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Evaluation of Control Strategies Through a 
Doubly Dynamic Assignment Model 

E. CASCETTA, G. E. CANTARELLA, AND M. DI GANGI 

A within-day and day-to-day dynamic assignment model for a 
general network has been proposed recently. The model follows 
a nonequilibrium approach, in which flow fluctuations are mod
eled as a stochastic process. It includes a model of dynamic net
work loading for computing within-day variable arc flows from 
path flows. In this paper, the sensitivity and the operational 
characteristics of the model are tested by analyzing some effects 
of control measures on a small realistic network. The results of 
these applications show that the proposed model is a valid tool 
to estimate the effectiveness of some traffic engineering measures 
and informative systems. It also appears that some control mea
sures cannot be assessed correctly without the explicit simulation 
of the demand elasticity over departure times and of the day-to
day adjustment process determined by users' memory and 
forecasting. 

Recently, the stochastic process approach to the analysis of 
transportation system dynamics (1,2) has been extended to 
account for both within-day and day-to-day temporal fluc
tuations of demand and flows (3). Following this approach 
the evolution of the system over time is analyzed rather than 
seeking an equilibrium or self-reproducing solution (if any), 
as in within-day constant (4,5) and within-day dynamic equi
librium models. The latter can be developed on the basis of 
deterministic (6, 7) or stochastic (8,9) users' behavior models. 

The stochastic doubly dynamic model, described in this 
paper, allows the simulation of system adjustments following 
network modifications, the role of habit in users' choices, and 
the effects of some informative systems and control strategies. 
In addition, the model can be extended to cover the case of 
real-time informative strategies, allowing users to change their 
path en route. 

In this paper, the general structure of the model is briefly 
outlined. Potential applications to a small real-size network 
are then presented to show the effects of traffic engineering 
measures, different demand structures and levels, and differ
ent types of informative systems. 

DYNAMIC DEMAND/SUPPLY INTERACTION 
MODEL 

Day-to-day dynamics refers to system vanahons occurring, 
between successive reference periods, which can be part of 
the day, (e.g., the morning peak period) or the whole day. 
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In the following, the reference period will be called "day" 
and denoted by index "t". 

Within-day dynamics refers to variations taking place within 
the day and is analyzed by dividing the day into nh subperiods. 
In the following, the generic subperiod will be called "inter
val" and denoted by index "h"; with no loss of generality, 
the interval length will be assumed constant and equal to T 
units of time. 

Definitions and Notations 

The transportation system is represented by a network; the 
generic origin-destination (0-D) pair is denoted by i, the 
generic path of the network by k, and the set of indexes 
relative to paths connecting the 0-D pair i by K1• 

The total number of users deciding whether, when, and 
how to travel between each 0-D pair i is denoted by d1; it is 
assumed to be known and constant in each day t. Elasticity 
of the demand level; that is, changes in the number of users 
traveling each day, can be simulated by defining a fictitious 
interval (h = n,. + 1) corresponding to the choice of not 
moving at all. The disutility associated with this alternative is 
defined by the utility of not moving at all. 

Let Ff,k be the flow of users following path k and leaving 
during interval h of day t. These values, arranged in a vector 
F', are assumed to define the state of the system at day t. 
Demand and path flows are related, since 

(1) 

If p'(h,k) denotes the fraction of users leaving during interval 
h of day t and following path k E K1 between the 0-D pair i, 
the path flow can be expressed as: 

F/,k = d1 • p'(h,k) k EK; (2) 

An obvious simplification occurs if the demand temporal 
profile or the departure time fractions p1(h) are fixed. In this 
case, the choice fractions can be expressed as p'(h,k) = p1(h) 
· p'(klh), k E K1• Elasticity of the demand level; that is, changes 
in the number of users traveling each day, can be simulated 
also in this case, by introducing a fictitious path (k = 0) 
between each 0-D pair to simulate, though only descriptively, 
the choice of not moving at all. 

Let n" be the flow on arc a during interval h of day t, and 
f' the corresponding arc flow vector. In a within-day dynamic 
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framework, the definition of arc flow is not unique because 
time and space averages do not coincide any longer. The 
operative definition of arc flow then depends on the modeling 
framework adopted for network loading, as reported in the 
section on the model of users' behavior. 

The correspondence between arc flows, however defined, 
and path flows (network loading mapping) can be formally 
expressed as 

f' = f'(F') (3) 

Let qk be the average generalized travel cost on path k 
leaving during interval h of day t, and C' be the corresponding 
travel cost vector. Path travel costs are generally functions of 
the arc travel costs, which in turn are functions of arc flow 
vector; therefore, the following formal relationship holds: 

C1 = C1(j1
) (4) 

Strictly speaking, travel costs are random variables with 
average values that can be expressed as a function of arc flows 
by means of arc cost functions. The probability of the occur
rence of a given cost vector conditional to the path flow vector 
can thus be expressed by Equation 3 as 

Pr[C'I/'] = Pr[C'if'(F')] (5) 

On the other hand, most assignment models ignore the 
dispersion of travel times around their mean values; in this 
case, the conditional probabilities in Equation 5 can be sub
stituted by the usual expression 

C' = C'(F') (6) 

obtained by combining Equations 3 and 4. 

Stochastic Process Model 

It appears realistic to assume that the number of users F;,k is 
an integer. Then, the number of feasible states, that is, path 
flow vectors with nonnegative components and consistent with 
the demand as defined by Equation 1, is finite. 

For the dispersion of users' behavior and the intrisic ran
domness of some parameters (number of users, network con
ditions, travel costs, times, etc.), it is assumed that the system 
takes different states in different days . Furthermore , these 
states cannot be exactly forecasted by the analyst. 

