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Multiple-Sensor Weigh-in-Motion: 
Theory and Experiments 

D. CEBON AND C. B. WINKLER 

A theory is developed for the design of multiple-sensor weigh
in-motion (WIM) systems to minimize the errors caused by the 
dynamic axle loads of heavy vehicles moving at highway speeds. 
The theory is verified using measurements from a wheel load 
measuring mat of total length 38 m, incorporating 96 capacitive 
strip WIM sensors. The mat was installed on the Navistar test 
track in Indiana. A total of 460 test runs was performed on six 
different articulated heavy vehicles, at a range of speeds between 
8 and 80 km/hr. The strip sensors were found to be reliable and 
to measure the dynamic wheel loads with errors of less than 4 
percent RMS. The sensor calibration is independent of speed and 
temperature. The experimental results were found to agree closely 
with the theoretical predictions of multiple-sensor WIM perfor
mance and it was possible, using a three-sensor array, to measure 
static axle loads with approximately 6 percent RMS error, or less, 
for typical highway conditions of speed and road surface rough
ness. A good design for multiple-sensor WIM systems is to use 
three sensors, spaced evenly along the road. The sensors should 
be spaced according to a simple formula that depends only on 
the average traffic speed and the number of sensors. 

A single weigh-in-motion (WIM) sensor measures the instan
taneous dynamic force generated by each measured axle . This 
force can be significantly different to the static axle load that 
would be measured on a conventional static vehicle scale. 
One of the main reasons for the difference is the dynamic 
variation of the tire force caused by vibration of the vehicle 
as it is excited by road surface roughness. These dynamic axle 
loads typically have RMS amplitudes of 10 to 30 percent of 
the stMi~ ;ixle lo;irls of he;ivy goods vehicles (l-4). Thus the 
accuracy of a WIM system with one sensor is limited funda
mentally by the dynamics of the vehicles being measured, and 
typical RMS errors of existing single-sensor systems are 12 to 
29 percent (5). 

The advent of low-cost WIM sensors provides the possibility 
of using two or more sensors along the road to compensate 
for the effects of dynamic forces in the determination of static 
axle loads. The main objective of the work described here is 
to investigate, theoretically and experimentally, the design 
and performance of multiple-sensor WIM arrays that are in
tended to measure the static axle loads of vehicles traveling 
at highway speeds. 
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WEIGH-IN-MOTION 

The outputs of several sensors in a WIM array might be 
processed in a variety of different ways to yield an estimate 
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of the static loads. Some possibilities are described by Glover 
(6), who performed numerical simulations of the outputs of 
WIM arrays with 1, 2, 9, 19, and 81 sensors with a variety of 
spacing arrangements, including uniform, linear, geometric, 
and logarithmic. Glover achieved good results for a nine
sensor, evenly spaced array, using a least squares procedure 
to correct the simulated forces for the dominant Fourier com
ponent. 

Evenly spaced WIM arrays are examined. It is assumed 
that the outputs of the individual sensors are averaged to yield 
an estimate of the static loads. The simple averaging method 
requires few sensors and little computation to give comparable 
accuracy to more sophisticated curve fitting methods (5 ,6). 

Sinusoidal Input 

It is useful to begin the analysis by calculating the output of 
a multiple-sensor WIM array to a sinusoidal force p(t) defined 
by 

p(t) Po + P sin (wt + ct>) 

where 

P0 = static tire force, 
P = dynamic tire force amplitude, 
w = angular frequency, 
ct> = arbitrary phase angle, and 
t = time. 

(1) 

The force is considered to move at constant speed V over 
an array of n sensors that are evenly spaced a distance ll 
apart, as shown in Figure 1. The sensors are assumed to be 
noiseless and perfectly accurate so that the output of each 
sensor is the instantaneous dynamic load applied to the sensor 
by p(t). The output of the array, taken to be the aEthmetic 
mean of the individual sensor outputs, is denoted P. It was 
found by Glover (7) that the peak array output error i, which 
occurs for the worst-case value of ct>, is given by 

€(n, 8) = ;±:{2 E[e(n, 8, ct>)]2}112 

] 
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(2) 

where 

E[ ] expectation operator; 
k = dummy integer variable; 
e = nondimensional WIM error, defined by 
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FIGURE 1 Cross section of an n
sensor WIM array, traversed by force 
p(t) at speed V. 

E(n, o, <!>) = (P - P0) 

o = nondimensional sensor spacing, defined by 

w6.12TIV = 6.!(Vlf). 

