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Effectiveness of Information Systems in
Networks With and Without Congestion

Rupr HAMERSLAG AND Eric C. vAN BErRkUM

The use of road transport informatics (RTI) is a recent devel-
opment thal optimizes the vuse of existing facilities in the trans-
portation system and serves three main goals: alleviation of
congestion, diminution of air pollution, and reduction of inci-
dents. RTI instruments deal with traffic information. Examples
of RTI systems are pretrip planning, roadside displays, radio data
system—traffic message channel, and in-car navigation. To model
the effects of providing the road user with information a method
is used in which stochastic and deterministic assignments were
compared for both networks with and without congestion. To let
information also effect destination choice and the spatial distribu-
tion of activities, the assignment models were combined with
different distribution models. The amount of information that
travelers have was translated to a “level of uncertainty’ measure.
The more informed a traveler is, the lower the level of uncer-
tainty. Since the effects appeared to be network dependent, a
number of different networks were examined. Simulations show
that the amount of kilometers driven decreases when travelers
are provided with better and more information.

The use of road transport informatics (RTI) is a recent de-
velopment that optimizes the use of existing facilities in the
transportation system and serves three main goals: alleviation
of congestion, diminution of air pollution, and reduction of
incidents. RTI instruments deal with traffic information. Sys-
tems such as pretrip planning, roadside displays, radio data
system—traffic message channel, and in-car navigation are all
part of RTI. From a planners’ viewpoint, it is essential to
know the possible impact of RTI on the traffic system. One
way to predict effects of RTI is to model individual travel
behavior and to incorporate information explicitly as a model
component. In this way, the effect of information on travel
behavior can be simulated. Before this can be done, however,
it is necessary to model the current situation, in which the
traveler is not perfectly informed and therefore makes non-
optimal choices.

In many existing models it is assumed that people have
perfect knowledge of all travel alternatives. This assumption
means that the usefulness of providing information to trav-
elers cannot be determined. In the approach presented in this
paper, the classic four-stage model is central. The key issue
is, however, that the perceived travel times instead of the
objective travel times are being used in all stages. Therefore,
a measure of uncertainty is introduced. Uncertainty affects
not only route choice, but also destination choice and the
spatial distribution of activities. A further assumption is that
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information reduces uncertainty. So by using models in which
route choice, distribution, or location of activities, or all three,
are influenced by the (perceived) travel times and the out-
comes for different levels of uncertainty are compared, it is
possible to get an insight in the effects of information.

RELATED STUDIES

In recent years, many approaches have been presented to
provide insight into the possible benefits of information sys-
tems in transport.

The feasibility of the Comprehensive Automobile Traffic
Control project (1) was studied by using a simulation model
in which the noninformed users choose their route on the
basis of various factors, such as travel time, length of the
route, number of lanes, number of turns, and so on, and the
informed users choose their route solely on the basis of travel
time. It was found that in Tokyo travel time could be reduced
by 6 percent and fuel consumption by 5 percent. Tsuji et al.
(2) investigated the effectiveness of a route guidance system
by using a mathematical model. Among other factors, they
used travel time reduction as a measure of effectiveness. The
outcomes, however, must be related to the heavy assumptions
undcr which the model is valid. The reduction in travel time
was found to be 11 percent. van Vuren (3) tried to model the
effectiveness of route guidance by using a multiuser class equi-
librium and stating that the noninformed users behave greed-
ily, as in an deterministic user equilibrium, whereas the in-
formed users behave according to the principle of a system
optimum. The results were found to be unrealistic because
the uninformed users were better off.

Koutsopoulos and Lotan (4) modeled the impact of infor-
mation on travelers by using a stochastic user equilibrium and
stating that information systems reduce the variance in travel
time. They found a reduction in travel time of about 5 percent,
dependent on the assumed reduction in variance.