In other words, the actual values of fractions p'(h,k) for a 
given day cannot be predicted in advance. Therefore, the 
evolution of the system among feasible states in successive 
days can be described as a stochastic process, with properties 
depending on the hypotheses made on users ' behavior and 
network configuration . Interval/path fractions are realizations 
of random variables, whose average values are the choice 
probabilities p'(h,k), which can be obtained by a properly 
defined model (see the next section for an example) . 

The probability Pr[F'] that the system is in a given state F' 
at day t can be computed, at least theoretically, from choice 
probabilities: 
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Pr[F'] = Pr[F'/p'(h,k) 'v'h,k] (7) 

It can be reasonably assumed that users choose paths and 
departure times using information about times and costs that 
have occurred in previous days c -1

, c- 2 , ••• , either be
cause this is the only available information or because it com
plements information supplied by an informative system. 

If some travelers choose using a real-time informative sys
tem , choice probabilities depend also on times and costs in
curred in the current day. More precisely, in the case of a 
real-time trip planning system, departure time and path prob
abilities depend on costs incurred at most up to the departure 
interval, in the case of a real-time route guidance system, path 
choice probabilities depend on costs up to the arrival time 
(computed from the departure time and the travel time). Sim
ilar conditions occur if an adaptive route choice behavior is 
assumed for users. Then the following will result: 

p'(h,k) = p'(h,k)[C', c- 1
, c• - 2

, •• • ] 

Moreover, if it is assumed that users have a limited memory, 
that is they are significantly influenced in their choices at most 
by a limited number (m) of past days, then the following 
results are obtained: 

p'(hk) = p'(h,k)[C,_;, i = 0, . .. , m] (8) 

Since path travel times and costs in congested networks 
depend deterministically or stochastically on arc flows, it turns 
out that the probability that the system is in a given state F' 
at day t depends on the states occupied by the system in m 
previous days . Combining Equations 5, 7, and 8 

Pr[F'/F', p1-1, . .. , p•-m] 

= Pr[F'/p'(h,k)[C' - ;, i = 0, ... , m]] · Pr[C'/F'] 

. Pr[c-1;p1- 1] . . .. . Pr[c• - m/p• - m] (9) 

If path costs are assumed not to be random variables, then 

Pr[F'/F'- 1
, ••• , F' - "'] 

= Pr{F1/p1(hk)[C1- 1(F1- 1), 0 = 1, ... , m]} 

It can be proven, by using results of m-dependent Markov 
chains (2) that the process admits a unique stationary prob
ability distribution and it is ergotic if, in addition to the limited 
memory assumption (Equation 8), the following (sufficient) 
conditions hold : 

1. Choice probabilities, given the same sequence of costs 
relative to the previous day, and possibly to the same day, 
are time homogeneous, that is, invariant with respect to a 
time translation: 

p'(hk)[C,_;, i = 0, . .. , m] = p''(hk)[C''-;, i = 0, . . . , m] 

ifC1- ;=C1' - ;,i=O, ... ,m 

2. For each pair of different states there exists at least one 
sequence of feasible states, with strictly positive transaction 
probabilities, from one to the other. 
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The stated conditions depend only on the assumption that 
behavioral rules are constant over time, and do not depend 
on any assumptions about the particular type of users' choice 
behavior and the information available to them, apart from 
that of finite memory. In other words, different types of choice 
models can be used for departure time and path choice, such 
as random utility or noncompensatory models in so far they 
do not assume that users' experience influence their behavior 
thereafter. 

It is also worth noting that random events modifying net
work performances, such as accidents and bad weather con
ditions, can be included in the proposed framework if their 
occurrence probability law is stable over time. 

Because of the existence and unicity of the stationary dis
tribution, one distribution of path flows can be associated to 
each demand-supply system, independent of the starting con
figuration. Process ergodicity allows the computation of flow 
means and moments through the simulation of only one re
alization of the process. It is worth noting that the mentioned 
properties are satisfied regardless of the type of arc cost 
functions. 

Obviously it is still possible to study transitions between 
two stationary states of the system. In this case, the ergodicity 
property no longer applies, and flow moments must be com
puted over repeated simulations of transients. 

The stationary probability distribution of flows could have 
different modes, denoting a situation comparable to that of 
multiple equilibria. However, in the proposed stochastic proc
ess approach, the whole probability distribution for each arc 
flow can in principle be computed, although in the multiple 
equilibria case no method known to the authors guarantees 
information on all equilibrium configurations. 

Solution Approach 

In the following, a solution approach for computing expected 
values and moments of time-varying arc flows, both in steady 
state and transient conditions, will be described briefly. 

Full specification of the assignment model requires a mod
eling of departure time and path choice, of users' learning 
and forecasting mechanisms, and possibly of the informative 
strategy and users' reactions. Most models proposed in the 
literature to simulate the aspects given previously could be 
adapted to fit into the proposed framework. For instance, 
departure time choice could be simulated by a random utility 
model (10) or by the "bounded rationality" model proposed 
by Mahmassani and Chang (11,12). A possible specification 
will be described in the next section. 

The number of users choosing each departure interval/path 
alternative in a given day can be obtained from choice prob
abilities by using a Monte Carlo simulation or by substituting 
probabilities to fractions. In the latter case, the resulting se
quence is a pseudo realization of a stochastic process. An 
obvious simplification occurs when fractions pKh) are exog
enously given (prefixed demand profile). 

Once that choice fractions and, consequently, path flows 
are known for the current day, arc flows can be computed by 
a dynamic network loading method, as described in a follow
ing section. Arc flows allow the computation of travel times 
and thus the update of travelers' information and forecasts to 
be used for modeling choice probabilities of the next day. 

3 

Flows for each arc of the network and for each interval in 
the reference period can be used for two purposes. The first 

1 is to estimate stationary means and moments for arc flows; 
the second is to estimate means and moments during tran
sients caused by any modification in the network, in the de
mand, or in both the network and the demand. 