(3) 

(4) 

Figures 2a-d show £(n, o) for n 
vations are made: 

2 to 5. Three obser-

1. The error £ is unity for integer values of o, which cor
respond to the sample points (sensors) being spaced an integer 
number of dynamic force cycles apart. 

2. On each graph in Figure 2, there are (n - 1) zeros at 
values of o = ok corresponding to 

k = 1, 2, 3, ... , (n - 1) (5) 

Thus the range of o between the first and last zeros on each 
graph increases with n: 01 = lln to on - l = (n - l)!n. This 
is the region in which £ is consistently small. 

3. The curves for 0 s o < 1 repeat for each integer value 
of o and are symmetric about o = 0.5, 1.5, 2.5, etc. This can 
be verified by plotting Equation 2 for o > 1 (7). The repetition 
is a form of aliasing with a Nyquist spacing of o = 0.5. There 
is no apparent benefit in using o > 1 in a WIM array. 

Stochastic Input 

For particular values of n, V, and 6., Equation 2 can be con
sidered to be the transfer function of a linear filter that yields 
the worst-case error for dynamic force components of fre
quency w. Using the standard input-output relationship for a 
linear system subject to ergodic random excitation (8), the 
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FIGURE 2 Plots of the envelope error 
E from Equation 2: (a) n = 2, (b) n = 
3, (c) n = 4, and (d) n = 5. 
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mean square direct spectral density of the measurement error 
s.e(w) because of the two-sided input tire force spectral den
sity spp( w) is given by 

S00(w) = €(n, w6.12TIV)2 Spp(w) -00 < w < oo. (6) 

For a linearized vehicle model, SPP( w) can be found from 
the road profile input displacement spectral matrix [S.,(w)] 
and a vehicle transfer function matrix [H( w)], as described by 
Newland (8) and Robson (9). Equation 6 can then be inte
grated with respect to frequency and used to obtain the RMS 
array error a(n) for an n-sensor system, traversed by a lin
earized vehicle model: 

a(n) = 2 r £(n, w6.12TIV)2 [H(w)]*[S.,(w)][H(w)]Tdw 
{ }

IQ 

(7) 

where the asterisk (*) denotes the complex conjugate and T 
denotes the matrix transpose. [H(w)] can be determined easily 
from the equations of motion of a vehicle model (8). 

Equation 7 yields the RMS error for one random tire force 
that is statistically stationary and is passing over an ensemble 
of n-sensor WIM arrays. It can also be considered to be the 
expected standard deviation of the static load estimation error 
for many different axles, with similar dynamic characteristics, 
passing over a single WIM site. This assumes that the wheel 
forces are sampled from an ergodic random process, which is 
reasonable under most circumstances (9). It also assumes that 
the surface of the WIM array is not abnormally rough and 
that the individual suspensions all generate similar tire force 
spectral densities. 

Measures of WIM System Performance 

It is useful to define some nondimensional measures of WIM 
system performance. The error coefficient of variation (ECOV) 
p(n), for an n-sensor system is defined by 

p(n) = a(n)IP0 (8) 

where P0 is the static axle load. 
It is easily shown that the ECOV for a single-sensor array, 

p(l), is equal to the dynamic load coefficient (DLC), which 
is the ratio of the RMS dynamic load to the static load (7). 
For highway conditions of road roughness and speed, DLC 
values in the range 0.1 to 0.3 are typical (i .e., 10 to 30 percent 
RMS single-sensor WIM error), but DLC values up to 0.4 
have been measured for particularly poorly damped tandem 
suspensions (1 ,4). 

The proportional improvement in the estimate of static load 
measurement accuracy relative to a single-sensor WIM system 
is denoted here as the static accuracy coefficient (SAC), TJ(n), 
which is defined by 

( ) 
_ p( l) - p(n) 

Tl n - p(l) 
DLC - p(n) 

DLC 
(9) 

A single-sensor WIM system will yield p(l) = DLC and 
TJ(l) = 0, whereas perfect WIM system performance corre
sponds to p(n) = 0, and hence TJ(n) = 1. 
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Simulation Models 

Vehicle Model 

Experimental and theoretical studies (1-3 ,10) have shown 
that low-frequency (1.5- to 4.5-Hz) sprung mass modes of 
vehicle bounce and pitch vibration usually dominate the dy
namic tire forces generated by heavy vehicles on highways. 
The main exception occurs for vehicles with axle group sus
pensions (particularly of the walking-beam type) with poorly 
damped bogie pitching modes that can generate large dynamic 
forces in the 8- to 15-Hz frequency range. However, these 
suspensions are only found on a small proportion of heavy 
goods vehicles: approximately 15 percent of new tractors, and 
less than 2 percent of trailers in the United States (11). 