Mahmassani and Jayakrishan (5) modeled the effectiveness
of a real-time information system on a small test network with
three parallel highways and a number of switching possibili-
ties. The researchers chose one information supply strategy
and focused on the users’ reaction by defining them as bounded
rational individuals. An important result was that the system
performance might actually worsen by myopic local actions
of the drivers. Van Berkum and van der Mede (6) presented
a dynamic approach that simulates rational, uncertain, per-
sistent individuals who base their decisions on experience and
have a limited knowledge of alternatives.
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The approach that is followed in this paper is an extension
of the work of Koutsopoulos and Lotan (4). The situation of
recurrent congestion was also studied in this research. But
whereas Koutsopoulos and Lotan restricted the effects of bet-
ter information to route choice, the impact on destination
choice and the location of activities has also been studied here.
Another difference is that the amount of uncertainty in their
approach was initially too small. Further, they examined one
network, whereas different networks are studied here. Be-
cause the results are network dependent, it is difficult to com-
pare results, but the results they found on route choice are
on the same order of magnitude as the results presented in
this paper. The results gained from the present research are
not comparable with the results found by Mahmassani and
Jayakrishan. They studied the reaction of people on dynamic
traffic information that reports the actual traffic conditions.
When drivers react myopically, this information becomes in-
valid. An adjustment process will occur, which in the end will
lead to an equilibrium. This equilibrium is focused on in this
paper. This further implies that the information given to the
drivers is in some sense not real-time information but rather
future-time information.

MODELING APPROACH
General

The main hypothesis of this study is that the fact that people
are uncertain about travel times on links has more effects than
only on route choice. There will also be effects on destination
choice as well as on the spatial distribution of activities. People
make trips because they want to perform activities that are
spatially separated. In the traditional four-stage models, the
spatial distribution of activities is fixed. In this study models
are used that include the spatial distribution of activities as
endogenous. Users choose a route by minimizing some meas-
ure of cost. In this study travel time will only be used as cost.
Travelers do not possess perfect information about the net-
work they travel on. This means that people do not minimize
the objective time but rather the perceived travel time.

Destination choice can also be modeled by using a cost
minimization procedure (8). Because of the observation made
previously, this means that in determining the origin-
destination (O-D) flows, the perceived cost or travel time
must also be used. A basic assumption here is that route choice
is made on the basis of the same perceived travel times as
destination choice and the location of activities are made.
Traffic information affects the perception of travel times in
the network. The perceived travel times will be modeled as
stochastic variables whose distribution is influenced by the
amount of available information.

The approach that has been followed uses the traditional
four-stage model as a basis, although an adjusted form has
been developed. The following assumptions are therefore
needed:

@ All people base their decisions on what they know; and
@ People base their route and destination decisions on the
same perceived travel time.
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In order to make the approach not too complex the following
limitations have been adopted:

® The total number of trips is constant under all levels of
uncertainty;

@ All people have access to the same level of information;

e Information is assumed to be good and true; and

@ No distinction has been made between different modes
and purposes.

Route Choice

Link travel times on the network are defined as stochastic
variables. The variance in travel times—that travel times are
unpredictable to a certain extent—may be understood as un-
certainty of travelers. Consequently, users will have different
perceptions of travel times on the links.

A deterministic user equilibrium (DUE) can be defined as
the situation in which no traveler can improve his or her travel
time by unilaterally changing route (9). This definition as-
sumes that every traveler has an exact knowledge of travel
times and flows on all links in the network. A stochastic user
equilibrium (SUE) can be defined as the situation in which
every traveler thinks that he or she cannot improve the travel
time by unilaterally changing routes (9,10). This definition
assumes that travelers have different perceptions of travel
times. Comparing a SUE with a DUE enables estimating the
effect of providing information to travelers (or reducing their
uncertainty) on the traffic system (4,11), because this com-
parison can be translated as comparing travelers with exact
knowledge of all travel times in the network with travelers
with different perceptions of travel times in the network.

