40

TRANSPORTATION RESEARCH RECORD 1306

Special-Purpose Parallel Computer for

Traffic Simulation

H. J. M. vaN GROL AND A. F. BAKKER

Traffic simulations are widely used for long- and medium-term
forecasting of traffic. Now-a-days, with the growing problem of
queues during rush hours, the demand arises for dynamic traffic
management and, therefore, short-term forecasting. Apart from
the need for new, adapted dynamic assignment models the second
important part in this new development is the 1equited compu-
tational power. Most commercially available computers are un-
able to produce an accurate forecasting for the next 5 to 30 min.
within the desired time and budget. Analysis of existing assign-
ment models and their most time consuming part—shortest path
finding— has shown that the main structure of the models can be
parallelized. The use of parallelism thus seems apparent. Several
general purpose parallel computers, such as N-cubes, are com-
mercially available. However, apart from being more expensive,
they loose a large part of their expected performance by the
amount of necessary interprocessor communications. Addition-
ally, the programming of such computers has turned out to be
more difficult than expected. A simple linear array of typically
16 processors, the so called Linear Processor Array (LPA) is
proposed. This one-dimensional parallel computer with high-speed
buffered interconnections between each pair of neighboring pro-
cessor boards, parallel accessible by both a control board and a
general-purpose host computer, forms a transparent concept for
the programmer. The optimally configured boards together with
the high speed intercommunication allow a cost/performance
improvement factor of 100 compared with a minisupercomputer
like the Convex C1. LPA should be a powerful tool for future
developments of on-line traffic control, route guidance, ramp
metering, among other things.

Many transportation planning and control activities involve
traffic simulations for medium- and long-term forecasting.
The existing models are efficient enough to do this within the
desired time. With larger networks, the simulation time in-
creases rapidly. Furthermore, with the growing importance
of dynamic traffic management (because building new roads
is considered not to be a desired solution anymore), the de-
mand for short-term forecasting grows. Existing models do
not meet these demands, neither in time nor in accuracy.

Apart from the development of new adapted dynamic as-
signment models, the time constraints require thought about
the necessary computing power. With most commercially
available computers it is not possible to produce an accurate
forecasting for the next 5 to 30 min within the desired time
and budget. The use of special-purpose computers will open
ways to a desired solution.

A cost-effective answer to this problem is given in this
paper. To start with, the existing assignment models and the

Delft University of Technology, Faculty of Applied Physics, Physics
Informatics/Computational Physics, Lorentzweg 1, 2628 CJ Delit,
The Netherlands.

development of the new dynamic models will be investigated.
This will lead to a simplified representation of assignment
models in which the algorithm is analyzed to find possible
optimizations. It will be shown that the main structure of the
models can be parallelized. After a short discussion about the
use of general-purpose computers and an introduction to
special-purpose computers, the use of special-purpose hard-
ware for traffic routing problems will be discussed. This will
lead to the proposed Linear Processor Array (LPA), which
will be explained in detail. Finally, some preliminary results
will be presented and the expected performance improvement
will be given in conclusion.

TRAFFIC SIMULATION MODELS

Traffic simulation models or, more specifically, network as-
signment models have evolved from the simple, static assign-
ment models (all-or-nothing assignment) to the more complex
dynamic assignment models (three dimensional assignment
model). In the past, the models have mainly been used for
long- and medium-term forecasting and have played an im-
portant role in transportation development schemes. Long
computations are manageable in these cases. The computa-
tion time, however, will grow rapidly with more complex
models, larger networks and so on. A third important objec-
tive, short-term forecasting, has recently gained attention.
Short-term forecasting is used for dynamic traffic manage-
ment, which deals with on-line networkwide traffic control,
route guidance, and ramp metering, for example. Short-term
forecasting, in the range of 5 to 30 min, will impose a time
constraint on the simulations. All together there exist enough
reasons to justify a search for methods to speed up the cal-
culations. Improvements can be made on both the algorithm
side and the computer side. In the remainder of this paper
possible improvements on the algorithm side will be concen-
trated on.

First, the collection of assignment models will be looked at
to find a generalized form. Although the reader will be fa-
miliar with the models, they will be summarized.

Categorization of the Models

The simplest model is the all-or-nothing model. This model,
however, does not take into account the multiple routes dif-
ferent travelers, from one origin-destination (O-D) pair, take
in reality; nor does it take into account the load dependence
of travel times or time dependence in general. The remaining

van Grol and Bakker

models can be split into three categories, on the basis of their
resolution of these three deficiencies. The corresponding al-
gorithms are, respectively, the stochastic, the equilibrium,
and the dynamic assignment algorithms. A few examples of
each category will now be listed.