The reaching of stationarity can be checked by performing 
a Student's-t test on the differences between average arc flows 
in each interval over two successive sequences of days. 

MODEL OF USERS' BEHAVIOR 

Users' Choice Behavior 

Users' choice behavior has been modeled by the random util
ity model proposed by Small (JO) and reformulated by Ben 
Akiva et al. (13). This model has been slightly modified to 
explicitly introduce a "habit effect" in users' choices . In par
ticular it is assumed that each day only a fraction .fl of users 
reconsider the previous days' choice, and that they give an 
extra utility to the alternative chosen the previous day. 

It is assumed that each user deciding how (path k) and 
when (departure interval h) to travel at day t associates to 
each alternative (h,k) a perceived utility expressed by the sum 
of a systematic utility and a random residual error. 

The systematic utility represents the average predicted util
ity, whereas the random residual takes into account different 
perception errors made by users (e.g., relative to travel times 
and costs) and the dispersion of some characteristics withir 
the population of decision makers (desired arrival times, re
ciprocal substitution coefficients, missing attributes, etc.). 

The systematic utillty Vhk can be expressed using a modified 
version of the model proposed by Small (10) as the sum of 
disutilities relative to the generalized transportation cost and 
to early or late arrival penalty: 

v~k = - (1 - µ,,k) · (131,C~k 

+ MAX{132;[(D; - Bu) - B~k], O} 

+ MAX{133;[B;,k - (D; + B2;)], O}) (10) 

µ,,k = µE[O,l] if (h,k) is the alternative chosen the 
previous day, 

= 0, otherwise this parameter reduces propor
tionally the disutility for the choice of the 
same path and departure time as in the pre
vious day t - 1, and attempts to capture the 
conservative behavior of users; 

c~k = average predicted generalized transportation 
cost along path k starting during interval h, 
on day t; 

B~k = average predicted arrival time, starting dur
ing interval h and moving along path k, on 
day t, computed as (h - 1) · T + T;,k; 

T~k = average predicted travel time along path k 
starting during interval h, on day t; 

D; = desired arrival time, variable with the 0-D 
pair (and category) i; and 
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13u, 13 2,, 133, = reciprocal substitution coefficients, variable 
with the 0-D pair (and category) i. 

This expression assumes that users of 0-D pair i have a 
tolerance interval [ - B", 82,J around the desired arrival time, 
and early or late arrivals cause a disutility proportional to the 
advance or the delay. 

On day t average values of predicted travel time and gen
eralized transportation cost of path k leaving during interv11l 
h can be computed through duly defined filters, which model 
the learning and forecasting mechanisms used by the average 
traveler , including the interaction with an informative system , 
if any . Different filters can be used for different kinds of users, 
for example, commuters versus noncommuters, informed ver
sus noninformed, and so on. 

Systematic utility has been defined assuming the general
ized transportation cost to be equal to the travel time. The 
average perceived travel time has been computed as a weighted 
average of the previous day actual travel time T~// and of the 
previous day average perceived travel time T~k 1: 

t-1 

T;,k = 'T. L (1 - 'T)' - 1 • T;,k' + (1 - 'T)'. T?,k 
i=I 

(11) 

where T?,k = T?,k is a starting value. Values of 'T close to one 
denote a stronger influence of the previous day travel time. 
Similar filters have been proposed by Mahmassani and Chang 
(12) and Iida et al. (14). 

It has been assumed that each day a prefixed fraction of 
users fl takes into consideration the possibility of modifying 
their previous day choice (but they do not necessarily have 
to). The choice probabilities of the users that reconsider their 
choice is simulated through a path/departure time nested logit 
model : 

p'(h,k) = p'(h) . p'(klh) 

p'(klh) = exp[0 1V~k)/L exp[0 1V;,J 

where 

(12) 

(13) 

(14) 

0 1 = Weibull-Gumble parameter of the random residual 
relative to the pair (h,k) , 

0 2 = (1/0~ + l/EF)< - 112J, 

0 = Weibull-Gumble parameter of the random residual 
relative to the interval h only, and 

Yh = (1101) • In Ij exp[0, V~J is the logsum variable rel
ative to interval h. 

If 0 1 = 0 2 the above model reduces to the factorialization 
of a multinomial logit over the pair (h,k). 

As it is known from the logit theory, coefficients 0, are 
inversely proportional to the standard deviation u, of the per
ception error in path and departure time choice, respectively. 
For each 0-D pair values of coefficients 0, have been com
puted by assuming a prefixed value of the variation coefficient 
Cv, for each of them: 

0 1 = Ill(\16 · u;) ~ 1.282/u, 1.282/(Cv, · V) (15) 
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where V is the value of utility obtained by averaging across 
all the alternatives, the average perceived utility as given by 
Equation 10. 

Thus different quality in information can be simulated by 
differentiating all the users of each 0-D pair in two or more 
types (e.g., informed and not informed) with different vari
ation coefficients, and consequently, different values of 0,. 

Users' Behavior and Informative Systems 

Generally users moving between an 0-D pair are assumed to 
choose at their origin the departure interval and a path k0 to 
reach their destination. After leaving the origin, rerouting 
during the trip may occur because of adaptive behavior at 
duly located diversion nodes (possibly at each node of the 
network). Therefore, the actually used path k may be different 
from the initially chosen k0 • The choice probability at day t, 
p'(h,k), can be expressed as 

p'(h,k) = p:(h) . p'(klh) k EK, 

where 

p:(h) = probability of choosing departure interval h for 
a user traveling between 0-D pair i; and 

p'(klh) = probability to follow path k EK, from the origin 
to the destination of 0-D pair i, once departure 
interval h has been chosen (it can be expressed 
as the joint probability that the sequence of paths 
from the origin to the first diversion node, be
tween each pair of successive diversion nodes , 
and from the last diversion node to the desti
nation forms path k). 

