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Theoretical Implications of the AASHTO 
1986 Nondestructive Testing Method 2 for 
Pavement Evaluation 

ANASTASIOS M. IOANNIDES 

The conventional classification of pavement design procedures 
into "empirical" and "mechanistic" is reexamined. It is submitted 
that the term "mechanistic" originally denoted a data interpre
tation methodology based on the laws of engineering mechanics, 
proposed as an alternative to the statistical interpretation tech
niques used extensively in the interpretation of AASHO Road 
Test data. Current mechanistic design procedures retain 
statistical/empirical correlations, but this is a matter of practical 
expediency, pending improvements in analytical capabilities. On 
the other hand, incorporating mechanistic results into a statistical/ 
empirical framework rarely leads to reliable conclusions. A case 
in point is provided by AASHTO 1986 Nondestructive Testing 
Method 2 (NDTM2), which combines the mechanistic layered 
elastic theory with the purely statistical/empirical structural num
ber concept. The derivation of the NDTM2 equations is traced 
and simplified, and a number of theoretical shortcomings are 
highlighted. It is recommended that use of NDTM2 be discour
aged and that efforts for the gradual elimination of statistical/ 
empirical constructs (e.g., structural number, equivalent single
axle load (ESAL), and Miner's fatigue concepts] be intensified. 
Attempts to define statistical/empirical parameters (e.g., layer 
coefficients, present serviceability index (PSI), and load 
equivalency factors] using mechanistic theoretical tools should be 
abandoned. 

Following the AASHO Road Test (1958-1960), a conven
tional nomenclature evolved according to which pavement 
design procedures are generally classified as either "empiri
cal" or "mechanistic." Despite widespread use of these two 
terms, a surprising lack of agreement exists today among prac
ticing pavement engineers as to the terms' precise meaning. 
Even a brief review of the pertinent literature reveals that 
relatively little effort has been expended in clarifying the dis
tinguishing features of each approach. Investigators adopt 
instead the term that lends most credibility to a proposed new 
design procedure, with "mechanistic" beiµg considered some
how superior. Since both "empirical" and "mechanistic" de
sign procedures were in existence long before the adoption 
of the current terminology, it must be recognized that the 
meaning ascribed today to these terms has been greatly in
fluenced by the concepts stemming from the AASHO Road 
Test experience. 

Consider first the dictionary definitions of the two terms. 
"Empirical" means "relying upon or derived from observa
tion or experiment," or "guided by experience and not the-
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ory" (1). Since observation and experience are indispensible 
ingredients of any credible and reliable scientific endeavor, 
it is not immediately evident why "empirical" pavement de
sign procedures are often nowadays considered largely out of 
date and are described as based on rules of thumb dictating 
the development of "a more rational approach" (2). 

On the other hand, a "mechanistic" procedure is one "of 
or pertaining to mechanics as a branch of physics," or "of or 
tending to explain phenomena only by reference to physical 
or biological causes" (1). The term "rational" is no longer 
used very often in current pavement literature, perhaps in 
view of its judgmental undertones. In its technical meaning, 
however, "rational" appears to have been an early synonym 
for "mechanistic," "in the sense of having reason and under
standing, of properly relating causes and effects" (3), and 
implying the use "of accurate predictions of stresses and strains 
in various parts of the layered system through the use of 
structural analysis techniques" (4). "Theoretical" is another 
term that has been used quite often as a synonym to "mech
anistic," although its diminishing popularity probably reflects 
"a certain disenchantment in the attitude of investigators to
ward the application of pure elastic theory"(5). The pioneers 
of the theoretical approach, however, never advocated the 
use of "pure" theory stripped of observation, experience, or 
common sense. Westergaard (6) dismissed as "irrelevant" the 
comments of a certain Turner, who compared the use of the 
theory of elasticity with the use of the discredited phlogiston 
theory in the middle ages, but would probably have endorsed 
the following statement of Burmister (7): 

Every important advance in science and engineering has 
stemmed from theoretical working hypotheses, which have 
brought phenomena into the realm of greater certainty and 
have served as a guide to experimentation and investigation. 
It should be realized, however, that no theory or statement of 
physical laws in any science or engineering is complete in its 
present form. It cannot fully and adequately include, explain, 
and take into account present apparent "exceptions to the 
rule," outside its realm of validity of limiting boundary con
ditions. Yet such theories and statements of physical laws have 
provided the essential stimulus and guide to major scientific 
advances, and have established the nature and basic form of 
the physical laws governing phenomena. 

Why then did the term "theoretical"-used extensively in 
other civil engineering design disciplines-need to be re
placed by the term "mechanistic," one used almost exclusively 
by pavement engineers? 
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SCOPE OF PAPER 

It is submitted that the term "mechanistic" was coined in the 
late 1960s to denote an alternative methodology to the sta
tistical approach used in interpreting the data collected during 
the AASHO Road Test. Thus, it was not originally intended 
to be in opposition to the empirical process of collecting data 
to validate an engineering theory. Consider, for example, the 
comments of Vesic and Saxena (8), who were among the first 
to use the term "mechanistic" in the sense usually ascribed 
to it today: 

The aim of this study is to provide a rational, mechanistic 
interpretation of measurements and observations made on rigid 
pavements during the AASHO Road Test .... Unfortunately 
in most (previous] analyses of AASHO Road Test data, (the 
present serviceability index] has been related to wheel loads 
on a purely empirical basis, though with elaborate statistical 
analyses ... [The finding of this study] confirms the soundness 
of a rational, mechanistic approach to design of rigid pave
ments. It demonstrates beyond doubt that failure in pavement 
performance is not a phenomenon of chance, as some statistical 
approaches tend to suggest, but a phenomenon that has a 
definite mechanical cause. 