Stochastic Assignment

The principle of stochastic assignment is to simulate the route
choice by assuming the traveler does not have perfect knowl-
edge about his route. There are two essentially different sto-
chastic assignment methods. The first one iteratively performs
all-or-nothing assignments on the basis of randomly adjusted
arc travel times. The assignment at each iteration is a fraction
(1/number of iterations) of the total assignment. The maxi-
mum number of possible routes between one origin and des-
tination is equal to the number of iterations. The second
method consists of only one or two iterations but results in a
large number of taken routes. Both methods have been de-
scribed in detail in Van Vliet (I). These methods are mainly
used in noncongested networks.

Equilibrium Assignment

In this category, the travel times depend on the traffic load.
Multiple routes are found at equilibrium. The equilibrium is
based on the principle of Wardrop (2): “The traveltimes of
all used routes between an origin and a destination are equal
to or smaller than the traveltimes of the unused routes. No
traveler can shorten his journey by switching to another route.”
There are several ways to reach the equilibrium: methods
with a theoretical background and more ad hoc methods. The
practical difference is the number of iterations necessary to
reach the equilibrium and the amount of work in each iter-
ation. At the end of each iteration travel times are recalcu-
lated. Methods include

® Equilibrium: the equilibrium assignment is computed us-
ing optimization techniques. At each iteration the old assign-
ment is compared with a new all-or-nothing assignment. The
resulting assignment is the optimal weighting between these
assignments. This is done until no significant improvement
can be made.

e Capacity restraint: the network is iteratively loaded and
unloaded, according to a predefined recipe.

@ Fixed demand incremental: the network is iteratively loaded
with a decreasing amount 1/(i + 1), where i is the iteration
number.

Dynamic Assignment

Instead of observing the assignment in one time interval, as-
suming the total amount of traffic on a route to be evenly
spread along the route, time aspects are taken into account.
In other words, by dividing the observed interval into a num-
ber of periods, travelers are only contributing to the load of
an arc in the period in which they are really using it. Since
travelers do not start their journey all at once, the O-D matrix
is defined for each period separately.

41

One dynamic assignment method is described by Hamerslag
(3,4). For each period an all-or-nothing assignment is com-
puted, resulting in an all-or-nothing assignment in three di-
mensions (time and space). Techniques from the previous
categories are used to find a realistic assignment. The number
of iterations, required in the former algorithms, is now mul-
tiplied by the number of simulated periods. This method can
realistically simulate traffic in congested networks. It is pos-
sible to simulate temporary decreasing capacities caused by,
for instance, accidents or ramp metering.

Summary

It can be concluded that all algorithms are repetitive all-or-
nothing assignments. The workload (computational load) comes
almost entirely down to the all-or-nothing assignment. To

speed up the computation, optimizing the all-or-nothing
assignment must be concentrated on.

The All-Or-Nothing Assignment
The all-or-nothing assignment, as the name suggests, assigns
“all” traffic to a single shortest route and “non’ to the others.
It will, therefore, compute the shortest path between each
O-D pair and assign the associated amount of traffic to each
consecutive arc along that path.

Compute the all-or-nothing assignment
for each O-D pair in the network {

Compute the shortest path between origin and destina-
tion

Assign the path

}

It is more efficient to calculate shortest path trees (spt’s),
because the corresponding parts of the shortest paths from
one origin to several destinations can be long. Thus
Compute the all-or-nothing assignment
for each origin in the network {
Compute the spt
Assign the spt
b

We will now examine the algorithm in more detail.

Shortest Path Finding Algorithms
There are four main techniques of finding shortest paths:

@ Heuristic technique—one-to-one;
® Algebraic technique—all-to-all;

42

@ Combinatorial technique—one-to-all; and
@ Optimizing technique—one-to-all.

For this study, the heuristic technique is not suitable (one-to-
one) and the algebraic technique is inefficient and uses much
memory. This leaves the combinatorial and the reoptimizing
techniques. The reoptimizing technique is the fastest tech-
nique and is based on the reoptimization of an existing spt
for origin u to a new spt for origin v. As it is a more complex
algorithm, consumes a large amount of memory, and is only
about two times faster, one might prefer to use the combi-
natorial technique.