An informative system may supply information or indica
tions to users before they start (pretrip) or while they are 
traveling (en route). Moreover, the informative system can 
use exclusively information about the network conditions in 
the previous days (static) or combine them with information 
about the network conditions that occurred during day t (dy
namic or real time) before the departure time (pretrip) or the 
arrival time (en route). Different classes ofusers with different 
types of available information can be taken into account. 

The behavior of users not advised by an informative system 
can be modeled through usually adopted users' choice be
havior models, as the one described in the previous subsec
tion . The same kind of models, with a different parameter 
specification, can be adopted to deal with users advised by a 
static pretrip informative system (an example is given in a 
subsequent section). 

A slight modification is needed in the case of a real-time 
pretrip informative system: Let 

be the choice probability that begins the trip between 0-D 
pair i during interval h of day t; 

'1 - 1 

L: PV = mJ 
111 = 1 

if h = 1 
if h > 1 
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be the choice probability that a user begins the trip during 
interval h or later; and 

p:[j = h/j ;::,: h] = p;(hl{h , h + 1, .. . }) 

be the choice probability that a user begins the trip during 
interval h conditional to leaving not earlier than interval h. 
This can be computed using a choice behavior model (as the 
one described in the previous section) assuming as choice set 
{h, h + 1, ... }. 

Since 

p:(j = hlj;::,: h] . p:[j;::,: h] 

= p ff j = h n j ;::,: h J = p :U = h J 

the choice probabilities p'(h) can be recursively computed as 

'(h){=p;(l/{1,2, . .. }) ( h - 1 ) 

P; = p;(hl{h, h + 1, . .. }) · 1 - ,~/;(m) 
ifh = 1 
ifh > 1 

Once choice probability p;(h) has been computed, the path 
choice probabilities p'(k/h) can be computed through a users' 
behavior model. The resulting stochastic process maintains 
all the previously mentioned stationarity and ergodicity 
properties . 

If a static or dynamic en route informative (or route guid
ance) system is operating for some users, the choice proba
bilities for the departure interval h and the initially chosen 
path k0 can be computed as described previously. Then during 
the dynamic network loading stage at duly located diversion 
nodes (beacons of the route guidance system, or each node 
of the network), users are allowed to reroute onto a new path, 
and so on, until the destination is reached, according to a 
behavior model and the information or indications supplied 
by the route guidance system (as better explained in the next 
section). 

A DYNAMIC NETWORK LOADING METHOD 

In this section, a model for dynamic network loading; that is, 
computation of time-varying arc flows from a given path flow 
pattern in a given day t, is described and compared with other 
state-of-art models. A solution algorithm is also presented 
(3). In the following, superscript twill be omitted for the sake 
of simplicity. 

Notation 

Notations used in this section are as follows. Vectors and 
arrays are not explicitly cited. 

k = path, 
a = arc, 

a' = arc (if any) following arc a on path k, 
h = interval, 
j = interval, 

(j ,k) = group leaving during interval j and trav
eling on path k, 

!ah = arc flow, 
Fik = path flow, 

la = running arc length, 
qah = queue at the end of interval, 

Qah = capacity, 
s~~ = abscissa on running arc, 

Uah = u.1o = undersaturation delay, 
v.h(fh) = running speed, 

~~ = waiting time for queuing arc, 
Yik = arrival time at arc a, 

ah . . 
y jk· = arnval time at arc a', 

a"h 
zah(y!~J = overs.aturatio~ delay, and 

a.ik = crossmg fraction. 
ah 

Statement of the Problem 
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Previously it was stated that the relationship between arc and 
path flows in a within-day dynamic context is not trivial. It 
was also observed that arc flows are not even uniquely defined 
in this case . It is still possible to express the relationship 
between path and arc flows , however defined, in a way that 
is formally similar to the within-day uniform case. 

Denoted by ~~E[0 , 1], the fraction of path flow Fik contrib
uting to arc flow fa1,, named crossing fraction, the flow on arc 
a can be expressed by 

(16) 

If arc a does not belong to path k , or the starting interval 
of flow Fjk follows interval h(j > h), or flow Fik does not 
occupy arc a during interval h, the fraction a.~~ is equal to 
zero. 

Crossing fractions can be arranged in matrices such as 
A 1,1 = {a.{~,}~, arc-path crossing matrix between arc-flows dur
ing interval h and path flows leaving in interval j. Denoted 
by fh , the arc flow vector during interval h and by Fi , the path 
flow vector leaving during interval j, Equation 16 can be stated 
in matrix form as follows: 

h 

f,, = L A,,j . Fj (17) 
j=l 

For the whole day Equation 16 can be expressed as 

f =A· F (18) 

where 

f = arc flow vector for the whole day, 
F = path flow vector for the whole day, and 
A = arc-path crossing matrix for the whole day formed by 

matricesAhi withA,,i = 0 (if h < j, A is a low triangular 
block matrix) 

It is worth noting that the arc-path crossing matrix A is a 
generalization of the usual arc-path incidence matrix, because 
the following should result: 

nh 

2: a.~1<,.. = 1 (19) 
111 = 1 
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if all the users entering the network during interval j leave it 
in some interval h ~ }. 

Generally, crossing fractions o.~\ depend on the definition 
adopted for arc flows, the network topology, and the time 
needed to reach arc a traveling on path k . Therefore, they 
depend on the travel times on arcs preceding arc a along path 
k, which in congested networks are function of the arc flows. 
Hence, it generally results that 

A = A(f) (20) 

Therefore combining Equations 18 and 20 the following 
fixed-point problem is obtained: 

f* =A(!*) · F (21) 

A dynamic network loading method is essentially an algo
rithmic definition of crossing fractions, that is of relationship 
o.~~. = a.~~.(!) needed to solve Equation 21. 