Such comments reveal that the term "mechanistic" origi
nally referred to the approach used in data interpretation 
rather than to the nature or source of the information to be 
interpreted. Vesic and Saxena used the same "empirical" data 
collected during the AASHO Road Test that previous statis
tical analyses had also employed. Furthermore, they applied 
computational tools available at the time (namely, the discrete 
element method) to generate additional "numerical" or "the
oretical" data. The main departure of their "mechanistic" 
interpretation method lay precisely in the fact that instead of 
statistical correlations, they sought to develop cause-and
effect relationships based on reasoned understanding of the 
physical laws governing the mechanisms of the distresses ob
served in the field. Such relationships may be arrived at by 
adhering to the principles of structural or continuum me
chanics, which provide the working hypotheses to be verified 
by observation and experience. In contrast, current experi
mental factorial designs and empirical interpretation tech
niques focus almost exclusively on testing statistical hy
potheses, which in many instances are not substantiated-or 
are sometimes contradicted-by engineering analysis and de
sign concepts. 

With respect to the source of data, "empirical" may be 
juxtaposed to "analytical" or "numerical," but not in the 
sense of mutually exclusive opposites, because comparisons 
between measurements in the field or in the laboratory and 

TABLE 1 COMPARISON OF SYMBOLS USED 

In situ layer modulus 
In situ layer thickness 
In situ layer Poisson ratio 
Transformed top layer modulus 
Transformed top layer thickness 
Transformed top layer Poisson ratio 
Equivalent thickness 
Subgrade modulus 
Subgrade Poisson ratio 
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computational results have been a powerful methuu of un
raveling the phenomena observed and validating engineering 
working hypotheses. In regard to approaches to data inter
pretation, "mechanistic" denotes a procedure that relies on 
the use of enginee1ing theory and mechanics, and should be 
contrasted to "statistical/empirical." This composite term de
fines more succintly the cardinal difference between the two 
approaches. 

The main issue upon which this paper focusses is whether 
and under what conditions "mechanistic" and "statistical/ 
empirical" data interpretation techniques can be synergistic 
and when they are mutually exclusive and immiscible. The 
discussion centers around Nondestructive Testing (NDT) 
Method 2 (NDTM2) of the 1986 AASHTO Design Guide (9), 
not so much because of the practical significance of this par
ticular aspect of the Guide, but because NDTM2 provides a 
good case in point for the development of broad conclusions 
that could have enormous repercussions on prevailing exper
imental design philosophies and data interpretation ap
proaches. In addition, the paper addresses some of the con
cerns raised by practicing professionals with respect to the 
application of NDTM2. The development of the pertinent 
formidable equations is traced and documented, and a cor
rected and considerably simpler form of the equations is pre
sented. 

To facilitate the flow of the arguments presented, the fol
lowing convention is adopted. The 1986 AASHTO Guide for 
Design of Pavement Structures (9) is referred to herein simply 
as "the Guide." References to page, equation, figure, and 
section numbers, as well as appendixes to the Guide are pre
ceded by the letter G. For example, "p. GIII-31" refers to 
page III-31 in the Guide; "Equation (GPP.4)" refers to Equa
tion (PP .4), found in Appendix PP of the Guide; and so forth. 
The Guide itself provides no numbers for the equations in 
Chapter 5 of Part III. To clarify references to these equations, 
they will be numbered consecutively, starting with Equation 
Gl on p. GIII-77. Symbols used in the Guide are often com
plicated by superfluous subscripts. A simplified, uniform sys
tem of symbols has been adopted in this paper. For easy 
reference, Table 1 presents a comparison of the symbols used 
in this paper and those in Part III (Chapter 5) of the Guide, 
as well as in Appendixes GN, GNN, and GPP. 

NDT METHODS IN AASHTO OVERLAY DESIGN 

The AASHTO overlay design methodology is presented in 
Chapter 5 of Part III of the Guide. Procedures are described 
for "all types of overlay placed on any type of pavement 
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structure," and nondestructive testing is endorsed for use in 
material characterization for determining the in situ structural 
capacity of the existing pavement. Two different NDT meth
ods are described for this purpose. In contrast to earlier meth
odologies that relied exclusively on maximum deflection 
measurements, both these methods employ measurements at 
additional locations. 

NDT Method 1 is termed "Pavement Layer Moduli Pre
diction Technique" (p. GIIl-32) and corresponds to the con
ventional NDT backcalculation schemes that have recently 
become very popular. Several sensor measurements are made, 
and an iterative computer code is used to match the measured 
deflection basin with a theoretically predicted one, thereby 
leading to estimates of the in situ layer .moduli. 