The simple generic ~-car vehicle model shown in Figure 3 
was chosen for this study to represent the majority of truck 
suspensions that generate a large low-frequency wheel force 
spectral peak caused by sprung mass motion. It has a sprung 
mass natural frequency of approximately 1.9 Hz. Results are 
also presented by Cebon and Winkler (7) for a model that 
represents those suspensions (in the minority), which generate 
large dynamic wheel loads caused by unsprung mass motion. 

The generic vehicle model does not contain the detailed 
suspension nonlinearities and complexities of sprung mass 
motion that are typical of heavy vehicles (10); however, the 
wheel force spectral densities are sufficiently representative 
for the purpose of this study of WIM systems. 

Derivation of the equations of motion and formation of the 
transfer function matrix [H( w)] and input spectral matrix [S,,( w)] 
are straightforward and will not be discussed here (7). 

Road Surface Profile Spectral Density 

The road profile displacement spectral density S"('y), at wave
number -y, used to generate [Su(w)] in the simulation study 
was a two-index function recommended elsewhere (12): 

(10) 

The values used for the various constants were n 1 = 2.0, 
nz = 1.5, -y 1 = 1.0 rad/m and S(-y0) = 1.275 x 10- 6 m3/rad, 
which corresponds to the good road surface classification (12). 
This profile may be likened to a good U.S. highway surface. 

Simulation Results 

Figure 4 shows the wheel force spectral density Spp( w) and 
the error spectral density S00(w) (as calculated by Equation 

ms = 8900 kg 
mu= 1100kg 
c5 = 30 kNs/m 
c1 = 4 kNs/m 
k5 = 2000 kN/m 
kt = 3500 kN/m 

FIGURE 3 Schematic diagram of the 
two degrees of freedom, quarter-car 
vehicle model. 
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FIGURE 4 Tire force spectral density 
s •• (w) and WIM array error spectral 
density s .. (w) for the vehicle model 
traveling at 100 km/hr over a WIM array 
with n = 3 and '1 = 4 m. Solid line = 
s •• (w); broken line = s • .(w). 

6) for the vehicle model traveling at 100 km/hr over a three
sensor WIM array with a sensor spacing of ~ = 4 m. The 
same data are plotted on both linear and logarithmic scales. 
On the linear graph, the area under the solid line is propor
tional to DLC2 and the area under the dashed lines is pro
portional to p(3)2. The logarithmic graph is provided to show 
more clearly the attenuation of SPP(w) caused by E(n, w~I 
2TIV)2 • Because the maximum value ofE (n, o) is unity, (Figure 
2), see(w) can never exceed spp(w), hence the dashed line can 
never cross the solid line. This means that for perfectly ac
curate sensors, p(n) can never exceed the DLC value. 

Performance data corresponding to this simulation were 
DLC = 0.142, p = 0.051 and TJ = 0.645. Thus in this case, 
the three-sensor array reduces the error coefficient of varia
tion from 14.2 to 5.1 percent, which corresponds to a 64.5 
percent improvement in performance over a single-sensor WIM 
system. This averaging scheme clearly improves substantially 
the accuracy of static wheel load prediction. 

Figures Sa and b show the influence of the sensor spacing 
~on the ECOV p and the SAC TJ, for n = 3, with the vehicle 
model traveling at speeds of 60 and 100 km/hr. It is apparent 
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FIGURE 5 Variation of theoretical 
WIM system performance with sensor 
spacing '1. Points A, B, C, etc., were 
calculated according to the theory for 
sinusoidal inputs. Solid line = 60 km/hr; 
broken line = 100 km/hr. (a) error 
coefficient of variation p, and (b) static 
accuracy coefficient 'I]. 
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that for each speed there is a range of spacings for which the 
WIM ECOV is low, i.e., the system performs relatively 
accurately. 

The shape of the ECOV curves is closely related to the 
magnitude of the error envelope curve jE(n = 3, B)i shown 
in Figure 2b; however, because the system is subjected to an 
approximately narrow-band random input (centered on the 
sprung mass natural frequency of the vehicle) instead of a 
single sine wave, the ECOV curve is a smoothed version of 
IEI. 