It is worth noting that in noncongested networks in which 
travel times and delays are constant and independent of arc 
flows, the arc-path crossing matrix does not depend on arc 
flows and Equation 21 reduces to f* = AF, as in the case of 
within-day constant demand. 

Several methods have been proposed to solve the dynamic 
network loading problem, which in any case could be solved 
by a discrete simulation technique (microsimulation), al
though at the expense of a large computational effort. Gen
erally, these methods give different results depending on the 
different hypotheses adopted. 

Some methods do not explicitly formulate and solve the 
fixed-point problem (Equation 21). They are based on a gen
eralization of network loading procedures used in static de
terministic user equilibrium (6,7). A different method to in
directly solve the problem (Equation 21) has been proposed 
recently by Vythoulkas (9). This model is based on the dis
cretization of a differential equation for each arc, expressing 
the relationship between the time derivative of the number 
of users on the arc and the difference between inflow and 
outflow . 

All the preceding methods rely on assumptions that do not 
rule out some counterintuitive results such as overtaking be
tween vehicles traveling on the same path and vehicles leaving 
in different times. In addition, these methods can hardly be 
extended to include en route diversions from the initially cho
sen path, because of the computational burden of keeping the 
identity of diverted path flows. 

In the following, a new method for dynamic network load
ing is described, which directly solves the fixed-point problem 
(Equation 21), thus overcoming some of the drawbacks of the 
other proposed methods. 

General Hypotheses and Definitions 

The set of all users leaving in the same interval j and following 
the same path k is called group or packet (j ,k) . All users of 
a group are assumed to experience the same trip as the group 
leader, whose departure occurs at a prefixed instant (the mid
dle or the beginning) of the interval. Hence, if an arc is oc
cupied by the leader of a group during an interval, it is oc-
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cupied by all the users belonging to that group (grouping 
hypothesis). 

This assumption appears acceptable for usual 0-D demand 
flows and interval lengths . In any case its realism can be 
improved by reducing the interval duration, or by subdividing 
a group into smaller units . Currently, an enhanced model for 
dynamic network loading relaxing this hypothesis is being 
developed by the authors. 

In the following it is also assumed, for simplicity, that a 
user group follows the path chosen before starting the trip 
until its destination is reached. However, the described method 
can be easily extended to include while-trip rerouting. In this 
case , at duly located diversion nodes (eventually each node 
can be a diversion node) , group (j,k) traveling on path k may 
reroute on a new path k' from the diversion node to the 
destination, thus becoming group (j,k - k'). This can be the 
result of a simple adaptive behavior or of the interaction with 
a route guidance system, providing indications or information. 
In both cases, a choice model is needed to represented users' 
reactions resulting in a change from path k to path k'. 

Two types of arcs requiring different modeling approaches 
will be considered in the following: 

•Running arcs (e .g., a stretch of a street) : for which the 
time needed to leave the arc is continuously spent along its 
length; and 

•Queuing or waiting arcs or bottlenecks (e.g., a junction 
approach): for which delay occurs only at the end of the arc, 
assumed of null length, because of queuing due to capacity 
constraints. 

Obviously the simuiated network can include both types of 
arc. 

Let v ah be the average running speed on running arc a, with 
length la , during interval h. Running speed is assumed to be 
the same for all users traveling on the arc during interval h 
(equal running speed hypothesis), regardless of when they 
have entered the arc. 

Let u.h be the undersaturation delay for queuing arc a, 
during interval h. Undersaturation delay is assumed to be the 
same for all users entering the arc during interval h (equal 
undersaturation delay hypothesis) regardless of when they have 
entered the arc. 

Let z~\ be the oversaturation delay for group (j,k) joining 
the queue at bottleneck arc a during interval h . It is assumed 
to be equal for all the users of group (j,k) (group specific 
oversaturation delay hypothesis) and depending on the arrival 
time of group (j,k) at arc a during interval h. For undersaturat
ed conditions, the oversaturation delay is equal to zero. 

Group Movements on the Network 

Let y~~. E[O, T] be the arrival time of group (j ,k) at arc a during 
interval h. It is meaningfully defined only if arc a belongs to 
path k and interval j precedes interval h, that is j :s h (other
wise it is assumed equal to zero by convention). In the fol
lowing it is always assumed that arc a belongs to path k, and 
interval j precedes interval h, that is j :s h. Let a' be the arc 
(if any) following arc a on path k. Naturally the exit time 
from arc a of group (j,k) is equal to the arrival time at arc 
a' . 
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If group (j,k) has not yet reached arc a during interval h, 
y~1. = O; vice versa if group (j,k) has already left arc a before 
interval h, y~1. = T. Moreover, it is assumed that the arrival 
time is equal to zero for the first arc occupied during interval 
h. 

The difference, T - y~1,, between the interval length Tand 
the arrival time y~\ at arc a is the time still available to group 
(j ,k) to move on arc a during interval h. 

A group (j,k) arriving at a running arc a during interval h 
needs a time l.fva,, to entirely cover the arc. It can be proven 
that the exit time from arc a [or the arrival time at the next 
arc a' (if any) on path k)J and the abscissa reached on arc a 
by group (j,k) by the end of interval h are given by (also 
shown in Figure 1) 

Yjk 
a'h 

sjk 
ah 

MIN[T, Y~1. + Ua - s~1. - 1)lva,,] 

MIN[/"' s~\ - 1 + (T - y~1.) · v",,] 

(22) 

(23) 

assuming that 

Yjk -
ah -

y~\ = 
y~\ = 

0 if arc a is the first occupied by group (j,k) during 
interval h; 
0 if group (j,k) has left from arc a before interval h; 
T if group (j,k) has not yet reached arc a by the end 
of interval h; 

s~'Q = 0 
s~\ = 0 if group (j,k) has not yet reached arc a by the end 

of interval h; and 
s~\ = la if group (j,k) has left from arc a by the end of 

interval h. 

