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Dynamic Network Traffic Assignment and 
Route Guidance Via Feedback Regulation 

MARKOS PAP AGEORGIOU AND ALBERT MESSMER 

A deterministic, macroscopic modeling framework for dynamic 
traffic phenomena on networks consisting of freeways and urban 
streets is presented for nonelastic but time-varying traffic de
mands. A feedback methodology is applied to the network model 
to establish dynamic traffic assignment conditions. Specifically, 
a multivariable feedback regulator with integral parts and a simple 
bang-bang controller are developed and tested for a particular 
network traffic model. Because of three fundamental features 
(low computational effort, low sensitivity with respect to un
known demands and compliance rates, and integrated design pro
cedure), the feedback concept appears attractive for a broad class 
of traffic control problems including route guidance systems. 

Dynamic modeling and control of a multidestination traffic 
network is generally considered to be a highly complex prob
lem. There is no generally applicable macroscopic mathe
matical model describing dynamic phenomena of traffic flow 
on street or freeway networks to the best of the authors' 
knowledge. Nevertheless, traffic network models are urgently 
needed both as simulation tools and as a basis for developing 
efficient route guidance strategies. Perhaps the most advanced 
concept so far for macroscopic dynamic modeling of multi
destination networks is the one proposed by D' Ans and Gazis 
(1). In their work, however, D'Ans and Gazis assume that 
the route choice of drivers with a given origin and destination 
is fixed and known. In this paper, dynamic modeling and 
control of traffic networks including traffic assignment are 
considered. A basic assumption is that traffic demand at the 
origins of the network is considered to be deterministic and 
independent of the traffic conditions in the network. Consid
eration of elastic demands is left to future investigations. 

The model presented in this paper was developed on the 
basis of a dynamic traffic network model framework that was 
initially presented elsewhere (2). The model consists of three 
interacting parts: 

1. A traffic flow part describing traffic flow evolution along 
network links; 

2. A traffic composition part describing propagation of traffic 
composition for substreams with different destinations; and 

3. A dynamic assignment part, which routes traffic sub
streams so as to guarantee dynamic user optimum conditions 
in real time. 

The dynamic assignment part may be used both for modeling 
and for control purposes (e.g., in the context of a route guid-
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ance system). A feedback concept is proposed for develop
ment of the dynamic assignment part (Item 3). 

DYNAMIC MODELING OF TRAFFIC NETWORKS 

A precise mathematical framework for deterministic, macro
scopic modeling of traffic networks has been published else
where (2). Therefore, in this paper only the basic approach 
and the resulting model structure will be outlined. 

Definitions 

Consider a traffic network represented by a directed graph. 
(See Figure 1.) N and M denote the sets of network nodes 
and links, respectively. Let In and On be the sets of links 
entering and leaving the nth node, respectively. It is assumed 
that traffic demands d,i (veh/h) arriving at origin nodes i E D 
and being routed through the traffic network to some desti
nation nodes j E S, where D and S denote the sets of origin 
and destination nodes, respectively. A node may belong either 
to Dor to Sor to both or to none of them. The traffic demand 
being routed through the network is denoted by qm and Q'", 
m E M, the traffic volume (veh/h) entering and leaving the 
link m, respectively. In each link there may be traffic subflows 
destinated to different destinations j. We denote by 'Ymi (f,,,), 
j E Sm, the composition rate, that portion of q,,, (Q'") destin
ated to Node j, where S,,, is the set of destination nodes, which 
are reachable via Link m. Note that 

(1) 

always holds. Hence, the number of independent composition 
rates for a link is equal to the cardinality of S,,, minus one. 

Modeling of Network Nodes 

A model of a network node n should be capable of calculating 
qm, 'Ymi form E On on the basis of d,.i, j E Sn, and of Q,,,, 
f'"i' m E /,,, where Sn is the union of all S"" m E O". To 
make this possible, an additional variable that reflects the 
route choice behavior of drivers needs to be introduced. Hence, 
the splitting rates 13;~, m E 0,,, denote the portion of traffic 
flow which arrives at node n (regardless its origin), is destined 
to j, and is exiting node n by link m. In other words, splitting 
rates are turning rates by destination. Note that 
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FIGURE 1 Example network. 