In networks without congestion the DUE assignment be-
comes a simple all-or-nothing assignment, where the SUE
assignment becomes a classic stochastic assignment (12,13).
The impedance Z,, of a link a in a network for person p is a
function of a number of variables X, such as time, cost, and
distance and their relative importance 3, plus some measure
of uncertainty. We define

Zap = ; Bk ’ Xak i enp (1)

where e, is a noise term. The resulting route choice model
depends on the distribution of ¢,,. It is supposed that e,, is
normally distributed with mean 0 (13), which yields a probit
model for route choice. The introduction of the noise term
e,, can be explained by stating that (a) behavior cannot com-
pletely be explained by all X,’s, (b) individuals have different
perceptions of the X,,’s and their relative importance there-
fore may differ, and (c) individuals are uncertain about the
exact value of the X, ’s, especially because these values differ
in time. Instead of impedance, generalized cost, or general-
ized time only travel time will be considered as a measure for
deterrence in this study.

The travel time on a link a in a network without congestion
is

Z,=2,+ o« R VZ, )
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where

Z, = mean travel time of link a,

draw from a normal [N(0,1)] distribution, and

a = factor determining the variance (from now o will be
called level of uncertainty).

=
Il

The value of a is dependent on the chosen dimension (/4).
Given an O-1) matrix, o can be determined by comparing
true with model flows. When the dimension is minutes, it has
been estimated that 0.5 < o < 1 for a regional network with
relatively few alternative routes (15). Furthermore, Bovy (14)
developed an efficient methodology for estimating o from
observed flows.

In reality the uncertainty will, among other things, be a
function of the frequency with which a person travels between
a certain O-D pair. The lower the frequency, the higher the
uncertainty. In this study, the uncertainty is assumed to be
equal for all travelers.

The travel time of a link in a network with congestion is

Z,=2Z +a-R-VZ, 3)
with

4
" 9a
Z,,~Z,,[1+T<C>] 4)
where

Z, = the mean travel time of link a,
g, = the flow on link a,
¢, = the capacity of link a,
R = a draw from a normal [N(0,1)] distribution,
a = the level of uncertainty, and
7 = a parameter dependent on the definition of capacity.

Destination Choice and the Location of Activities

Because the distribution process is a utility maximization pro-
cess (or disutility minimization), information will also have
impact on destination choice resulting in a distribution of flows
and the location of activities. In this study, the following
interaction model with elastic constraints is used (16):

min 2, (2 T, —m " -A,) + > (Z Ty =ik Di) (5)

Subject to
T; = 6lmQ.X, exp[—0.4 In*(Z, — d; + 1)] (6)
where
T;; = number of trips between i and j,
I, m; = equilibrium factors,
Q:, X; = polarities,
Z,; = objective travel time between 7 and j,
A; d; = arrivals and departures, and
d,; = difference between objective and perceived travel

time between zones i and j.
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In solving the model, the terms 1/(1 + g) and 1/(1 + h)
become important. These terms will be called elasticities. Thus
when g and h are both 0 the elasticities become 1 and the
model turns into the classic gravity model with fixed con-
straints. To coordinate spatial planning, transportation de-
velopment, and spatial development, the model with elastic
constraints was developed. The value of the equilibrium fac-
tors in Equation 6 is a function of the extra effort needed to
comply with the constraints. In poorly accessible areas, the
value is high and, inversely, in easily accessible areas the value
is low. When the number of arrivals and departures is seen
as dependent, though not exclusively, on the accessibility, the
objectives in Equation 5 must become elastic.

Combining the Assignment and the Distribution Model

To determine the effects of information on route choice, route
and/or destination choice, and/or the location of activities,
the following models must be compared:

@ In the case of no congestion, a distribution model with
and without elastic constraints will be compared with the same
model but combined with a stochastic Burrel assignment.

® In the case of congestion, first the DUE assignment will
be combined with the distribution model without (10,17) and
with elastic constraints (8). Second, the same combination
will be made, but with the SUE assignment.