On the other hand, NDT Method 2 is offered as an alter
native when a "manual" (noncomputerized) method is de
sired (p. GIII-86), or "in the event that the concept/ 
philosophy/analysis using deflection basins to interpret the E; 
values is not considered feasible" (p. GNN-16). The method 
employs only two deflection measurements, one under the 
center of the load and one at a sufficiently large radial distance 
("outer geophone"). This "Direct Structural Capacity Pre
diction Technique" bypasses the backcalculation of each layer 

· modulus, E;, relying instead on an approximate approach first 
proposed by Ullidtz (10) for determining the soil modulus, 
E,, on the basis of one distant deflection measurement. 

DEVELOPMENT OF NDTM2 EQUATIONS 

Reduction of Multilayered Pavement to 
Two-Layered System 

The basic equations governing the application of NDTM2 are 
summarized on p. GN-8. Their derivation is presented in 
Appendix GPP, in which additional references are made to 
Appendix GNN, where a somewhat different derivation is 
presented. The review of NDTM2 presented below considers 
both these appendixes simultaneously, highlighting their es
sential similarity and areas of disagreement. 

The theoretical basis for NDTM2 consists of a generali
zation of the classical method of equivalent thicknesses (MET), 
most definitively described by Odemark in 1949 (11). It ap
pears, however, that because this important study was pub
lished in Swedish, only a few investigators have had access to 
more than scant (and not always accurate) references to 
Odemark's work, in a small number of publications in English. 
As a result, the derivation presented in the Guide is not based 
directly on Odemark's work. There is a single reference to 
Thenn de Barros (p. GPP-3), but it appears that the method 
employed is more akin to that suggested by Barber. 

The derivation of the pertinent equations begins with the 
assertion that "a layered pavement system can be viewed as 
an equivalent thickness of any arbitrary selected material type" 
(p. GNN-11). Thus, the in situ multilayered pavement may 
be reduced to a two-layered system, the top layer of which is 
characterized by "transformed" modulus, thickness, and Pois
son ratio values whereas the subgrade characteristics remain 
unchanged. The following expression (slightly modified for 
clarity) is given in Appendix GNN for the transformed top
Iayer thickness: 
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(1) 

(See Equation GNN.23.) That this is not entirely in accord
ance with the MET concept as proposed by Odemark (11) 
becomes evident when one compares this equation with Equa
tion GS, given on p. GIII-86: 

(2) 

(See Equation GS.) 
In Equation GS, modular ratios are determined with respect 

to the actual in situ modulus of elasticity of the subgrade, Es
8

, 

rather than that of an "arbitrary material," Es8b, and the 
multilayered pavement system is transformed into a homo
geneous foundation. Equation GS is readily recognized as a 
generalization of the formula proposed by Odemark (11), 
intended to transform the overlying layer in a two-layer system 
into an equivalent thickness of the same material as the 
subgrade, rendering the pavement a single-layer system. A 
correction factor, f, of 0.9 was introduced by Odemark (11) 
to ensure better agreement between the MET and the more 
accurate layered elastic theory (12). 

It should be noted, however, that Odemark's suggestion 
was specifically intended only for the reduction of an in situ 
two-layered system, presumably because of the approxima
tion involved in a transformation of this type. Furthermore, 
f = 0.9 pertains only to a two-layered system in which µ 1 = 
µ, = O.S. Odemark indicated thatf = 0.83 for µ 1 = 1/6 and 
µs = O.S. Use off = 0.9 for a general multilayer system is 
not justified, especially if Poisson ratios are retained. The 
mere omission off in Equation GNN.23 may alone account 
for a discrepancy of up to 20 percent. This would certainly 
justify neglecting the contribution of the Poisson ratio terms 
in MET applications. For these reasons, the following form 
of Equation 2 is recommended: 

( )
1/3 

n £. 
he = 0.9 ~ h; -E' 

1- l s 
(3) 

Use of Equation 3 when n > 3 should be discouraged, except 
to provide a rough indication of the "equivalent thickness." 

In contrast, Appendix GPP suggests a transformation re
sulting in an equivalent modulus rather than an equivalent 
thickness. Thus, the (n - 1) pavement layers are reduced to 
a single one, whose thickness is the same total thickness, h,, 
as in the real system, whereas its modulus is the "equivalent 
transformed material modulus," Ee (p. GPP-3). The following 
formula is proposed for the calculation of Ee (appropriately 
corrected): 

E = e 
"f !!.i E;(l - u;) 

{ [ ] 
1/3}3 

;~1 h, (1 - uf ) 
(4) 

(See Equation GPP .1.) This expression is a generalization of 
the concept proposed by Thenn de Barros (14), who described 
his original formula as "approximate," and only intended to 
reduce a three-layered system to a two-layered system (i.e., 
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n :s 3). The Thenn de Barros formula can be written as 
follows: 

E = (+ !!:.! £113)
3 

e ;":'i h, I 
(5) 

Omission of the µ-terms in Equation 5 is consistent with the 
approximate nature of such a transformation and the uncer
tainties involved in estimating Poisson ratios for pavement 
materials. Thus, Equation 5 is recommended as a simpler form 
of Equation 4 (GPP.1). 