The algorithms using the combinatorial technique can be
splitinto two groups, the label-correcting and the label-setting
algorithms. The labels are the values associated with each
node in the network representing the cost of traveling coming
[rom the present origin-node (root of the spr).

The following algorithm is a general shortest path finding
algorithm:

Compute the spt
Initialize d, = >, vE N — {r},d, = 0
Init_Q Q = {r}
While (Q # ¢) {

Select_node select u € Q; Q = Q ~ {u}

for each (u,v) € FS(u) {

if (d, + c,, <d){
py = u

d d

v u + Cl« W

Update_Q Q = Q U {v}
}

}

For an explanation of the symbols used, see Appendix.

The tree is built from the root; therefore, these algorithms
are also called tree-builder algorithms. The set Q contains the
nodes that need to be examined. All algorithms are similar
except for the way Q is maintained in Init_Q, Select_node,
and Update_Q. The efficiency of the algorithm depends on
the way this is done. The minimum computation time is reached
when Init_Q, Select _node, and Update _Q cost minimal time.

Well-known algorithms are Moore (5), which is a label-
correcting algorithm and Dijkstra (6), which is a typical
label-setting algorithm. A more detailed description can be
found in (7-10). A simple label-setting algorithm is one that
simply sorts the entries in O, (S-ord). It has a time complexity
of O(m.n), where m is the number of arcs in the network and
n the number of nodes. The fastest algorithm using the com-

TRANSPORTATION RESEARCH RECORD 1306

binatorial technique is a threshold algorithm (T-calc), which
combines the good qualities of both the labeling methods.
Although, in principle, the computational complexity of this
algorithm is O(n.2"), and thus about the worst possible, in
practice it behaves like O(n) and is robust. For the mainte-
nance of Q it uses a combination of methods: address cal-
culation and a lifo-procedure (last-in-first-out) [see van Grol
& Bakker (11)]. In this way, the algorithm dependent parts
(Init_Q, Select_node and Update_Q) cost minimal time. The
differences between the methods increase with growing net-
work size. Having reduced the time complexity of the spt to
O(n) the time complexity of the assignment part will now be
examined.

Assignment

The simplest way of assignment is to follow the O-D path and
assign the associated amount. The following is the procedure
to assign one shortest path tree (g,, 2 € M contains previously
assigned loads):

Assign the spt for origin
for each destination in the network {
u = destination
while u is not equal to origin {
GQpue = Gpo T OD(origin, destination)

U = py

}

In this way the arcs near to the origin are assigned many
times. The time complexity is O(n.l,) = O(n.n), where [is
the mean number of arcs in a path.

A more efficient method can be obtained by simultaneously
assigning several O-D elements to an arc. Supposing that [,
is the level in the tree (the number of nodes counted from
the origin), all nodes can be sorted according to their level.
Starting at the highest level, the following procedure can be
executed.

Assign the spt for origin
K={1...n,S8,=0,ueN

Sort the nodes in set K top-level down
Sort K

for each node u from K {

Qouie = Gpu + OD(origin,u) + §,

S,, = S, + OD(origin,u) + S,

van Grol and Bakker

The set K contains all nodes with their levels. This reduces
the complexity of the assignment to O(n) but sorting K has
a complexity of O(n.log n). By using an addressable array,
L(), to sort the nodes by their level we can reduce the total
complexity to O(n). The algorithm then becomes

Sort levels of spt for origin
L()=20
for each node u {

L) = L) U {u

}

Assign the spt for origin
S, =0, uEeN
for each level top down {
for each node u in the set L(level){
oot = Gpuu T OD(origin,u) + S,

S,. = S, + OD(origin,u) + S,

Summary

A complete description of the algorithm can be found in the
Appendix. The overall computational complexity (path find-
ing and assignment) for one spt is now O(n). This means that
a number of operations is executed on each node and O(n)
is thus the minimum complexity. Only the number of oper-
ations can now be minimized. The computational complexity
of the all-or-nothing assignment is O(n?). A good implemen-
tation of this algorithm is the best that can be done. A major
improvement could only be achieved by an implementation
in assembler.

Two observations can be made. First, it can be seen that
the computations of the sptr's are independent. This allows
the use of parallelism. The second observation is that the all-
or-nothing assignment is mainly a data flow problem. All
network data will flow through the algorithm several times,
whereas the number of operations on the data is minimal.
Bearing this in mind, the possible use of special-purpose hard-
ware is discussed in the next section.