To combine a SUE assignment with a distribution model,
including the assumption that both models deal with the same
perceived travel times, it is necessary to determine how the
perceived travel times must be used in the distribution stage.
In the proposed distribution model there is one value for
travel time between each O-D pair. In reality this travel time
is different for every individual (perceived travel time). Start-
ing with Z;,, the perceived travel timc between i and j along
route r of person p, person p chooses that route with the
smallest perceived travel time. Therefore, it holds that

Z

i.p

= minr Zijrp (7)

Suppose the population B is divided in two groups, B1 and
B2. Persons belonging to B1 find route ! the best, and persons
belonging to B2 do not, so

Zipy=Z;,,YpEBlandr # 1 (8)

ijlp ijrp

For persons belonging to B2 it holds that

Zy,=z2,,Yp€EB2 %)
So
Zjp = Zy, YV p € (B1UB2) (10)

Suppose there are N persons in B, then

1 1
zZ, = = g Z,,and Z,, = 5 % I (10.1)
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Using Equation 10 it holds that
7= Ziy (10.2)
The same result can be derived for every route r, so

Z, = Zy Vr (11)
Thus the perceived travel time between any O-D pair used in
the distribution stage is always less than or equal to the per-
ceived travel time of any of the chosen routes between the
OD pair.

The difference between the best route and the travel time
between an O-D pair is dependent on the network. When,
for instance, one route is by far the best so that every traveler
between that OD pair will choose that route, the equal sign
in Equation 11 holds for this particular route. When there is
a spreading over the routes for all r the less than sign will
hold. When the level of uncertainty o becomes larger, the
spreading in routes becomes larger and Z; will decrease, or
in other words the difference between model travel time and
the mean perceived travel time of the objectively seen best
route (which is by definition the objective travel time of the
best route) becomes larger. So in the distribution stage the
following travel time is used:

V4 d

i if

Where Z; is the mean perceived travel time of the objectively
seen best route between zone i and j; d;; is an increasing
function of o (obviously when o = 0, also d; = 0).

Models and Algorithms

To study the effects of more or better information on route
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rium assignment with a given, fixed O-D matrix. To study
the effects on destination choice and on the resulting O-D
flows too, the “A + D model” is used. In this model, a
stochastic equilibrium assignment and distribution with fixed
constraints are combined. In the O-D matrix, the numbers
of departures and arrivals are fixed for each zone. The cell
volumes solve Equation 5 subject to Equation 6 with g =
h = 0.

To study the effects of activities on the locations, the “A +
D + L model” is used. In this model, a stochastic equilibrium
assignment and distribution with elastic constraints are com-
bined. In the O-D matrix, the numbers of departures and
arrivals are variable for each zone, but the total number of
trips is fixed. The cell volumes solve Equation 5 subject to
Equation 6 with g and 4 not necessarily equal 0.

In Figures 1 through 4, the separate algorithms for the
congestion situation are depicted. Basically, the methodology
as proposed by Evans (/7) is followed. The steps that have
to be executed more than once because the draw must take
place m times have been depicted with a thick line. In the
case of no congestion, the step where new travel times are
computed becomes trivial.

A generalized description of the used algorithm is

1. Read network;

2. Draw link travel times for every link;

3. Determine travel times from shortest routes between

every O-D pair;

4. Repeat No. 2 and No. 3 m times;

5. IF model = A THEN
read O-D matrix

ELSE determine mean travel times with the travel times

per draw determined in No. 3. Determine O-D ma-
trix with elastic constraints (A + D + L) or with
fixed constraints (A + D) using a Gauss-Seidel in-
teration procedure to solve Equation 5 subject to

choice the “A model” is used, which is a stochastic equilib- Equation 6;
CAR LINK RANDOM
NETWORK TIMES FUNCTIONS
ROUTES
oD~

MATRIX
A-O-N
FLOWS

CAPA- DELAY FLOWS o[FLows

CITIES TIMES

FIGURE 1 A model, congestion.




CAR LINK RANDOM
NETWORK TIMES FUNCTIONS
TIMES
OD PAIRS
ROUTES
oD~ — ACTt-
MATRIX VITIES
A-O-N
FLOWS
CAPA- HELAY FLOWS FLOWS
CITIES ~TIMES
FIGURE 2 A + D model, congestion.
CAR LINK RANDOM
ETWORK TIMES FUNCTIONS
TIMES
0D PAIRS
ROUTES
oD- ACTI-
MATRIX VITIES
A-O-N
FLOWS

CAPA- DELAY I FLOWS
_CITIES TIMES

FIGURE 3 A + D + L model, congestion.