The formulation finally adopted in NDTM2 (as revealed 
by the equations presented in Appendix GN, p. GN-8) follows 
the "equivalent modulus" transformation of Appendix GPP. 
This choice is justified, because Appendix GPP follows the 
original Thenn de Barros proposal quite closely, whereas a 
considerable extrapolation of the Odemark formulation is 
represented by the Appendix GNN approach. Yet, except for 
the difference in the manner in which the actual n-layered 
system is reduced to a two-layered one, the derivations pre
sented in both Appendixes GNN and GPP are identical. For 
the sake of clarity and generality, therefore, the evaluation 
of the derivations presented below will consider a two-layered 
system consisting of a top layer (h, E 1, µ 1) resting on a 
semiinfinite foundation (E,, µs). 

Reduction of Two-Layered System to Homogeneous 
Half-Space 

The derivation begins by considering plate load tests per
formed on the real (multilayered) as well as on the equivalent 
(two-layered) pavement systems. For the latter, Burmister 
(13) gives the maximum (central) deflection as 

~ - 2 (1 - µD F 
o - pa E w 

s 

(6) 

(see Equations GPP.19 and GNN.26), in which a is the radius 
of the plate and p is the applied (uniform) pressure. For µs 
= 0.5, this expression is simplified to 

(7) 

The parameter Fw is the so-called "Burmister two-layer de
flection term." It is a nondimensional correction factor that, 
applied to the corresponding one-layer expression by Bous
sinesq (15), permits the determination of ~o in a two-layered 
system. Burmister (13) presented values of Fw in a chart, 
assuming µ 1 = µs = 0.5, and showed that Fw is a function 
only of the ratios h/a and E/E,. A similar chart for µ 1 = 0.2 
and µs = 0.4 was presented by Burmister (16), whereas Thenn 
de Barros (14) derived the corresponding chart for µ 1 = µs 
= 0.35. The latter also notes the following concerning the 
Poisson ratio values: 

The numerical value of the factor [Fw] is uiffen:nt [uepenuing 
on the assumed values for µ 1 and µs) for the same values of 
the parameters [(hla) and (E1/E,)), but the deflections com-
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puted by [Equation 6 (GNN.26 and GPP.19) in each case) are 
very close. The reduction of Poisson's ratio from 0.5 to 0.35 
increases the deflection of layered systems by less than 10 
percent, for the practical range of the parameters. The average 
increase is about 7 percent. The actual value of Poisson's ratio 
of pavement structures is not known, but it is likely to be 
between 0.35 and 0.5. This difference can be ignored in prac
tical applications. 

These comments justify adopting Equation 7 instead of Equa
tion 6 (GNN.26 and GPP.19). An additional consideration 
favoring such a simplification relates to the nature of the 
conventional plate load test. This is conducted using a rigid 
plate for which slightly different expressions are more appro
priate (17). Adopting the "flexible load" expressions given 
by Equations 6 (GNN.26 and GPP.19) and 7 introduces a 
discrepancy of about 20 percent. Once again, the comments 
of Thenn de Barros (14) are enlightening: 

[Deflections) computed for the case of a flexible bearing area 
... should be multiplied by a "bearing factor" [in] the case 
of a rigid plate. The exact value of this factor cannot be de
termined at this time. It can be safely stated that for the layered 
systems of interest in pavement design the bearing factor must 
be between TI/4 and 1, probably closer to 1. From analogy 
with the uniform medium, it is evident that the surface layers 
have a greater influence on the difference between deflections 
of rigid and flexible bearing areas. If the surface layers are 
relatively stiff, this difference should be small. Taking into 
account the overall inaccuracies of modeling the pavement by 
an elastic layered system, it is suggested that the same deflec
tion factors [i.e., flexible load) should be tentatively used in 
deflection analysis of pavement systems loaded with rigid plates." 

Returning now to the Burmister deflection term, Fw, 
the Guide quotes the following equation for its explicit 
calculation: 

F = Es (1 - µ.i) + F (1 - Es) 
w E1 (1 - µ.J) b Ei 

(8) 

(See Equations GPP.20 and GNN.27.) 
The Guide suggests the following equation for the term Fb: 

Fb = {[l + (h.la)2
]

112 
- (h.fa)} 

x {1 + (h) a) } 
2(1 - µ,)1'1 + (h,/a)2]112 

(see Equations GPP.21 and GNN.27) with 

( )

1/3 

h. = 0.9h Ei (l - µ.;) 
Es (1 - µi) 

(see Equations GPP.22 and GNN.29). 

(9) 

(10) 

Equation 10 (GPP.22 and GNN.29) can be readily recog
nized as an "extension" (by the inclusion of the µ-terms) of 
Equation 3 for n = 2. Through the use of this equation, the 
original in situ multilayered pavement, which had been re
duced according to Thenn de Barros into a two-layered sys
tem, is now transformed according to Odemark into a 
homogeneous half-space. This double transformation alone 
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is justification for dropping the µ-terms. Thus, Equation 10 
(GPP.22 and GNN.29) may be simplified to 

h = 0 9h Ei 
( ) 

1/3 

e . Es (11) 

which is the exact form proposed by Odemark (11). 
Now, the term Fb defined by Equation 9 (GPP .21) is sim

ilarly recognized as the so-called "Boussinesq deflection fac
tor" describing the attenuation of the center-line deflection 
with depth in a homogeneous half-space (18). Equation 9 
(GPP.21) gives the value of this factor at r = 0, z = h., and 
by setting.µ, = 0.5, the equation reduces to 

1 
F,, = [ 1 + (/r, /a)2]112 (12) 

It is evident that the complexity of Equation 9 (GPP.21) is 
all but eliminated by assuming µs = 0.5. 