The properties of the E curves described earlier can be used 
to understand the features of the ECOV curves. From Equa
tion 5, the first two zeros in E(3, B) occur when Bk = B1 = 
j and B2 = j. These points are expected to correspond ap
proximately to minima in the ECOV curves. Using the def
inition of B from Equation 4, with V = 16.7 m/sec (60 km/ 
hr) and/= wl2'IT = 1.9 Hz [the dominant resonant fre~uency 
in S (w)] the minima are expected to occur approximately 

~ , h . 
at d = V/3f = 2.9 m and d = 2V/3f = 5.9 m. T ~se po~nts 

are labeled A and B on Figure 5. The correspondmg pomts 
for V = 27.8 m/sec (100 km/hr) are labeled A' and B'. Con
versely, the worst errors are expected to occur when IE(3, B)i 
= 1. This happens when the dominant (resonant) frequency 
component in S ( w) is sampled once every cycle (or once pp h . 
every two cycles), i.e., for integer values of B. T e pomts 
labeled C and C' on Figure 5 correspond to BJ = 1. The 
labeled points on Figure 5 are all slightly to t~e right of.the 
maxima and minima of the ECOV curves at which they might 
be expected to occur because SPP(w) is not symmetric about 
the main spectral peak (Figure 4). 

WIM Array Design 

The WIM array is designed to be accurate for the widest 
possible range of vehicles (frequencies) and speeds. For gi~en 
values of d and f, it is possible to estimate the range of vehicle 
speeds V over which the system will operate in the plateau 
region of the ECOV curve, where the accuracy is consistently 
high (Tl ~ 0.5). 

From Equation 5, the zeros in £(n, B) occur when Bk 
kin, k = 1, 2, 3, ... , (n - 1). We will ignore values of k > 
n, because these represent large (often impractical) sen~or 
spacings at which the wheel forces are sampled at frequencies 
well below the Nyquist frequency: i.e., less than two sample 
points per cycle. Using Equations 4 and 5, and assuming fixed 
d and f, the zeros occur at speeds Vk given by 

fnd 
vk = k (m/sec), k = 1, 2, 3, ... , (n - 1) (11) 

and f is the frequency in Hz of the dominant spectral com
ponent in spp(w). 

The plateau region of the ECOV curve will be governed 
by the first and last zeros in E: k = 1 and k = n - 1. Thus 
the maximum and minimum speeds for which the WIM system 
will be reasonably accurate (operating in the plateau region) 
are given by 

73 

and 

vmin = vn-1 = fndl(n - 1) (m/sec), n > 1 (12) 

A good design procedl_!!e would be to select d such that 
the average traffic speed V, in m/sec, corresponds to the av
erage of Vmin and Vmax· Thus, from Equation 12: 

2(n - 1) V d . = __,_ _ ___,_ 
design fn 2. n > 1 (13) 

There is considerable variation in the dominant frequencies 
f in the dynamic wheel force spectra of common heavy ve
hicles. They are usually i!_l the range 1.5 to 4.5 Hz and a 
suitable average value is f = 2.5 Hz. _It is possible that a 
slightly higher average frequency (say f = 3.0 Hz) may be 
more suitable for WIM systems in countries where heavy
vehicle suspensions are relatively stiffer. 

· Figure 6 shows a design ch~rt for multiple-sensor WIM 
arrays using Equation 13 with f = 2.5 Hz and speeds of 20, 
40, 60, 80, and 100 km/hr. It yields values of ddesign for arrays 
with n = 2 to 10 sensors. 

Sensitivity to Frequency and Speed 

Substituting the design spacing ddesign from Equation 13 into 
Equation 12 gives 

vmax = 2(n - l)Vln (14a) 

and 

Vmin = 2 Vin n > 1 (14b) 

If n = 2 V . = V = V Thus a two-sensor WIM system 
can only b~ d:;;ignedm~~ be ~ccur~e at one speed. If n = 3, 
however, V min = ~V and V m•x = jV and a system with sensor 
spacing ch~en accordpg to Equation 13 ~ill be accurate f~r 
speeds of W :s V :s W. For example if V = 80 km/hr, this 
would yield 53 :s V:s 107 km/hr. Simil~ly, if n = j, the range 
of accurate performance is given by !V :s V :s ,V. 

Figures 7a and b show the ECOV (p) and SAC ('IJ), re
spectively, for two-, three-, and four-sensor WIM systems 
when traversed by the vehicle model. The_arrays were de
signed for an average speed of _?O km/hr (V = 22.2 m/sec) 
according to Equation 13 with f = 1.9 Hz. Also shown in 
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~ 'i 4 

g a i-.:::::"'-k:-~..t--'11'-::::-t----t--r---iv (kmth) 
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c 00 

~ p,..i"'=t===!=~~+~=i=l ~8 I 20 
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2 3 4 5 6 7 8 9 10 

Number of sensors in array 

FIGURE 6 Design chart for multiple
sensor WIM systems using Equation 13 
with]= 2.5 Hz. 
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Figure 7a is p(l) (DLC) for comparison. The following ob
servations are made: 

1. The WIM array with only two sensors provides a signif
icant improvement in accuracy over the single-sensor system 
(DLC), in the vicinity of the design speed of 80 km/hr. 