Entity that Is exogeneous in the model

Entity that Is endogeneous In the model

The thick arrow means that |t must be performed
several times, l.e. once for each draw.

[ ]
[ ]

FIGURE 4 Explanation for Figures 1 to 3.
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6. Subdivide the O-D matrix in m equal parts and load them
to the routes determined in No. 3, yielding loads q} for link
a,

7. load link a in iteration i the network with ¢! =
[g:! - G — 1) + qulli;

8. In case of congested networks: determine new travel
times; and

9. Go to No. 2 until stop criterion is reached.

EXPERIMENTS

The experiments were performed using the research facilities
of the Teacher Friendly Transportation Programs V90.2 (19).
In the stochastic assignments m, the number of draws was 4
and the number of iterations was 8. Because for every tree
of shortest paths, new travel times were drawn, the total
number of draws is 32 times the number of zones. Conver-
gence was no problem in all test networks. The number of
iterations was far less than expected in a combined distribution-
assignment procedure (10,20).

Networks

Earlier it was observed that the spreading of chosen routes
determines to some extent the value of d;. The amount of
spread is not only dependent on the size of the variance as
used in the stochastic assignments, but also on the presence
of (relevant) alternative routes. Obviously in a situation in
which there are hardly any alternative routes, the spread will
be small. Therefore it is important to investigate different
networks. In this study four regional networks with a diameter
of about 40 km (called REGIO, RING, SLOW, and CBD)
and one urban network with a diameter of about 15 km (TOWN)
were examined. For the regional networks only, the situation
without congestion is considered. For the urban network both
the situation with and without congestion are considered.

In Figures 5 to 7 some of the networks with their spreading
of activities and flows are shown. In Figure 8 the notation of
the activities is shown. The networks RING, SLOW, and
FAST are the same size (number of links, number of nodes,
distances) as CBD.

C—@

©-
®
®

®
®
@
©

@
@

o—®

FIGURE 5 Network CBD.

FIGURE 6 Network REGIO.

FIGURE 8 Notation of
activities.

In Figure 8 the radius of the outer circle is proportional to

L
[max (E Ty 2 T.»,-)] (12)
i J
The radius of the inner circle is proportional to

[abs (; -3 T>:|/ (13)
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The inner circle is open when

ST,<3T, (14)
i J

The description of the networks is as follows:

® CBD—network with speedways (100 km/h) pointed to a
central zone; other roads are 40 km/h;

® FAST—network with only specdways (100 km/h);

® REGIO—network like “CBD”, but more dense near the
center;

® RING—network with speedways in a ring around a cen-
tral area;

@ SLOW—network with only secondary roads of 40 km/h;
and

® TOWN—urban network; there are no trips to or from
the surrounding areas.

Level of Uncertainty, «

The simulations have been performed for all networks with
levels of uncertainty « = 0, « = 0.5, and @ = 1. For the
network TOWN a = 0.3 and o = 0.8 were also taken into
account.

Results

The results of the simulations for the urban network with and
without congestion are given in Tables 1 and 2. Resulits for
the regional networks without congestion are given in Tables
3, 4, and 5. For all networks, the amount of carkilometers
(vehicle miles) increases when the level of uncertainty in-
creases. Because provision of information can be translated

TABLE 1 CARKILOMETERS FOR
TOWN NETWORK, WITHOUT
CONGESTION, UNDER DIFFERENT
LEVELS OF UNCERTAINTY (KM FOR
a = 0 ARE 100)

o A A+D A+D+L
1.0 117 128 130
0.7 112 119 121
0.5 104 107 108
0.3 101 102 103
0.0 100 100 100

TABLE 2 CARKILOMETERS FOR
TOWN NETWORK, WITH
CONGESTION, UNDER DIFFERENT
LEVELS OF UNCERTAINTY (KM FOR
« = 0 ARE 100)

o A A+D A+D+L
1.0 124 129 136
0.7 118 121 126
0.5 106 109 110
0.3 102 103 103
0.0 100 100 100
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in a smaller level of uncertainty, it can be stated that providing
road users with information reduces the amount of carkilo-
meters. The results show that the gains differ per network.
A network means not only the set of links and nodes, but
also the initial tripends. This observation implies that it is
hard to compare the results of other studies with one another
and with these results, because different networks are used
in all studies.