The derivation of Equation 8 (GPP.20 and GNN.27) is 
more perplexing. Poulos and Davis (18) present a similar 
formula, which they attribute to Palmer and Barber (12). 
Their equation assumes µ 1 = µ, = 0.5 and results in the 
following expression for F": 

Implicit in Equation 13 is a transformation of the two-layered 
system into a homogeneous half-space by deriving an equiv
alent thickness as follows [after Poulos and Davis (18), cor
rected for an evident typographical error]: 

[ 
(1 - µD ] l/3 

h, = h (E/Es) (l _ µD (14) 

Equation 14 assumes that/= 1.0, as was common before the 
publication of Odemark's work in 1949. If µ 1 = µ, = 0.5, 
Equation 14 can be introduced into Equation 13 to yield 

(15) 

in which Fb is a function of (h,/a) as defined by Equation 12. 
Thus, it is concluded that Equation 8 (GPP.20) constitutes 
once again an extension through the introduction of the µ
terms of Equation 13, whereas Equation 15 is its simpler, 
preferable form. 

A thorough review of the pertinent literature reveals that 
Equation 14 was first presented by Barber (12, Closure), 
whereas the derivation of Equation 13 was outlined very briefly 
by Barber in a subsequent discussion (19). Examination of 
this derivation reveals a discrepancy between Equation 15 and 
the corresponding formula proposed by Odemark (11). Both 
Barber and Odemark begin by asserting that the maximum 
deflection in a two-layered system, A0 , consists of two parts: 

1. The deflection due to the subgrade, A,; and 
2. The compression of the upper layer, A1, that is, the dif

ference in the deflection observed at its surface and the cor
responding one experienced at its underside. 
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Both these investigators are in essential agreement con
cerning the calculation of A,, as the deflection at depth z = 
h, in the homogeneous half-space with modulus, E,. It is in 
the calculation of A1 that the aforementioned discrepancy 
arises. Odemark (11) provides more details as to how A1 is 
determined. This is accomplished by transforming the two
layered system into a homogeneous half-space of modulus E 1, 

which reduces the thickness of the top layer from h to 

(16) 

where n 1 is equal to about 0.9 for µ 1 = µ, = 0.5. According 
to Odemark, 

(17) 

Note that Fb in Equation 17 is a function of the equivalent 
thickness, g,, rather than of h., which was used in the cal
culation of A, . Barber, on the other hand, uses h, for A1 as 
well. It is evident, therefore, that Equation 15 expresses the 
sum of A, and A 1, both determined as functions of h., as 
suggested by Barber. The consequence of this discrepancy, 
however, on the calculation of A0 is quite benign . As is sig
nificantly larger than A1 in most cases, which perhaps explains 
in part why the discrepancy has gone unnoticed until now. 
Comparisons with Burmister (13) indicate that the error in
troduced by Equation 15 increases as E/Es increases, that is, 
ash, diverges from h. This is the case of a stronger top layer 
on a weaker subgrade. The discrepancy also increases as h/a 
decreases, that is, when a larger loaded area is applied on a 
thinner top layer. Note, however, that in both these cases, 
the contribution of A1 to the total deflection, A0 , is relatively 
minor. For example, for £/Es = 10,000 and h/a = 0.1, the 
error in A, itself is about 17 percent, but the resulting error 
in A0 is less than 0.01 percent. It is not surprising, therefore, 
that Barber reported that his method is "practically the same 
numerically" as that of Burmister (13). 

Use of h, in the calculation of both As and A1 fortuitously 
permits writing the relatively simpler expression for F,v, given 
by Equations 8 or 15. The more rigorous form (assuming µs 
= 0.5) should have been 

(18) 

which is identical to the corresponding formula presented by 
Odemark (11). 

In light of the above discussion, it is recommended that the 
equations presented in Table 2 be adopted instead of the 
corresponding ones in the Guide. 

Derivation of Structural Number Equations 

The structural number (SN) equations presented in Appen
dixes GPP and GNN (and summarized on p. GN-8) can be 
simplified considerably by the adoption of the proposed equa
tions and by neglecting the Poisson ratio terms. The derivation 
presented below follows Appendixes GPP and GNN closely 
in all other respects and yields equations in which the inch is 
the unit of length and the pound is the unit of force. 