2: (3;;; = 1, 0 s f3~; s 1 (2) 
mEA11j 

always hold, where A,,i is the set of output links of node n for 
which j E Sm holds. Hence, if A.,,i is the cardinality of the set 
A,,i, the number of independent splitting rates is A.,,i - 1 for 
each couple (n, j). 

With this definition we obtain at each node n E N 

m E 0,, (3) 

m E 0,,, j E 5" (4) 

where q,,i is the traffic volume (veh/h) arnvmg at node n 
(regardless of its origin) and destinated to j, that is 

j ES" (5) 

Note that Equations 3 through 5 distribute the traffic flow 
entering a network node among the leaving links according 
to the destination of the involved subflows and according to 
the splitting rates f3;;; (see Figure 2). 

Modeling of Network Links 

The evolution of the traffic state inside a link and at the link's 
output depends entirely upon the traffic conditions at the 
link's boundaries. If the variables q,,,, 'Ymi• m E M, j E S,,,, 
are organized in an input vector !l_ and the variables Qm, rm• 
m E M, j E S,,,, in an output vector!:'., the very general link 
model structure can be written as 

!'(k) = Q[,!(k), !l_(k)] 

I d ij 

:1----------, q m 

~~~ node 
model 

~---~ 

link model: 
global variables 

link model: 
composition rates 

FIGURE 2 The overall network model. 

(6) 
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,!(k + 1) = fi!(k), Q(k)] (7) 

where k = 0, 1, 2, ... is the discrete time index, that is, !_(k) 
= !_(k · I), T being the sample time interval. The dimension 
and the composition of the state vector ! depends upon the 
particular link model used. 

For the development of dynamic link models, the global 
traffic variables that do not depend upon a particular desti
nation are concentrated on first. A relatively simple dynamic 
model utilized by Merchant and Nemhauser (3) and by Wie 
( 4) requires introduction of traffic density p,,, (veh/km) in link 
m and makes use of the conservation equation 

(8) 

where ~"' is the length of link m. Furthermore it is assumed 
that Qm is given in terms of p,,, by a nonlinear algebraic re
lation. As an example, consider the exponential relationship. 

(9) 

where qmax,m and Rm are constant parameters. For stability 
reasons, the sample time interval should be chosen such that 
T < min(~,,,R,,/qmax,m• m E M). Equations 8 and 9 provide 
the form required by Equations 6 and 7. 

The choice of a dynamic link flow model depends upon the 
physical background of the corresponding network link. 
Equations 8 and 9 are very similar to the platoon dispersion 
model used in TRANSYT for links that represent urban streets 
[see Robertson (5)]. If some of the network links represent 
freeway axes, more sophisticated dynamic models are re
quired [see Papageorgiou ( 6)]. Sophisticated models of free
ways links consider subdivision of links into a number of 
segments and apply hydrodynamic equations to each of the 
segments. A general freeway network modeling computer 
program based on the presented network framework and on 
sophisticated dynamic modeling of traffic flow along the links 
is now available (7). 

Note that the network modeling framework presented here 
allows for using different models for corresponding groups of 
links, which is an essential feature in modeling corridor or 
other mixed-traffic networks. 

A traffic network may include control inputs such as urban 
traffic lights or freeway ramp metering. For the sake of sim
plicity, these control inputs have not been considered in the 
general Equations 6 and 7 because the description of route 
choice phenomena in the network will be concentrated on. 
A suitable extension of the general modeling structure to 
include traffic control measures is given elsewhere (2). 

The dynamic modeling of composition rates 'Y,,,ik) along a 
link will now be considered. There is no sound theoretical 
basis for development of a macroscopic model that propagates 
the composition rates 'Y,,,ik) along a link. A possible approx
imation reads 

(10) 

where ex,,, may be either constant or dependent upon the travel 
time along the link, that is 

(11) 
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The travel time is given by Tm(k) = t:i.mlvm(k), and the mean 
speed reads vm(k) = Qm(k)/p"'(k). Further composition rate 
models are presented and discussed in Papageorgiou (2). 