The results for the networks as listed in Tables 3, 4, and 5
are more or less comparable. These results were calculated
with models that did not deal with congestion. The results for
the TOWN network show a larger increase in carkilometers
when a increases (See Table 2). This can be explained by the
fact that the TOWN network obviously contains more alter-
native routes than all the other networks. The spread in route
choice will be bigger for this network since there simply exist
more alternatives. Because the network outcomes in Tables
3 to 5 reflect few alternative routes, the effect on route choice
is small compared with the effect on destination choice (com-
pare the outcomes in Tables 3 and 4). The extra effect on the
location of activities is also small compared with the effect on
destination choice (compare the outcomes in Tables 4 and 5).
When looking at the network TOWN, the effects on route
choice are the largest. Change in destination choice and in
the location of activities are marginal compared with this ef-
fect. Because this network is more realistic than the other
ones, this observation may be generally true. By comparing
Tables 1 and 2, it follows that the effect of the provision of
information is larger in the network with congestion than
without congestion.

TABLE 3 CARKILOMETERS DRIVEN FOR DIFFERENT
NETWORKS, UNDER DIFFERENT LEVELS OF
UNCERTAINTY WITH THE A-MODEL (KM FOR a = 0
ARE 100)

o CBD RING SLOW FAST REGIO
1.0 102 103 101 105 103
0.5 100 103 101 101 101
0.0 100 100 100 100 100

TABLE 4 CARKILOMETERS DRIVEN FOR DIFFERENT
NETWORKS, UNDER DIFFERENT LEVELS OF
UNCERTAINTY WITH THE A + D-MODEL (KM FOR a =
0 ARE 100)

o CBD RING SLOW FAST REGIO
1.0 108 109 112 120 111
0.5 102 103 105 107 103
0.0 100 100 100 100 100

TABLE 5 CARKILOMETERS DRIVEN FOR DIFFERENT
NETWORKS, UNDER DIFFERENT LEVELS OF
UNCERTAINTY WITH THE A+ D +L-MODEL (KM FOR
o = 0 ARE 100)

o CBD RING SLOW FAST REGIO
1.0 113 113 113 123 115
0.5 103 103 105 107 104
0.0 100 100 100 100 100
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CONCLUSION

Trips and activities are a result of decisions people make.
These decisions concern route and destination choice as well
as activity choice. The actual choices depend on the perceived
travel times, rather than on the objective travel times. As a
result, travelers think they choose the best route, but this
route is not necessarily the best from an objective point of
view. Also destinations are chosen because they appear to be
close. This causes extra, unnecessary carkilometers.

The approach presented in this paper has a number of
assumptions and limitations about information:

e Information is seen as an abstract entity; it is not possible
to evaluate a specific information system or different types of
information.

® Because of the equilibrium approach the presented method
is able to predict the long-term effects of the provision of
information in a situation of recurrent congestion.

The results of this study should be looked at in light of these
assumptions as well as in light of the limitations this approach
has.

It was proven that the perception of two or more inde-
pendent routes is always less than or equal to the perception
of each of two or more routes together. The travel time of
the chosen route is systemically being underestimated. Pro-
viding information reduces the difference between perceived
travel time and objective travel time. This has an impact on
the choice of route, destination, and activity. As a result, the
amount of carkilometers decreases. The different test cases
show that the form of the network, with respect to the pres-
ence of alternative routes, is of importance. Further, the sim-
ulations show that in a situation with congestion, the decrease
of carkilometers is larger than in the situation with no conges-
tion. Currently it is not possible to quantify the effects of
information precisely because the present and future values
of a are not exactly known, uncertainty will only partially be
influenced by information, and only a part of the travelers
will use the information. On the other hand, through route
guidance, delays on intersections may be minimized (21) and
the influence that information about incidents could have is
neglected. With the above considerations in mind it seems
valid to state that information systems may decrease the amount
of carkilometers in urban networks by 15 to 20 percent and
in regional networks by 5 to 10 percent.
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