SPECIAL-PURPOSE HARDWARE

First, the use of general-purpose computers in traffic simu-
lations will be discussed, because these limitations motivated
the current research into using special-purpose hardware. The
principles of the special-purpose computers are described next.
Third, dedicated architectures for traffic simulations will be

43

focused on. After an introduction to the proposed LPA, a
more detailed description of the LPA, dedicated for traffic
simulations, will conclude the section.

General-Purpose Computers

Standard traffic simulations usually run on general-purpose
computers, such as microcomputers, workstations, and main-
frames. For small networks and simple algorithms, the turn-
around time of the simulations is satisfactory for most
applications. Moving from microcomputer to mainframe or
minisuper workstations significantly improves performance
and visualization, but larger networks and more complex as-
signment algorithms require supercomputer power. However,
the cost and the limited availability of supercomputers elim-
inate this option.

In general, commercially available computers were de-
signed to solve all problems, and are not tailored to efficiently
solve a typical problem such as found in traffic simulations.
To improve the cost to performance ration, or to bypass hard-
ware limitations of general-purpose computers, one can
design and build a special computer, the architecture of which
maps perfectly on the problem or algorithm involved. This
approach can be considered a low-cost alternative to
supercomputers.

Special-Purpose Computers

Special-purpose computers are designed to efficiently carry
out a particular task at supercomputer speed. In general, they
cannot handle any other task, or, if they can, the performance
will be poor. However, a design can cover a class of problems,
and thus can be used for a wide range of applications without
performance penalty. The special-purpose computer is de-
signed on the basis of the problem, problems, algorithm, or
algorithms to be used, and allows an architecture that explores
parallel and pipelined operations wherever applicable. It
allows problem-dependent memory organization, problem-
adapted basic instruction set, and so on with the purpose to
improve the total performance of the computer.

Special-purpose computers range from single-purpose to
multi-purpose computers and they differ in the flexibility of
programming them.

® Single-purpose computers. Single-purpose computers have
a basic instruction set that will only cover the operations re-
quired for the task it has been designed for. This approach
allows the algorithm to be hardwired, which guarantees an
optimal speed. Fixed-wired parallel and pipelined architec-
tures restrict the flexibility to modify the algorithm, but leave
open the possibility to vary enough parameters to motivate
the effort to design such a machine. The cost to performance
ratio of this type of computer is low (factor 100 better than
supercomputers) and they are available 24 hr/day for the com-
puter experimentalist. A variety of single-purpose computers
have been successfully exploited in signal processing and com-
putational physics (11-14).

® Multi-purpose computers. Multi-purpose computers are
designed to efficiently solve a class of problems rather than
a single problem. These architectures reflect the common

44

property of the algorithms involved and can be programmed
to solve a problem from the class of problems it was designed
for. High-level languages are used (C and F77) to program
the computer. The speed is obtained by using many processor
nodes interconnected by a communication network that is
suitable for the class of algorithms involved. The architecture
of the nodes is kept simple but effective to allow the con-
struction of efficient compilers. The choice of processor,
memory structure and size, interconnection network, and word
length characterize the multi-purpose computer. They can be
shared memory or distributed memory machines running in
single-instruction multiple-data or multiple-instruction
multiple-data mode. Flexibility and programmability of these
computers are traded for ultra speed as in single-purpose
computers. However, the newest commercially available
microprocessors are fast, the architecture is scalable, and can
result in a cost to performance ratio improvement by two
orders of magnitude compared with supercomputers.

So-called general-purpose parallel computers, such as
N-cubes, may use fast processor nodes, but their memory
architectures and their slow interconnection networks do de-
crease the overall performance dramatically. Only between
10 and 20 percent of the advertised peak performance is reached
by careful programming. Existing parallelizing high-level lan-
guage compilers are still far from ideal. Automatic decom-
position of sequential program flows of problems that are
often parallel in nature is not an efficient way to obtain fast
codes for parallel computers.

In practice, the user has to choose a network topology and
program the nodes to use that network efficiently. Often
topologies are chosen to be ring structures, so that the
programmer can implement the algorithm without begin dis-
tracted by more exotic topologies. Still, the node inter-
connections are slow because of their all topology structure.

A Special-Purpose Computer For Traffic Simulations

To select or design a computer for traffic simulations, the
algorithm has to be examined for possible parallel or pipelined
operations. As the algorithms involved are still in develop-
ment, thus demanding flexibility, a single-purpose computer
will not be considered. Decomposition of the total problem
into coupled parallel processes is a way to find a scalable
parallel architecture. The node architecture, memory size,
and interconnection channel will then determine the final
computer.