If group (j,k) enters queuing arc a during interval h, the 
time needed to exit the arc is equal to the total delay: uah + 
z~\, whereas the time still available to move is given by the 
difference T - y~\. 

s 

r 
l 

t 

Jk 
~.h 

t 

T 

FIGURE 1 Group movement for a running arc. 
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If u.,, + z~1. :S T - y~t group (j,k) leaves arc a during 
interval hand enters the next arc a' (if any) on path k at time 

(24) 

Vice versa, if T - y~\ < u",, + z~\, it remains on the arc. Let 

w~1. = Ua11 + z~1. - (T - Y~~.) > 0 (25) 

be the time needed by group (j,k) to leave arc a at the end 
of interval h (residual waiting time). 

If group (j,k) is still on queuing arc a at the beginning of 
interval h + 1, it should stay queuing for a time w~1 .. If it 
results that T :S w~1,, the exit time from arc a for group (j,k) 
or the arrival time on the next arc a' (if any) on path k is 
given by 

(26) 

otherwise it should stay on arc a for a time 

(27) 

If group (j,k) reaches its destination during interval h, it 
leaves the network and it turns out that s~1. = la or w~1. = 0 
for all arcs on path k, and m 2'. h. Groups that do not reach 
their final destination by the end of the reference period can 
be left on the network without any loss of generality. 

Computation of Crossing Fractions 

To compute crossing fractions from running speeds and delays, 
an operational definition of arc flows has to be formulated. 

a 

T 



8 

For the grouping hypothesis, the average number of users 
per unit of time on running arc a during interval h is given 
by 

( ~ Fjk . T . r o~\(t) dt) IT 
Where 

o~~.(t) = 1 if group (j,k) is on arc a at time t; and 
o~1.(t) = 0 otherwise. 

Moreover, for the equal running speed hypothesis, the time 
spent by group (j,k) on arc a during interval his equal to the 
traveled length divided by the average running speed, that is 

r o~\(t) dt = (s~\ - s~\ - 1)lv.,, 

Therefore, the average density on arc a during interval h, 
which is equal to the average number of users per unit of time 
divided by the arc length, is given by the expression 
2-Fik · (s~\ - s~\_ 1)1( v.,, · I.) 
jk 

The flow !ah on running arc a during interval h can be 
defined as the product of the average density and the average 
speed: 

Therefore from Equation 16, it turns out that 

Also from Equation 23 it turns out that 

= MIN{(T- y~1.)· v.hll., (I - s~\-/la)} (28) 

Moreover it results that 

S~~. = s~1.- 1 + ex~\ · la (29) 

Similarly for a queuing arc, the flow can be defined as the 
time average in flow. For the grouping hypothesis, it turns 
out that if group (j,k) reaches arc a during interval h, the 
corresponding crossing fraction is equal to one, it is equal to 
zero otherwise: 

rJk ( ik ) f = 1 if T - ,11(~. > 0 
ah Y ah l = 0 if T - y1k = 0 tth 

(30) 

For both types of arcs, if group (j,k) stops on arc a during 
interval h, it turns out that ex{~ = 0 for any arc i following arc 
a on path k. If group (j,k) reaches its destination, it exits 
from the network and it turns out that ex~~" = 0, m > h, 
a E k. 

It can be proven that this relationship is satisfied by the 
preceding proposed definition of crossing fractions, for groups 
leaving the network by the end of the simulation period. 
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Solution Approach 

In this section, the crossing fraction definition described in 
the previous section is used to build up a fixed-point for
mulation of the dynamic network loading problem, according 
to the considerations in section, "Statement of the Problem." 

Summarizing the results of the preceding section, the cross
ing fraction of group (j,k) on a running arc depends on the 
running speed and the arrival time at that arc. On the other 
hand, for a queuing arc, the crossing fraction of group (j,k) 
depends on the arrival time at that arc. 

In turn, according to next preceding section, the arrival 
time of group (j,k) at arc a can be sequentially computed for 
each arc of a given path from running speeds and delays, by 
Equations 22 through 27. 

Hence crossing fraction o.~~. is a function of running speeds 
and delays on arcs preceding arc a on path k. In the case of 
a running arc it is also a function of the running speed on that 
arc, whereas if it is relative to a queuing arc it does not depend 
on the delay on the same arc. Then, it generally results that 

(31) 

where vh, uh, and z" are, respectively, the vectors of running 
speeds, undersaturation, and oversaturation delays occurred 
on the network during interval h. 

Average running speed is assumed to be function of the 
vector of the arc flows during interval h, fh, through usually 
adopted cost-flow functions: 

(32) 

The undersaturation delay is assumed flow-independent: 

(33) 

According to a fluid approximation deterministic model, it 
turns out that 

(34) 

where 

qah = queue on arc a at the end of interval h (assuming 
qaO = O); 

Q.,, = capacity of arc a during interval h (it can vary in 
different intervals, for example in the case of a var
iable traffic light system). 

Therefore, the expression for crossing fractions can be for
mally rewritten as 

(35) 

If crossing fractions are sequentially computed through this 
equation for each interval h, values s~\_ 1 , w~\ - 1 , and qa1i - i 

relative to previous intervals are known. In this case, there
fore, the only unknown arguments are arc flows relative to 
interval h, and it results that 

(36) 
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Combining Equations 36 and 16, the fixed-point problem 
(Equation 21) is obtained, which can be decomposed in a 
sequence of fixed-point problems since A is a low-triangular 
block matrix : 

h 

r:: = L A,.lfZ·) . Fi (37) 
i~I 

Each of the problems (Equation 37) can be solved by usual 
fixed-point methods, as described in the following algorithm: 

i: = O; J<0l: = fo 

REPEAT 

i: i + 1; 

h 

L A,,lJU-1)) Fi 
1 ~ 1 

j<il: = (a + 13/i) . e(i) + (1 - (a + 13/i)) . r -l) 

uNnLJUl - r -1) s E 

/,,: =JU> 

where 

f 0 assigned arc flow pattern, 
E = assigned tolerance vector, and 

a, 13 = parameters in the range [0,1]. 