Integrated Dynamic Network Model 

The overall network model consists of the following inter
acting modules (see Figure 2): 

•The node modeling Equations 3 through 5, and 
• The chosen link models for traffic flow and for compo

sition rates. 

The overall model can be expressed by the general nonlinear, 
discrete-time vector equation: 

!_(k + 1) = [[!_(k), J!(k), D(k)], 

k = 0, ... , K - 1 (12) 

where !. is the state vector and D = (dif) is the ongm
destination demand matrix . The vector .(!(k) E RP includes 
all independent splitting rates and obeys 

Q :S J!(k) :S !... (13) 

Figure 3 illustrates Equation 12 from a system theoretic view
point; J!(k)'s are input variables and D(k)'s are disturbances . 
Note that Equation 12 can be resolved for !_(k), k = 0, ... , 
K, if the trajectories p(k) , D(k), k = 0, .. . , K - 1, and 
the initial condition !(O) are given. 

For example, using the dynamic Equations 8 and 10 for a 
link model and replacing the static Equations 3, 4, and 5 (node 
model) by Equations 9 and 11, a state vector consisting of 
traffic densities and composition rates is obtained. In the case 
of the example network presented in Figure 1, the corre
sponding state vector reads 

(14) 

where -y 1, . .. , -y6 are the independent composition rates for 
links 1, ... , 6. The p independent splitting rates for this 
example are listed in Table 1 (here p = 6). 

Physical Significance of Splitting Rates 

The independent splitting rates 1! reflect the drivers ' behavior 
with respect to alternative route choice. Clearly , the drivers' 

I 
l 
! 

ll(k) 
eq.(15) 

Dynamic 
Network 

Model eq,(12) 
ou~ut 
eq.(24) 

!.. ... ~----· ····-- ---·-- · -- ! focdback t: ::~ .... ._ __ ........... i 
FIGURE 3 Network process considering compliance rate £ 

and feedback for dynamic assignment. 
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TABLE 1 SPLITTING RATES FOR EXAMPLE NETWORK 

From To Independent 
Network Destination Splitting Splitting 
Node Node Rates Rates Number 

2 4 13i., 13~. 13i. 
2 5 131,, 13~5 13~s 2 

5 13is, 131s 13is 3 
4 13?., 131. 131. 4 

3 5 13~,, 13 ~s 13~s 5 
3 4 13~., 13~. 13~. 6 

behavior may be influenced by real-time information or route 
recommendation provided to them either by use of suitably 
located variable message signs or by individual communica
tion with suitably equipped vehicles. The authors' interest in 
the independent splitting rates is twofold: 

1. Modeling: How should 1! be calculated in absence of any 
communication to the drivers so as to reflect their natural 
behavior? 

2. Control: If 1! is manipulable through suitable commu
nications to the drivers, what is the best choice of J!? 

The next sections present a feedback mechanism that leads 
to the specification of 1! so as to satisfy some generalized 
dynamic user optimal conditions. 

Assume that p is manipulable by use of variable message 
signs which recommend route choice to the drivers . In this 
case, the modeling results of this section suggest that one 
variable message sign should be installed for each independent 
13;· More specifically, at each node n of the network, the 
number of required variable message signs equals the number 
of destination nodes j, which are reachable from node n and 
for which a splitting at node n is possible. 

The case where only a portion of the vehicles are equipped 
and/or only a portion of the drivers follow the recommen
dations provided will now be discussed. A parameter E, 0 s 
Es 1, reflecting the compliance rate and/or the rate of equipped 
vehicles such that for £ = 0 none follows the recommenda
tions, and fore = 1 everybody follows the recommendations. 
If 13 is the splitting rate ordered by the control system and 13, 
is the resulting real splitting rate, it may be written 

13, = 1 - (1 - 13)e (15) 

Equation 15 may be integrated into the general state space 
model (Equation 12). Figure 3 illustrates that-from a system 
theoretic viewpoint-e can be interpreted as a disturbance 
acting on the process under control. 

DYNAMIC USER OPTIMUM 

Dynamic User Optimum Definition 

For simplicity, the single-origin-single-destination network 
of Figure 4 will first be considered. A generalization of the 
obtained results will be considered later. The demand arriving 