As shown previously, a time critical part of the algorithms
used in traffic simulations is the calculation of n shortest path
trees (spf’s), where n is the number of nodes in the network.
It was concluded that the spt’s can be independently calcu-
lated, thus allowing us to decompose the problem into n prob-
lems of one spt. Using n processor boards, all the spt’s can
be calculated in parallel. This will improve the simulation
speed by order n. In a parallel computer, with P processor
boards, n/P spt’s can be calculated on each board, which gives
a speed-up factor of P. The latter solution is preferable for
reasons of scalability, especially for large n. Each processor
board will need all network information, thus P times the
amount of memory needed to store the network is the minimal

TRANSPORTATION RESEARCH RECORD 1306

total memory size. Minimizing P to keep memory costs down
is compensated by making the processor boards as fast as
possible, and keeps the overall performance high. In the pre-
ceding assignment schemes, this decomposition also holds.
However, to find the total load per arc, the partial arc loads
must be accumulated. It is necessary, therefore, to efficiently
interconnect the processor boards. Here, a pipeline structure
in which each processor board is one pipe stage of the whole
pipe can be used. Consequently, the processor boards are
ordered in one string to construct this pipeline. One high-
speed data channel from each board to its neighbor board is
sufficient to obtain a fast pipeline. The accumulated arc loads
are collected in the last pipe stage (last processor board in
the string). To start the next iteration, the updated network
has to be broadcast to all processor boards. When all pro-
cessors are connected to a common bus, broadcasting can be
accomplished using one talker and P listeners on this bus (see
Figure 1). Before going into details of the design, a more
generalized architecture that will cover the above architecture
ideas for traffic routing simulations but can be used for other
purposes as well (multi-purpose computer) is discussed.

LPA Architecture

An LPA is a one-dimensional array of identical processor
boards, each of which is connected to its two neighboring
boards only by a data bus. In addition, the boards share a
common data-, address-, and control-bus, which is also in-
terfaced to a general-purpose host computer. One processor
board is configured as a control board, which supervises the
chain of processor boards through a special control bus (see
Figure 2).

A large class of problems in computational physics (both
authors work in this field) can be solved using this parailel
architecture. A natural domain decomposition allows the
mapping of different subdomains on different processors. All
subdomains can be processed simultaneously. In general, the
calculations in a subdomain need data from the other sub-
domains, but when ‘“local environment problems” are

1 2 je—or 3 H 4 fe—ed P

FIGURE 1 Data flow in the traffic assignment problem
mapped on an array of P processor boards.

host control control & status bus

& siatus l 1 ! Q t

~
HOST interface & biis : \}
DATA & ADDRESS BUS -~

FIGURE 2 Global architecture of LPA.

van Grol and Bakker

involved, such as in finite difference calculations, only the
directly neighboring subdomains are contributing to the
results. For this class of problems, the domain can be decom-
posed by slicing in just one direction. Each domain slice is
mapped onto one processor, and each processor communi-
cates only with its two neighboring processors. The host passes
data and programs to the LPA and collects results of the
calculations by means of the common bus. The processor
architecture, the local memory and the interface to the two
neighboring processor boards are optimized to tackle the
problem they are designed for.

LPA for Traffic Simulations

LPA architecture is well suited for the traffic-routing problem.
Programs and network data, which are (mostly) identical on
the different boards, can be broadcasted tc the processor
boards. Each processor node requires enough memory to con-
tain all network information and the locally calculated results.
At the start of every iteration (all-or-nothing assignment), the
network information on all the processor nodes is identical.
Then, every node starts to calculate its share of the total
number of shortest paths instructed by the control board.
Clearly, this calculation is intensive. A fast processor is needed
for all floating point calculations. In addition, because a lot
of data are involved, the memory interface is important. Bus
contention should be avoided at all times. This is partly solved
by the parallel approach taken, with independent nodes and
distributed memory, but a fast memory interface tuned for
this particular problem is still called for.

The processor needs to be selected primarily on grounds
of floating point calculation speed. The fastest processor avail-
able today is the Intel 1860 Microprocessor. It contains a core
unit, floating point unit, and instruction and data caches on
one chip. Theoretical speeds are 40 million instructions per
sec (MIPS) and 80 million floating-point operations per sec
(MFLOPs). Practical speeds using high-level languages such
as C and Fortran are in the order of 15 MFLOPS. Hand coded
assembly is capable of performing between 30 and 80 MFLOPS,
depending on the algorithm, and the amount of vectorization
and pipelining that can be employed. Furthermore, the Intel
i860 can execute integer and floating point operations in par-
allel and has a 64-bit-wide memory bus.