It is worth noting that the results of the algorithm are not 
affected by the sequence in which groups are examined and 
loaded on the network. 

Comparisons of this algorithm with alternative specifica
tions and an analysis of effective values for parameters a and 
13 are reported elsewhere (15) . In the following , a = 0.10 
and 13 = 0.00 will be adopted, and the initial flow pattern is 
assumed equal to the average flow pattern over the previous 
days for the same interval. 

NUMERICAL EXAMPLES 

In this section some results relative to an application of the 
proposed procedure to a realistic network are described briefly . 
The test network refers to the town of Battipaglia, Italy, with 
about 30,000 inhabitants . Supply data are relative to the real 
network, global 0-D demand has been generated through a 
simple gravity model, and choice behavior has been modeled 
by adapting literature models, as described previously. 

This example aims to test the proposed procedure on a real 
case. For this reason no specific conclusions about the case 
studied or comparisons with observational data are reported . 

Test Network 

The network used to test the model is shown in Figure 2. It 
has 62 nodes , 168 arcs , 269 0-D pairs , and is connected by 
891 paths. A total travel demand of 4,970 users was consid-
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• 

·-

• centroid 

O node 

FIGURE 2 Test network. 

ered. The parameters adopted for the choice behavior model 
described previously are as follows : 

Fraction of users reconsidering 

Their previous day choice 
Reciprocal substitution coeffi-

cients 
Logit variation coefficients 
Extra utility weight 
Filter parameter 

Parameter 

n = o.s 

~ 1 = 1, ~2 = 1, and ~3 = 4 
Cv, = Cv2 = 0.20 -;- 0.40 
µ = 0.10 
'T = 0.90 

Davidson's cost functions were adopted for running arcs 
giving: 

v.,,(f.1,) = v) [l + 0.2 · f. ,,l(Q.,, - fa,,)] 

where v" is the free-flow speed and Q0 ,, is the arc capacity. 
The value 0.2 is a calibration parameter that should be esti
mated by using actual data . For fa1/Q 0 ,, ~ ba (with ba positive 
and less than one), the tangent approximation has been con
sidered to avoid computational problems with asympotic func
tions . The greater the value ba, the more sensitive to conges
tion the function is. In the following a value 0.80 is used, 
unless otherwise stated. For simplicity , no bottleneck was 
introduced in the network. 

The simulation period lasts 60 min (the morning peak hour 
from 7:30 a.m. to 8:30 a. m. ). It has been divided in 12 intervals 
with a length T = 5 min . Users are allowed to leave in the 
first 6 intervals (from 7:30 a.m. to 8:00 a.m.); the last 6 in
tervals have been included for system clearing-to allow all 
users to reach their final destination . A common decided 
arrival time has been assumed equal to 7:50, with 01 = 2.5 
and 02 = 2.5. 

The stationarity test was adopted on the basis of the com
parison of the arc flow time means over two successive 
10-day periods. Longer periods are not efficient, because they 
delay the time at which stationarity is recognized . On the 
other hand , using shorter periods the results of the test can 
be affected by periodic solutions. 
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Simulation of Traditional Control Strategies 

The effects of some modifications in demand and supply have 
been simulated to evaluate the capabilities of the proposed 
model. Simulation scenarios were generated as follows: 

• Nl-an increase of total demand from 4,970 to 6,608; 
and 

• N2-an increase of tolerance 51 ~ 52 = 7.5. 

Case Nl is aimed at showing the effects of an increase of 
congestion, and case N2 represents a demand management 
measure (flexible work times) . 

The excess generalized cost (computed according to Equa
tion 10) and travel time per user-difference between the 
actual and the zero-flow values-are compared with the re
sults obtained without any modifications (STD) in Table 1, 
together with the average percentual changes in departure 
time and path demand p;itterns over successive days. Two 
different values of the variation coefficient of perception error 
(Equation 15), Cv = 0.20 -:- 0.40, were used. 

As expected, an increase of travel demand causes an in
crease of the generalized cost and travel time per user (case 
Nl). 

An increase of the tolerance band causes a significant re
duction of generalized cost per user, and a smaller decrease 
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FIGURE 3 Departure and arrival profiles for case NL 
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FIGURE 4 Departure and arrival profiles for case N2. 
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TABLE 1 COMPARISON OF DEMAND MANAGEMENT 
STRATEGIES 

Excess Excess Changing 
General Cost Travel time users 
(min) (min) (fraction) 

Cv 0.20 0.40 0.20 0.40 0.20 0.40 

STD 5.39 6.77 3.48 2.37 .002 .000 
Nl 6.94 8.36 3.40 3.65 .010 .000 
N2 4.46 5.14 3.00 3.25 .000 .010 

of travel time . The first effect is a result of the reduction of 
late or early arrival penalty for users keeping their departure 
time, whereas the second one can be attributed to elasticity 
over departure times and a reduction of congestion (case N2), 
as shown in Figures 3 and 4, which report the departure (con
tinuous line) and arrival (dashed line) profiles for cases Nl 
and N2. 

Generally it seems that quite different values of the coef
ficient of variation of perception errors cause not great mod
ifications of costs. 