216 TRANSPORTATION RESEARCH RECORD 1307 

TABLE 2 RECOMMENDED EQUATIONS 

By definition, 

11-l 

SN= L h;a; 
i = 1 

Argument 
Equation 
Recommended 

7 
18 
12 
11 
16 

(19) 

(see Equations GPP.2 and GNN.8). For two "structurally 
equivalent" layers, that is, layers making the same contri
bution to SN, 

i,g = 1, .. . n - l;g f- i (20) 

(see Equations GPP.3 and GNN.9) or 

(21) 

(see Equations GPP.4 and GNN.10). 
According to the Guide (pp. GPP-3 and GNN-8), the struc

tural number of any layer, SN;, is directly proportional to the 
layer flexural stiffness. Thus, ignoring Poisson effects, 

(22) 

whence 

(23) 

(Cf. Equations GPP.7 and GNN.12.) 
Substituting into Equation 19 (Equations GPP.2 or GNN.8), 

(24) 

in which Eg and ag are constants describing an arbitrary 
"standard" material. Thus, each in situ layer can be trans
formed into an equivalent thickness of lht: standard material 
using Equation 20 (GPP.3). Ignoring the loss in accuracy 
involved in each such transformation, Equation 24 (GPP.9) 
can be written as 

a n-l 

SN _ _ II ""'h£113 
- £~13 ;~ i i 

(Cf. Equations GPP.16 and GNN.21.) 

(25) 

The values of E8 = 30,000 psi and ag = 0.14 are adopted 
in the Guide, which correspond to the AASHO Road Test 

Instead of 
Equation 

GPP.19 or GNN.26 
GPP.20 or GNN.27 
GPP.21 or GNN.28 
GPP.22 or GNN.29 

results for the crushed stone granular base: 

0 14 n-l 

SN = 30 ,~0Qtf.l ,:S h;E)'3 

(cf. Equation GPP.16; see Equation GNN.25) or 

n - l 

SN = 0.0045 L h;E)13 

1= 1 

(cf. Equation GPP.17; see Equation GNN.25). 

(26) 

(27) 

For the two-layer system considered above (h, E,, Es), the 
last equation results in 

I SN )3 
E, = \o .0045/z 

(cf. Equation GPP.18) or 

SN 
h = 0.0045£113 

(28) 

(29) 

Combining Equation 29 with Equation 11 yields, upon divi
sion of both sides by the radius of the applied (plate) load, 
a, 

SN 1 
(h,la) = 200-£

113 a s 

(cf. Equations GPP.23 and GNN.32), whence 

SN2 1 
(h,la) 2 = 40,000-2 £ 213 a s 

(30) 

(31) 

(cf. Equations GPP .24 and GNN .33). Substituting this expres
sion into Equation 12 results in 

1 
Fb = 112 

( 
SN

2 
1 ) 

1 + 40,000 7 £;13 

(32) 

(cf. Equation GPP .27). Equation 18 therefore gives (assuming 
g, = h) 

Fw = (E/E1){1- [l + (~/a)2]1 12} 
1 

(33) +--------
( 1 + 40,000 s;2 

~13) 
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Now Equation 7 may be introduced into Equation 33 to yield 

(34) 

Substituting for £ 1 according to the modified Equation 28 
(GPP.18), 

p { (0.0045h)
3 

[ J J 
~o = 1.5 '!Ta SN3 1 - (1 + (h/r.)2]112 

1 } + 1/2 
SN2 1 E,( 1 + 40,000 7 £;'3) 

(35) 

(cf. Equation GPP.26) . 

STRUCTURAL NUMBER CONCEPT: 
ASSUMPTIONS AND DEFINITIONS 

NDT-Method 2 provides an illustration of the problems that 
may ari e when statistical/empirical and meclrnni tic data 
interpretation procedures are combined . NDT methods and 
backcalculation scheme are sophi ticated mechanistic rools 
developed recently and employed successfully in pavement 
tudie . Notwithstanding any approximations they introduce, 

the equations derived on the basj of layered elastic the ry 
(including MET) are al o mechanistic in nature. The funda
mental weakness of the mathematical derivations presented 
in Appendixes GNN and GPP lies in the fact that uch me
chanistic rigorous, and analytical meth d are combined
by neces ity- with the ent irely statistical/empirical structural 
number concept, developed on the ba is of AASHO Road 
Test data. It is ironic that this very fact is heralded in the 
Guide as one of the strengths of the design procedure pre
sented (p. GNN-11) . The fUDdamental presupp ition under
lying the . tructural number concept are di cu · eel below and 
their incompatibi lity with a mechani tic understanding of th 
pavement system is highlight d. 

The assumptions and definitions constituting the concept 
of the structural number may be stated explicitly as follows. 
The pavement consist of serie of interchangeable individual 
layers, whose contribution to the structural behavior of the 
pavement ystem i uniquely defined by each layer' intrin ic, 
individual , and unchangi ng characteri tics, namely, thickness 
and layer coefficient. Deriving from its statistical/empirical 
nature is the fact that the structural number concept ignores 
the effect of the interactions between the various layers of 
the pavement system. Instead. it considers that a given layer 
behaves (or contributes to the structural capacity of the sys
tem) in exactly the same manner, independent of the pave
ment layer sequence it finds itself in. The adequacy of the 

217 

structural number concept has been the subject of consider
able debate (20-24) . On the other hand, the simplification it 
affords in pavement design is unquestionable. 