Because of the speed at which the processor processes data,
the memory interface has become the only bottleneck. The
rate at which data can be retrieved from and stored into
memory determines the overall processing speed. The net-
work information is typically scattered through memory, thus
rendering the on-chip (small) data cache practically useless.
Therefore, the interface to the dynamic memory (use of static
memory only would be too expensive) is vital.

At the end of each iteration, every board has calculated
part of the load for every arc. These partial loads can be
accumulated in a pipelined fashion using the connections to
the neighbor boards: every board receives the partial loads
from its right neighbor, adds its own partial loads, and hands
the results to its left neighbor. Finally, the accumulated partial
loads are handed to the control board (which is the left-most
board), which can start the next iteration by broadcasting the
updated network.

45

The connections between the boards are realized by first-
in first-out buffers (FIFOs), which are 64-bit-wide memory
components that move data in receiving order to the neighbor
board (size of buffer is several kByte). The FIFOs are used
to automatically synchronize the asynchronous processors,
and buffer data sent between them. This allows the processor
nodes to act autonomously and send data whenever ready.
The control board is not needed to synchronize nodes or
buffer data. All processor nodes can use their FIFOs con-
currently, allowing for maximum throughput.

RESULTS

It was previously shown that the performance of traffic sim-
ulation programs can be improved and how special-purpose
hardware can be used to reduce the computing time and the
cost involved. The improvements expected by using special-
purpose hardware will now be defined.

First, the improvement by parallelization will be consid-
ered. Using an architecture by the LPA concept is proposed,
with 16 i860-based processor boards, an improvement of a
factor 16 compared with one i860-based processor board can
be expected. Although this seems obvious, most computers
with parallel processors are unable to improve their perfor-
mance by the number of processors they use—compared with
one processor [see (15,16)]. The improvement is justified by
the negligible overhead in interboard communication. The
interboard communication, required to accumulate the arc
loads and to broadcast network data, does not increase with
the number of processor boards and is small compared to the
total computation.

An operating system running on a computer allows the users
to use all kinds of facilities, such as file-support, I/O in gen-
eral, multitasking, scheduling, timing and so on. Using such
an operating system will decrease the overall performance of
the system. By avoiding most of these facilities some perfor-
mance improvement can be gained. The operating systems
running on the LPA nodes will allow the minimum amount
of facilities to run the problem efficiently.

Second, the expected performance of the LPA with some
general-purpose computers that are commonly used are com-
pared. The i860 is a fast processor as explained previously.
The processor alone is already in competition with several
fast general-purpose computers. Some test runs have been
executed on the Intel Microprocessor Software Development
system—STAR860—which is an AT-386 with an i860 CPU
based add-on card. This board is not optimally configured,
and can thus be improved on the performance in the final
design.

Comparison tests have been run on a Convex C1, several
differently configured Silicon Graphics (SG, R3000, 33-25-20
MHz, 64k-Byte cache), a MicroVAXIII, a MicroDutch (68020),
an Hewlett Packard Workstation (HP, 68030), and a personal
computer (AT-386, 25Mhz, 64kByte cache). The Convex Cl
is a vector processor with an architecture resembling a Cray
supercomputer. Although not the fastest, it is a widely used
computer. The test programs were written in C. Two shortest
path tree algorithms discussed previously, S-ord and T-calc,
were used. The assignment was done in two different ways,
the ‘simple’ assignment and using levels, also described pre-

46

viously. For the implementation of the algorithms we can use
pointers or indexing. The calculations can be done in integers
or in floating point notation. The resulting computing times
are given in Tables 1-3.

On all computers available optimizers were used. The net-
work used contained 3,347 nodes, 9,394 arcs, and an arc to
node ratio 2.8. As comparison, a network of 17,931 nodes
was also used. The computing times given are the all-to-all
times; an all-or-nothing assignment with each node as origin
and destination. The i860 is not the fastest processor in Table
1 because of its memory configuration. The Silicon Graphics
(33MHz) has an advantage of having a 64kByte cache. This
advantage disappears when a larger network is used (see Table
3). With integer indexing the i860 is always superior. Next to
an upgrade of the i860 from 33 MHz to 40 MHz, the processor
board can be improved by using a pipelined-multibank mem-
ory instead of the single-bank memory implementation on the
STARS60.