at node 1 (Figure 4) is distributed between the links according 
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q2= 1-,B)·d12 

FIGURE 4 A single-origin
single-destination network. 

to the independent splitting rate 13 such that q 1 = 13d, 2 , q2 = 
(1 - l3)d12. 

As it is well known, steady-state user optimal assignment 
conditions for the single-origin-single-destination network 
of Figure 4 are present if and only if 13 obeys the following 
conditions 

13 = 1 

0 < 13 < 1 

13 = 0 

if C, < C2 

(16) 

where Cm is a measure of the individual cost along link m. 
For example, it can be assumed that Cm is the travel time 
along link m, in which case 

(17) 

where vm is the mean speed on link m. 
Equation 16 may be readily expanded into a dynamic user 

assignment condition applying for k = 0, ... , K: 

13(k) = 1 

0 < 13(k) < 1 

13(k) = 0 

if C1(k) < C2 (k) 

if C1(k) = Ci(k) 

if C1(k) > Ci(k) 

(18) 

An equivalent form of these conditions may be expressed in 
terms of the quantity 

(19) 

where the function 'II is defined 'I'(') = max(O, ·). With this 
definition, the conditions (Equation 18) are equivalent to 

y(k) = 0 k = 0, ... , K. (20) 

A precise mathematical description of dynamic user optimal 
conditions now requires an adequate definition of the indi
vidual cost Cm(k) along link m at time k. For simplicity but 
without loss of generality, it will be assumed that the indi
vidual cost corresponds to a notion of travel time. 

~Lm+1 
~+2 
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A particular dynamic generalization of the static user op
timum is provided by the "reactive user optimum," which is 
defined by 

(21) 

By its definition, Tm(k) depends upon the current traffic con
ditions on link m. In other words, Tm(k) is an ideal travel time 
spent by an ideal vehicle that travels along the link m under 
traffic conditions that correspond to the current traffic 
conditions. 

The reactive user optimum relies on the assumptions that 

1. Traffic conditions in the network are not predictable 
because of, for example, incidents , variable demands , and 
stochastics. 

2. Complete real-time information is available to the de
cision makers. 

In fact, under these assumptions , a driver arriving at a bifur
cation location, will choose the route which, according to 
reliable real-time information, currently appears to be shorter. 
A connection with an alternative, predictive dynamic assign
ment definition is discussed by Papageorgiou (2). 

Generalization 

The preceding statements will now be generalized for a mul
tiple origin-multiple destination network, concentrating on 
the connection of a network node n E N with a destination 
node j E S" . There are three complications when compared 
with the simple network of Figure 4: 

1. The number of output links of node n may be greater 
than two. 

2. Each alternative route may consist of more than one link. 
3. Some output links of node n may belong to more 

than one alternative route (because of farther downstream 
bifurcations). 

As far as the first complication is concerned, it will be assumed 
that the number of output links of each node does not exceed 
two. This is without loss of generality because any node with 
more than two output links may be decomposed as indicated 
in Figure 5, by introducing artificial links without dynamics 
and with zero costs. This simplification gives A,,i ::::; 2 for all 
pairs (n E N, j E S"). Eventually there is at most one inde
pendent splitting rate 13,.i for each pair (n E N, j E S"). 

To handle the other two complications, the shortest travel 
time between nodes n and j through link m E A,,i is introduced. 

m+2 

FIGURE 5 Decomposition of a complex node. 
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More precisely 

min L, Tv 
zE Z vELnj 

(22) 

where Z = {zlm E L~j}. 
Note that Equation 22 may be used as a generalization of 

Equation 21 for the general network case. Note further that 
the definition (Equation 22) implies the execution of a shortest 
path algorithm for the calculation of T;~ from known link costs 
T V. 

As an example, consider the corresponding formulas for 
Tf4 , T14 in the example network of Figure 1: 

With these definitions , generalization of Equations 18, 19, 