The major weakness of the structural number concept is 
that emphasis is placed exclusively on pavement materials, 
rather than on the behavior of the pavement as a system of 
interacting components. This limitation is also inherent in the 
conventional classification of all pavements as "flexible" or 
"rigid," primarily on account of the material of the surface 
layer. Furthermore, the structural number concept ignores 
the influence on pavement system behavior of two very im
portant factors, namely, subgrade support and geometry of 
the applied load. In real in situ pavement system ' exhibiting 
nonlinear or stress-dependent behavior, the concept also ig
nores the effect of load level. Thus, this statistical/empirical 
concept may be expected to serve its intended purpose as a 
design tool adequately only as long as these factors are similar 
to those prevailing at the AASHO Road Test, which provided 
the original data from which the structural number concept 
was developed. 

Consider now the understanding of the pavement as a struc
tural system, inherent in layered elastic theory. This is illus
trated by the solution to the two-layered system problem, first 
presented by Burmister (13), who showed on the basis of 
mathematical formulations that the behavior of such a pave
ment system is uniquely defined by two dimensionless ratios, 
namely, h/a and E/E,. Note that the effect of load level is 
essentially eliminated by the use of linear elasticity, whereas 
the applied pressure, p, is introduced simply as a multipli
cation term in the complete Burmister equations (see, for 
example, Equation 7). The major load attribute identified by 
theory is load geometry, which is reflected in the presence of 
load radius, a, in one of the two dimensionless ratios. 

It is worth reflecting on the implications of the Burmister 
solution. Layered elastic theory states that the behavior of 
the pavement system is the result of the relative magnitude 
of the structural parameters of the component layers. The 
contribution of the thickness of the top layer can only be 
assessed after it has been compared with the size of the applied 
load, in the form of the hla ratio. Similarly, the contribution 
of the elastic modulus of a given layer is of limited conse
quence when considered by itself. The dimensionless ratio 
E/E, clearly illustrates that the governing system character
istic is the relative stiffness of the various layers, including 
the supporting foundation. 

The same understanding and definition of a pavement sys
tem (as consisting of the interaction of the placed layers, of 
the natural supporting subgrade and of the geometry of the 
applied lOad) is also evident in Westergaard's treatment of 
the slab-on-grade problem (25). Traditionally, comparisons 
of the layered elastic and plate theorie have tended to lligh
light only the points on which Westergaard's analysis differ 
from that of Burmi"ter. Yet the congruence o.f the e two 
pioneers on what constitutes a pavement is of much more 
fundamental significance. 

According to plate theory, the governing dimensionless ra
tio is all, where l is the radius of relative stiffness of the slab
subgrade system (26). Thus, in a single ratio, all, all three 
fundamental components of a pavement system (overlying 
manmade layers, supporting natural medium, and geometry 
of applied load) are lumped in a manner that reflects their 
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interaction and the significance of their relative (rather than 
absolute) magnitudes. 

The understanding of the pavement system underlying the 
works of such respectable investigators as Westergaard and 
Dunnister is baseu un a mechanistic evaluation of engineering 
behavior, not merely of materials. Consequently, structural 
response is a function of the relative (not absolute) magni
tudes of the layer elastic characteristics and incorporates the 
effect of subgrade support and of the geometry of the applied 
load. This philosophy is therefore incompatible with the struc
tural number concept. 

CAN LA YER COEFFICIENTS BE DERIVED USING 
LAYERED ELASTIC THEORY? 

A similar problem arises when layered elastic theory is used 
in determining layer coefficients for each of the in situ ma
terials, as required by NDTM2. With the proliferation of a 
wide variety of construction materials and loading and support 
conditions in recent years, the adequacy of the original AASHO 
Road Test layer coefficients has been considerably decreased. 
This has created the need for the development of additional 
layer coefficients. The most common approach for this pur
pose has been the utilization of layered elastic theory 
(27-31). Thus, it is implicitly assumed that a layer coefficient 
can be uniquely defined if one knows the elastic characteristics 
(E;, µ;) of the material in that layer. 

For the purposes of NDTM2, in particular, the following 
assertion is made at the start of the derivation presented in 
Appendix GPP: "If one views [two] pavement layers as having 
equal SN values, it can be concluded that the '[flexural] stiff
ness' (EN/12(1 - µf)] of both layers is also identical" 
(p. GPP-3). The weakness of this assertion lies in the follow
ing: The structural contribution of a layer is in a qualitative 
sense proportional to its flexural stiffness only if the material 
is linear, elastic, homogeneous, and isotropic. In practice, this 
translates to a bound material whose load-distributing capac
ity derives primarily from its ability to bend rather than to 
compress. Portland cement concrete slabs are comfortably 
within this category, but cement-treated or asphalt-treated 
materials may also be reasonable candidates. 

Unbound granular materials, possessing no tensile strength, 
cannot be described adequately in terms of a "flexural stiff
ness." A case can be made that the concept is not even ap
plicable to asphalt concrete. Although this material may pos
sess significant tensile strength, it also exhibits a strongly 
viscoelastic, temperature- and loading-rate-dependent behav
ior, incompatible with the requirements of beam or slab bend
ing theory. Furthermore, even for a system consisting of a 
series of layers each of which exhibits primarily flexural char
acteristics, total structural capacity is not merely proportional 
to the additive sum of the individual "flexural stiffness" of 
the layers. This is because the layers interact, each being 
influenced by and influencing every other layer. Thus, se
quencing of layers, subgrade support provided, and geometry 
(if not the magnitude as well) of applied loadings need to 
be taken into account when structural system response is 
assessed . 