CONCLUSIONS

The use of special-purpose hardware is only legitimate when
the task to be performed is time critical and the budget is
limited. It was shown that the STARS860 is two times as fast
as the Convex Cl1. The performance of a single i860-based
processor board, in comparison to the STAR860, can be im-
proved by a factor of about 2, using a faster version of the
i860 and a better memory architecture.

The price of a single i860-based processor board is mainly
determined by the memory cost and, depending on the amount
of memory, is estimated to be between $5,000 and $10,000.
A 16-board LPA together with a general purpose host, of
about $40,000, and additional costs of manufacturing of about
$15,000 amounts to a total cost of less than $0.3 million. The
price of a Convex C1, however, is about $0.6 million, and
thus leads to another factor 2 in cost to performance im-
provement. Hence, a 16-board LPA will give a cost to per-
formance improvement of a factor 100 compared to a Convex
Cl1. For future developments of on-line traffic control, route-
guidance, ramp metering and so on, the LPA should be a
powerful tool.

TRANSPORTATION RESEARCH RECORD 1306

TABLE 2 THE DIFFERENCE IN COMPUTING TIMES
BETWEEN USING A SIMPLE ASSIGNMENT METHOD AND
ONE USING LEVELS

Pointer
Data-struct:
spt-alg T-calc S-ord
Assignment Levels No-levels Levels No-levels
SG (20 MHz) 266 703 315 751
SG (25 MHz) 260 665 302 701
SG (33 MHz) 161 438 189 464
STARS60 190 535 202 548

NOTE: The times are given for two spt algorithms and on several computcrs.
The network size N = 3,347. SG is Silicon Graphics.

TABLE 3 THE DIFFERENCE IN
PERFORMANCE OF THE COMPUTERS ON
NETWORKS WITH DIFFERENT NETWORK

SIZES

Size 3,347 17,931
Convex C1 411 683
SG (25 MHz) 260 581
SG (33 MHz) 161 417
STARS60 190 319

NoTE: The times given are in case of N = 3,347, all-
to-all, in case of N = 17,931, 1,000 spr’s. The spt-
algorithm used was T.calc and the assignment uses
levels. SG is Silicon Graphics.

ALL-OR-NOTHING ASSIGNMENT

The following is a description of the algorithm used to perform
the all-or-nothing assignment. This is an optimal algorithm
depending on the way Init_Q, Select_node, and Update_Q
are implemented. The symbols used are defined as follows:

N, M = set of all nodes, arcs in the network;
n, m = number of nodes, arcs in the network;
FS(v) = the foreward star representation of node v,
defines the network;
OD(r,v) = matrix, number of travelers going from node
rtov,;

TABLE 1 COMPUTING TIMES IN SECONDS ON A NUMBER OF COMPUTERS

Pointers

Indexing

Data-struct:

: Floating Point Integer Floating Point Integer

Notation:

spt-alg T-calc S-ord T-calc S-ord T-calc S-ord T-calc S-ord
Microdutch 4,307 6,155 2,626 2,989 6,372 10,284 4,352 6,966
AT-386 1,485 2,137 733 674 1,807 2,823 840 1,305
MicroVAXIIL 1,180 1,712 1,119 1,324 1,830 3,004 1,635 2,585
HP 1,149 1,562 789 764 1,674 2,683 1,133 1,747
Convex C1 411 535 315 382 515 744 384 565
SG (20 MHz) 266 315 237 273 268 365 230 341
SG (25 MHz) 260 302 238 270 319 407 276 393
SG (33 MHz) 161 189 139 164 222 286 187 268
STARS60 190 202 185 192 235 283 179 240

NoTE: The program, either T-calc or S-ord, is implemented with pointers or indexing and the calculations in
either integer or floating point notation. The assignment is implemented with the use of levels. The network
size N = 3,347, HP is Hewlett Packard, SG is Silicon Graphics.

van Grol and Bakker

€, €, = used arc length (arc travel time) for arc a from
node u to node v;
d, = calculated distance (travel time) from the origin
node to node v;
p, = previous node from node v in the shortest path
tree (spt), defines the spt;
I, = level of node v in the shortest path tree;
44> 4., = calculated load on the arc a, from node u to node
Vs
r = current origin-node (root);
Q = temporary set, contains nodes to be examined;
L(n) = set containing all nodes from spt on level n; and
S, = temporary, traffic load going up to node v.