and 20 is straightforw~.rd and the statements made for the 
simple network of Figure 4 apply to general networks as well. 
More precisely, perform the following replacements in Equa
tions 18, 19, and 20: 

The resulting conditions are required to hold: V k E [O,K]; 
V n E N; V j E S"; m,µ E A,.j· 

Note that there is exactly one variable y,.j assigned to each 
independent splitting rate 13,.1 of the general network. Thus a 
vector..):'. e RP comprising all y,,1, n E N, j ES" may be defined. 
With the preceding generalizations it may be stated that 

Reactive dynamic user optimal conditions in a general traffic 
network are present if and only if 

J:(k) = Q, k = 0, ... , K - 1. (23) 

Because the travel times T"'(k) depend upon the system state 
:!(k), general notation for the overall network (see Figure 3) 
may be written as 

J:(k), = q[~(k), .Ji(k)] (24) 

There is no guarantee that there is a unique f!(k) trajectory 
satisfying Equation 23 under a given demand in a given traffic 
network. Hence more than one solution may generally be 
present for the dynamic traffic assignment problem defined 
in this paper. 

Dynamic User Optimum Via Feedback Regulation 

The question to be treated in this section reads: is it possible 
to establish a dynamic user optimum by use of feedback reg
ulation , that is, by a relationship f!(k) = R[,!(k)]? The sig
nificance of a real-time feedback law for dynamic assignment 
and for route guidance is obvious and will be further discussed 
later. 

First note that Equation 18 is satisfied (and hence a reactive 
user optimum is reached) if the following simple feedback 
law is applied to a general traffic network. 

r:>. .(k) = {1 if T~)(k) > T;,/k) 
t-'nJ 0 if T~)(k) < T;,/k) 
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(25) 

This feedback law is a bang-bang one, that is, the input var
iable 13,.;(k) takes values only on its bounds. Such a bang-bang 
controller may be adequate in the case of collective route 
guidance in which no values other than 0 and 1 can be 
implemented. 

In some cases, a bang-bang solution may not be satisfactory. 
In fact , for individual route guidance with a high rate of equipped 
vehicles, bang-bang control may lead to strong perturbations 
of traffic flow. A smooth regulation may be achieved if y(k) 
is understood as the output of a process with input .Ji(k) (see 
Figure 3). In this case, y_(k) might be kept near or equal to 
zero by introducing a feedback law 

.(!(k) = .(!(k - 1) + Kp[,!(k) - ,!(k - 1)] + K 1J:(k) (26) 

where KP is the proportional gain matrix and K1 is the integral 
gain matrix, which is assumed to have full rank p. Equation 
26 describes a multivariable feedback regulator with integral 
parts. 

To investigate the properties of the closed-loop system, it 
is first assumed (as a theoretical experiment) that the com
pliance rate E demands to be constant, that is, e(k) = E" and 
D(k) = D, k = 0, . . . , K - 1. If the closed-loop system is 
stable, a steady-state solution of Equation 26 then reads 

(27) 

where bars denote steady-state values. Since K1 is chosen to 
have full rank, f = Q results from Equation 27 which is a well
known result in automatic control theory. Thus for constant 
demands and constant compliance rates, the multivariable 
feedback regulator (Equation 26) leads automatically to dy
namic user optimum conditions without knowledge of the 
compliance rates and of the demands. 

If disturbances D(k), E(k) are not constant, as is usually 
the case, the feedback regulation will keep J:(k) near zero for 
a reasonable choice of the gain matrices. It is important to 
underline again that the feedback laws (Equations 25 and 26) 
do not include any information on the present or future values 
of the demand and of the compliance rate. 

The gain matrices KP, K1 of the feedback law (Equation 
26) should be chosen such that the overall closed-loop system 
be stable in a reasonable operating region around a theoretical 
steady-state . For example, specification of the gain matrices 
may be achieved by linearization of the system equations 
around a theoretical steady-state and by application of linear
quadratic (LQ) optimization methodology [see Papageorgiou 
(2) or other suitable methods; e.g., Kwakernaak and Sivan 
(8)]. Suitable gain matrices can be developed by the LQ method 