A simple example suffices as illustration of the weakness 
of the basic assertion in Appendix GPP, quoted above, as 

TRANSPORTATJON RESEA RCH R ECORD 1307 

well as the pitfalls of deriving layer coefficients using layered 
elastic theory. Consider a 4-in.-thick asphalt concrete (AC) 
layer whose modulus is 200 ksi. From Figure G2.5 (p. GII-
19), a, = 0.3. The SN value for this layer is 

A granular layer with a modulus of 25 ksi and a layer coef
ficient, a2 , of 0.12 (from Figure G2.6, p. GII-20) will have 
the same structural number if its thickness, h2 , is 10 in. Then 

According to Appendix GPP, the following shuulu be lrue: 

12(1 - µT) 12(1 - µD (36) 

(cf. Equation GPP.5). 
Yet, for the AC layer (ignoring the contribution of the µ

terms) 

E1 h~ = 200,000 x (4)3 = 12 ,800,000 lb-in. 

whereas for the granular layer 

E2h~ = 25,000 x (10)3 = 25,000,000 lb-in. 

Thus, the two quantities assumed to be equal by Equation 36 
(GPP.5) are really in the ratio of 1:2. If asphalt concrete is 
considered to be the reference material, a prediction with 
respect to the granular layer would be off by 100 percent, 
simply on account of Equation 36 (GPP.5). In a multiple
layer structure involving several transformations of the type 
described by Equations GPP.10 through GPP.13, discrep
ancies of a similar magnitude may be expected to be com
pounded, and not necessarily in an additive fashion. 

Furthermore, the log-log relationship between maximum 
deflection, A0 , and the effective in situ structural number, 
SN,. rr, as a function of Es derived in Appendix GPP for the 
Falling Weight Deflectometer (Figure GPP.2) conceals the 
extreme sensitivity of SN xerr to A0 . When this figure is redrawn 
on an arithmetic plot, it becomes apparent that a very small 
error in A0 can lead to a considerable error in SN, .rr, partic
ularly for stiffer subgrades. 

CONCLUSIONS AND RECOMMENDATIONS 

A major problem facing researchers attempting to expand or 
improve the AASHTO design procedures is the incorporation 
of mechanistic concepts into a statistical/empirical framework. 
Recent investigations at the University of Illinois have pro
vided a considerable amount of evidence that such a process 
rarely leads to reliable conclusions. The reverse approach, 
that is, the incorporation of statistical/empirical concepts in 
a mechanistic methodology, has been routinely adopted by 
practically all current design procedures. The most common 
statistical/empirical ingredients of current "mechanistic-based" 
procedures are the equivalent single axle load (ESAL) con-



Ioannides 

cept and the so-called "Miner's linear cumulative fatigue hy
pothesis." It is perhaps the proliferation of mechanistic
plus-statistical/empirical amalgams that has resulted in the 
assumption that statistical/empirical-plus-mechanistic mix
tures are permissible, too. It must be recognized, however, 
that in the pursuit of developing a mechanistic procedure, use 
of statistical/empirical concepts is merely a matter of practical 
expediency . Concepts based exclusively on a statistical inter
pretation of accumulated information without any consider
ation of system behavior and factor interactions may provide 
the necessary bridges over gaps remaining in our ability to 
analyze mechanistically the complex problems associated with 
pavement design. As the state of the art in pavement modeling 
and analysis methods is improved, however, one by one these 
gaps are closed. Consequently, the statistical/empirical bridges 
are gradually being substituted by more reliable mechanistic 
planks, ba ed on sound theoretical precept , verified and cal
ibrated-where necessary-by experimental field or labo
ratory observations. The verification and calibration process 
is by definition empirical, and is most effective when it em
ploys statistics merely as a curve-fitting tool. Whenever pos
sible, the fundamental cause-and-effect relations involved in 
the phenomena observed empirically should be interpreted 
in the light of mathematical formulations of basic Jaws of 
engineering mechanics, rather than heuristic rules of thumb 
that are valid only in a statistical sense. Efforts aimed at 
replacing statistical/empirical constructs (e.g. SN, ESAL, and 
Miner's fatigue concepts) by more mechanistic procedures 
should therefore be intensified, and attempts to define sta
tistical/empirical parameters (e.g., layer coefficients, PSI, and 
load equivalency factors) using mechanistic theoretical tools 
should be abandoned. 

Such considerations coupled with the theoretical weak
nesses identified above suggest that use of NDTM2 should 
be discouraged . The justification for the original development 
of NDTM2, namely, the difficulty of conducting conventional 
deflection basin (backcalculation) analyses as required by NDT 
Method 1, can no longer be considered valid. Equipment for 
deflection basin testing is nowadays readily available, and 
comprehensive backcalculation programs have been devel
oped for all types of pavements and are routinely used. Worth 
mentioning in particular is a backcalculation program devel
oped recently (32, 33) that evaluates directly the in situ subgrade 
modulus, R, thus eliminating the need for questionable cor
relations between Es and k. If NDTM2 were to be used at 
all, it would be advisable to use the simpler, corrected equa
tions derived in this paper, instead of those in the Guide. 
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