In short, the all-or-nothing assignment looks as follows:
Compute the all-or-nothing assignment
for each origin in the network {
Compute the shortest path tree
Sort levels
Assign the spt
}

The subroutines Init_Q, Select_node, and Update_Q are not
defined here. Although crucial to the efficiency of the algo-
rithm, the functionality remains the same. The calculated loads
from preceding assignments are kept in q,, a € M.
Compute the shortest path tree for origin r
Initialize d, =0 veN-{}d =0, =1
Init_Q 0= {1
While (Q # ¢){
Select_node select u € Q; O = QO — {u}
for each (u,v) € FS(u) {
if(d, +c,,<d){
p, = u
L, =1 +1
d, =d, +c,,

Update_Q Q=0U{{v

47

Sort levels
Initialize L()=0
for each node u {
L) = L(L) U {u
}
Assign the shortest path tree
Initialize S.=0,ueN
for each level top down {
for each node u in the set L(level) {

Gpuse = Gpuu + OD(r,u) + S,

S,. =8, + OD(r,u) + 8§,

REFERENCES

1

2.

10.

11.

12.

. D. Van Vliet. Road Assignment I, II en III, Transportation

Research, Volume 10, 1976, pp. 137-157.

J. G. Wardrop. Some Theoretical Aspects of Road Traffic

Research. Proc. of the Institute of Civil Engineers, Part 11, 1,

1952, pp. 325-581.

. R. Hamerslag and P. C. H. Opstal. A Three-Dimensional As-
sigrment Method in Time-space. Report 87-49 from the Faculty
of Mathematics and Informatics, Delflt University of Technology,
The Netherlands, 1987.

- R. Hamerslag. Dynamic Assignment in the Three Dimensional
Timespace. In Transportation Research Record 1220, 1989.

- E. F. Moore. The Shortest Path Through a Maze. Proc. of
Internaiional Symposium on the Theory of Switching, Harvard
University Press, Cambridge, MA, 1959, pp. 285-292.

. E. W. Dijkstra. A Note on Two Problems in Connexion with
Graphs. Numerische Mathematik, 1, 1959, pp. 269-271.

- R. Dial, F. Glover, D. Karney, and D. Klingman, A Compu-
tational Analysis of Alternative Algorithms and Labeling Tech-
niques for Finding Shortest Path Trees, Networks 9, 1979, pp.
215-248.

. G. Gallo and S. Pallottino. Shortest Path Methods: A Unifying
Approach. Mathematical Programming Study, 26, 1986, pp.
38-64.

- F. Glover et al. Threshold Assignment Algorithm. Report CBDA

107, Center for Business Decision Analysis, University of Texas,

Austin, 1982,

H. J. M. van Grol and A. F. Bakker. Shortest Path Finding:

From algorithm to Special Purpose Hardware. Proc., Transpor-

tation Planning 17th PTRC Transport & Planning Summer An-

nual Meeting, University of Sussex, England, 1989,

A. F. Bakker and C. Bruin. Design and Implementation of the

Delft Molecular-Dynamics Processor. In Special Purpose

Computers (Berni J. Alder, ed.), 1988, Chapter 6. ISBN 0-12-

049260-1

D. J. Auerbach, A. F. Bakker, T. C. Chen, A. A. Munshi, and

W.J. Paul. A Highly Parallel Computer for Molecular Dynamics

Simulations, Materials Research Society Symposium Proc., Vol.

63, 1985.

48

14.

15.

. D.J. Auerbach, W.J. Paul, A. F. Bakker, C. Lutz, W. E. Rudge,
and Farid F. Abraham. A Special Purpose Parallel Computer for
Molecular Dynamics: Motivation, Design, Implementation, and
Application. Journal of Physical Chemistry, Vol. 91, 4881, 1987.
A.F. Bakker, G. H. Gilmer, M. H. Grabow, and K. Thompson.
A Special Purpose Computer for Molecular Dynamics Calcula-
tions. Journal of Computational Physics, Vol. 90, No. 2, 1990.

Huey-Kuo Chen and David E. Boyce, Code Optimization For
A Nonlinear Transportation Network Model: A Case Study, Pre-

16.

TRANSPORTATION RESEARCH RECORD 1306

sented at the 68th Annual Meeting of the Transportation Research
Board, Washington, D.C., 1989.

K. C. Mouskos and Hani S. Mahmassani. Guidelines and Com-
putational Results for Vector Processing of Network Assignment
Codes on Supercomputers. Presented at the 68th Annual Meeting
of the Transportation Research Board, Washington, D.C., 1989.

Publication of this paper sponsored by Committee on Transportation
Supply Analysis.