In all cases, the modifications in the demand structure with 
respect to the previous day values are very small, confirming 
the substantial stability of the day-to-day adjustment process 
adopted in spite of the quite high influence of the previous 

i 1111terval 

interval , 
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day information in the memory filter ( T 

20). 

Simulation of Informative Control Strategies 

0.9 in Equation 

Using the travel demand value equal to 6,608, the effects of 
the introduction of a pretrip informative system based on 
historical data has been modeled. The drivers' reactions to 
the information provided was simulated by eliminating their 
inertia to change (the fraction !1 of users reconsidering the 
previous day choice was set equal to one, and no "habit" 
externality was considered, µ = 0) and by assuming a much 
lower dispersion in their choices with respect to the "predicted 
costs" given by the system, Cv = 0.05. Moreover it has been 
assumed that time and cost forecasts supplied by the inform
ative system are less dependent on the recent past (filter pa
rameter T = 0.50 in Equation 20). 

Some scenarios were examined considering different "mar
ket penetration" of the informative system: 

• Tl-1 percent of users are informed, 
• TI-10 percent of users are informed, 
• T3-50 percent of users are informed, 
• T4-90 percent of users are informed, and 
• T5-100 percent of users are informed. 

The results are reported in Table 2, together with the results 
of case Nl as reference (i denotes informed users). 

As expected, informed users experience lower generalized 
costs than noninformed ones (with a reduction of about 20 
percent), and a small increase of travel time, since they have 
a better perception of the trade-off between travel time, even 
in congested intervals, and early or late arrival penalty. As 

de•and 
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TABLE 2 COMPARISON OF INFORMATIVE STRATEGIES 

Excess Excess Changing 
General cost Travel time users 
(min) (min) Fraction 

Cv 0.20 0.40 0.20 0.40 0.20 0.40 

Nl 6.94 8.36 3.40 3.65 .010 .000 
Tl 6.94 8.35 3.39 3.65 .010 .000 
ia 5.45 5.51 3.72 3.97 .020 .000 
T2 6.79 8.39 3.30 3.53 .005 .010 
i 5.35 5.57 3.67 3.88 .018 .024 
T3 6.37 7.67 2.93 2.93 .002 .000 
i 4.88 4.91 3.27 3.33 .006 .000 
T4 6.40 7.53 2.47 2.38 .000 .000 
i 4.87 4.85 2.90 2.90 .006 .003 
TS i 6.51 6.51 2.65 2.65 .010 .010 

NOTE: •; denotes informed users. 

an example, Figure 5 shows the departure and arrival profiles 
for case T2 for non informed users (above) and informed users 
(below). 

In addition, for more than 50 percent of informed users, 
generalized costs decrease for both types of users, as the 
fraction of informed users increases, leading to conditions 
which are better than the case Nl. However, the difference 
between noninformed and informed users is not greatly af
fected by the fraction of informed users. 

All these effects occur both for low (0.20) and high (0.40) 
values of the variation coefficient of the perception error of 
noninformed users; the value of this parameter does not affect 
the level of costs of informed users, a reduction of about 20 
percent and 30 percent, respectively, occurs in comparison 
with noninformed users . 

To show the sensitivity of the network to travel time func
tion specification, the same scenarios have been simulated 
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FIGURE S Departure and arrival profiles for case T2 (b. = 0.80). 
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FIGURE 6 Departure and arrival profiles for case T2 (b. = 0.90). 

assuming a value b. = 0.90 instead of 0.80, considering only 
the lowest value for the variation coefficient for noninformed 
users. These results are shown in Table 3. The results of the 
previously examined cases are generally confirmed. However, 
as a comparison with the results in Table 2, an increase occurs 
more in generalized cost than in travel time, since the values 
of travel times for arc flows close to capacity are higher and 
the users should spread their departure times to avoid conges
tion, thus less users can be on time. As an example, Figure 
6 shows the departure and arrival profiles for case T2 for 
noninformed users (above) and informed users (below). 

The preceding results, although inconclusive, indicate that 
informative control strategies may lead to better system con· 
ditions, in addition, as the fraction of informed users increases 
the performance of the system as a whole may become better 
both for informed and noninformed users. 

TABLE 3 COMPARISON OF INFORMATIVE STRATEGIES 

Excess Excess 
General cost Travel time Changing users 
(minutes) (minutes) Fraction 

Cv 0.20 0.20 0.20 
Nl 8.70 3.84 .010 
Tl 8.70 3.83 .010 
i" 7.27 4.14 .015 
T2 8.66 3.78 .000 
i 7.24 4.10 .000 
T3 9.07 3.48 .036 
i 7.62 3.81 .074 
T4 7.68 2.82 .021 
i 6.04 3.41 .060 
TS i 6.08 3.38 .048 

NOTE : 'i denotes informed users 

CONCLUSIONS 

In this paper some applications of a model recently proposed 
for the doubly dynamic traffic assignment to a transportation 
network are described. In particular, the model has been 
specified and used to simulate the effects of different control 
measures, ranging from flexible working times to a trip plan
ning informative system on a small but realistic network. 

Although the results are by no means conclusive as a result 
of the exogenous assumptions made especially about users' 
behavior, they appear to give some insights about both the 
potential of the model and the effectiveness of alternative 
control measures. 

The results show that the proposed model is a valid tool to 
simulate the relevant effects of control strategies in different 
scenarios. It also appears that some control measures cannot 
be correctly assessed without the explicit simulation of the 
demand elasticity over departure times and of the day-to-day 
adjustment process based on users' memory and forecasting. 

The effectiveness of an informative system appears to be 
greatly affected by the type of users' behavior and by the 
informative strategy followed. Also, the type of control strat
egy and memory depth play an important role on the network 
performance. 

The results suggest that a careful evaluation is needed to 
assess the effects on the network performance and the benefits 
of informative control strategies, and that the impacts on both 
informed and noninformed users should be taken into 
account. 
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