by means of a systematic trial-and-error procedure. Although 
not trivial, this development can be performed efficiently with 
some experience and basic knowledge of the LQ approach 
even for large-scale networks. The resulting LQ regulator is 
known to have excellent robustness properties for a wide 
range of process conditions. 

The preceding results will now be illustrated on the basis 
of the example network of Figure 1 and the modeling Equa
tions 8 through 11. Appropriate gain matrices KP , K1 were 
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selected by application of the LQ method, see Senninger (9) 
for details and see Papageorgiou (2) or Senninger (9) for the 
matrix values. The feedback law (Equation 26) was applied 
to the nonlinear network traffic modeling equations for dif
ferent demand scenarios. First consider the rectangular de
mand scenario depicted in Figure 6. Figure 7 shows the re
sulting travel time differences ~'T;(k) (in percent) for the six 
pairs of alternative routes corresponding to the six indepen
dent splitting rates of Table 1. Figure 8 depicts the corre
sponding trajectories of f!(k). The following remarks may be 
stated: 

(veh/h) 

4800 

3200 

1600 1--------------' 
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1. The required condition y_(k) = Q is satisfied for most 
k E [O,K] through the action of the feedback regulator. In 
fact, for most k E [O,K], either P;(k) = 1 (no splitting) and 
~,.;(Q) < 0 (routes are not competitive), or 0 < p;(k) < 1 
(splitting of the corresponding substream occurs) and ~'T;(k) 
= 0 (equal travel times on alternative routs) hold. 

2. A steady-state is achieved for each of the three sets of 
constant demand values included in the demand scenario of 
Figure 6. Note that each steady-state is equivalent to a cor
responding static user optimal equilibrium. 

· ·- ·- ·- ·- ~.!_5_ - ·- - - - - ·- - - -

I 
I 

- - -- - - - ·- ·• ----·-·- ~-·-·--i 
' i 
j d24 ----·-·------·--·- --- - -- -- - - --- - - -- - - - - - - - - - - - - - - -

0+---+---+---+---+---1----1------;1------;1------;--
o 0.4 0.8 1.2 1.6 

FIGURE 6 A rectangular demand scenario. 

0.2 0.6 1.0 1. 4 1. 8 

-20 

FIGURE 7 Travel time differences 47; for six pairs of alternative routes for 
multivariable feedback law (Equation 26). 

time (h) 
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~i 

0.6 

0.2 

time (h) 

0 0.2 0.6 1. 0 1. 4 1. 8 

FIGURE 8 Splitting rates provided by multivariable feedback law (Equation 26). 

Figure 9 depicts the travel time differences dT;(k) resulting 
by application of the bang-bang controller (Equation 25) to 
the same network with the same rectangular demand of Figure 
6. Note that the bang-bang controller 

1. Leads to a slightly oscillatory behavior for some dT;(k). 
2. Equalizes travel times on alternative routes for a smaller 

number of alternative route pairs as compared to the multi
variable regulator . 

Figure 10 depicts a triangular demand scenario and Figures 
11 and 12 depict the resulting travel time differences dT;(k) 
and the splitting rates ~;(k), i = 1, .. . , 6, for the multivar
iable regulator. Again the feedback regulator (Equation 26) 
succeeds in keeping ~(k) close (but not exactly equal) to zero 
although the demands d11(k) are unknown to the feedback 
law. Figure 13 depicts the corresponding results of the bang
bang controller. 

0.2 0.6 
0 

3 

4 

2 

-10 5 

6 

-20 

1.0 

The advantages of the feedback concept when applied to 
traffic networks in the aim of establishing reactive dynamic 
user optimal conditions will now be summarized: 

1. The feedback concept requires only few calculations at 
each time instant k. Moreover , it is a real-time procedure 
such that no iterations or other time consuming algorithms 
are required. 

2. The feedback law does not utilize current or future values 
of the process disturbances of the origin-destination demands 
D(k) and of the compliance rate E (see Figure 3). Neverthe
less, its sensitivity with respect to variations of these distur
bances seems low as demonstrated by the preceding results. 

3. Note that for a real-life control application, only the 
feedback portion of Figure 3 is implemented using measure
ments from the real traffic process, that is, no model calcu
