 1100 1220 
6 5 720 750 B40 900 960 1050 1070 1190 1190 1320 1260 1450 

B 1 630 600 BlO 750 970 B90 1140 1030 1290 1150 1440 1260 
B 2 570 550 690 660 BOO 760 920 B70 1040 960 1150 1040 
B 3 550 550 650 650 760 750 B50 B60 940 950 1030 1040 
B 4 540 550 630 660 710 760 790 970 B60 960 920 1040 
B 5 570 600 690 750 BlO B90 910 1030 990 1150 1070 1260 

10 1 540 510 710 660 BBO BOO 1040 920 1190 1030 1320 1120 
10 2 4BO 470 600 570 710 670 B30 770 940 850 1050 930 
10 3 460 460 560 560 660 670 750 760 B40 B50 920 930 
10 4 450 470 540 570 620 670 690 770 750 B50 BOO 930 
10 5 4BO 510 600 660 710 BOO 790 920 B70 1030 940 1120 

12 1 4BO 450 650 600 810 730 960 940 1100 940 1220 1030 
12 2 420 410 540 510 650 610 770 700 870 780 970 B50 
12 3 400 400 500 500 600 600 690 690 770 770 B50 B50 
12 4 390 410 4BO 510 550 610 610 700 670 7BO 720 B50 
12 5 420 450 540 600 630 730 710 940 7BO 940 B50 1030 

14 1 440 410 600 550 760 670 900 780 1030 B70 1150 950 
14 2 3BO 360 490 470 610 560 720 640 820 720 910 7BO 
14 3 360 360 460 460 550 560 640 640 720 720 790 7BO 
14 4 350 360 430 470 500 560 560 640 610 720 660 7BO 
14 5 3BO 410 490 550 580 670 650 7BO 720 B70 7BO 950 

16 1 410 3BO 570 520 720 630 B60 730 980 810 lOBO 890 
16 2 350 330 460 430 590 520 680 600 770 670 860 730 
16 3 330 330 430 430 520 520 600 600 670 670 740 730 
16 4 310 330 400 430 460 520 510 600 560 670 610 730 
16 5 350 380 450 520 540 630 610 730 670 BlO 730 890 

a c 
Driver eye height - 9.0 ft l: Overpass at BVC 
Object height - 1.5 ft 2: Overpass at midpoint of first arc 

b 3: Overpass at PVI 
Ratio of shorter arc to total 4: Overpass at midpoint of second arc 
curve length 5: Overpass at EVC 

Note: minimum sight distances are expressed in feet.Vertical clearance 14.5 ft . 
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FIGURE 10 Comparison of the minimum sight distance for different obstacle locations for A = 
12 percent (highways with trucks). 
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graphs and tables of the curve length requirements and min
imum sight distance are established. 

The results show that unsymmetrical sag curves must be 
much longer than symmetrical curves, under similar condi
tions. The sight distance profiles of unsymmetrical curves with 
overhead control exhibit certain characteristics that may have 
important design implications. This strongly supports the early 
use of the developed models in the design and evaluation of 
unsymmetrical sag curves. The models should be useful in 
maintaining or achieving adequate sight distances on unsym
metrical sag curves, and thus making highways safer. 
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