lations are required in real time. 

1. 4 1.8 time (h) 
llf/lfl:zCI ''1(1h\Vf111N\\'th'tUtJ1"\1'NUN'U 

FIGURE 9 Travel time differences .:iT1 for bang-bang controller. 
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FIGURE 10 A triangular demand scenario. 

0.2 0.6 1. 0 1. 4 1.8 time (h) 
0 
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FIGURE 11 Travel time differences '1T1 for triangular demand and multivariable feedback. 
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0.2 

time (h) 

0 0.2 0.6 1. 0 1. 4 1. 8 

FIGURE 12 Splitting rates for triangular demand scenario and multivariable feedback. 

0.2 0.6 1. 0 1. 4 1.8 time (h) 

4 

5 

-20 

FIGURE 13 Travel time differences 1h1 for triangular demand and bang-bang controller. 

It should be emphasized that the proposed feedback concept 
is of a reactive character-it reacts indirectly to the distur
bances (namely via their impact on the traffic state )-and 
this is the reason why it does not need disturbance predictions. 
For example, if the compliance rate E is too low (high) this 
will have an impact on the traffic state and will lead auto
matically the feedback law to according modification of the 
input 1! so as to approach the goal J!.(k) = Q. 

Under realistic conditions, with D(k) and E varying strongly 
with time, the feedback concept cannot lead exactly to J!.(k) 
= Q but hopefully to J!.( k) = Q as demonstrated in the example 
tests. Furthermore, for very strong variations of the traffic 
state from the linearization conditions (severe congestion!), 
the linear regulator may need a long time to lead the output 
J!.(k) near zero, although it will react in the right sense. But 
what could be an alternative approach? One should be able 
to predict the origin-destination demands and compliance rates 

(which is rather unrealistic) and to apply a mathematical traffic 
model (accuracy?) in order to calculate iteratively (effort!) 
the route recommendations so as to achieve J!.(k) = Qin the 
computer (in real life?). In contrast to such an approach , the 
feedback philosophy is to react to real-life measurements rather 
than to rely on predictions and mathematical models. 

The tests of this paper are certainly not significant for prac
tical applications with more realistic models or under real-life 
conditions. Nevertheless they do provide a very encouraging 
first step towards application of the innovative concept of 
feedback to a fairly complicated traffic problem, which opens 
the way to consideration of more realistic conditions. Any
how, the particular link model used for the reported tests is 
not simpler than the ones used in previous research work on 
traffic assignment as cited in the references. Investigations of 
the feedback concept for route recommendation by variable 
message signs on freeway networks is currently under way, 
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see Wolf (10) using realistic high-order link models of freeway 
traffic like METANET (7) . 

CONCLUSIONS 

A general framework for deterministic dynamic modeling and 
control of traffic networks has been presented under non
elastic but time-varying demand conditions. The traffic net
work may include both freeways and urban roads. The pre
sented methodology may be readily extended to consider control 
measures like ramp metering and signal settings, see Papa
georgiou (2). 

A feedback concept has been applied to the traffic network 
to achieve dynamic user optimum conditions. Because of three 
fundamental features-low computational effort, low sensi
tivity with respect to unknown origin-destination demands 
and unknown compliance rates, and integrated design pro
cedure-the feedback concept appears particularly attractive 
for a broad class of traffic control problems, which include 
[see Papageorgiou (2), for more details): 

• Dynamic network traffic modeling including traffic 
assignment; 

•Static user optimal traffic assignment ; 
• Integrated strategy development for route guidance and 

traffic control systems; 
•Development of optimal traffic control strategies subject 

to dynamic assignment conditions; and 
• Development of feedback strategies for a variety of traffic 

control problems including route guidance. 
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