2. The two-sensor system loses accuracy quickly for speeds 
away from 80 km/hr, whereas the three-sensor system has an 
accurate plateau region for 53 :5 V :5 107 km/hr, as expected. 
The four-sensor system is accurate over an even wider speed 
range. 

3. In the vicinity of 80 km/hr, an increase in the number of 
sensors yields only a modest increase in accuracy (TJ = 0.6 
for n = 2, TJ = 0.67 for n = 4). 

4. For speeds less than about 30 km/hr, the ECOV (p) and 
SAC (11) curves fluctuate rapidly because of aliasing. 

From Figure 7, it appears that three sensors is a good choice, 
because the system is reasonably accurate and has a relatively 
wide operating speed range. The four-sensor system yields a 
larger speed range with only a small accuracy improvement 
over the three-sensor system. The extra cost of the fourth 
sensor may not be worthwhile in practice. 

The range of frequencies over whic!!_ the WIM array will 
be accurate for a given vehicle speed V can be found using 
Equations 4 and 5 and replacing ~ by ~design from Equation 
13: 

/min nfl2(n - 1) (15a) 

and 

!max = nf/2, n > 1 (15b) 

Thus, if n = 2, f min = f max = f, that is, the system can only 
be tuned to perform well at one input frequency. If n = 3, 
the operating frequency range (for a fixed speed) is approx
imately ~f :5 f :5 2f. For f = 2.5 Hz this gives 1.9 :5 f :5 3.8 
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FIGURE 7 Influence of speed on the 
theoretical performance of two-, three-, 
and four-sensor WIM systems, designed 
for an average traffic speed of 80 km/hr. 
Solid line, n = 1 (DLC); dashed line, n 
= 2; double dotted line, n = 3; and 
single dotted line, n = 4. (a) error 
coefficient of variation p, and (b) static 
accuracy coefficient 1J. 
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Hz. Similarly, if n = 4, the operating frequency range is ~f 
:5/:5 2f, which, forf = 2.5 Hz, yields 1.7 :5/:5 5 Hz. Thus, 
n = 3 is a reasonable choice, although errors may occur when 
the frequency and speed take extreme values simultaneously. 
The worst error is likely to occur when V = Vmin and/= fmin• 

although the other extreme condition (V = Vmin and/= !max) 

may also yield significant errors. 

EXPERIMENTAL PROGRAM 

Wheel Load Measuring Mat 

The load measuring mat used in this project was developed 
by Cole and Cebon (13) at Cambridge University in the United 
Kingdom, in conjunction with Golden River UK Ltd. It in
corporated novel WIMstrip capacitive strip sensors that are 
inexpensive, reliable, and potentially more accurate than other 
existing low-cost WIM sensors. The sensors had approximate 
cross section of 9 x 30 mm and length 1.2 m. They were 
encapsulated in stiff polyurethane tiles of dimensions 1.2 x 
1.2 x 13 mm thick, with three sensors per tile, laid transverse 
to the wheel path at a spacing of 400 mm between sensors. 
Thirty-two tiles, containing a total of 96 sensors, were ob
tained for the project. The tiles were mounted end-to-end on 
the test track, to provide an instrumented test section of length 
38.4 m along one wheel track. 

A schematic cross section of an encapsulated WIMstrip 
sensor is shown in Figure 8. Tire contact pressure applied to 
the top surface of the mat causes the top plate of the aluminum 
extrusion to deflect and hence the air gap between the top 
plate and the inner copper electrode is reduced. This results 
in an increase in the capacitance of the device, which, with 
appropriate processing, can be related directly to the contact 
pressure change. In order to determine the instantaneous wheel 
load, it is necessary to integrate the transducer output with 
respect to time for the duration of the tire contact. Details of 
the sensor design and some sources of error are discussed by 
Cole and Cebon (13). 

The mat installation used six Golden River Marksman 600 
data loggers. Each sensor was attached to a data logger by a 
5-m-long cable and each data logger processed the outputs of 
16 sensors, performed the integration described, and stored 
the results. The data loggers were connected into a network 
in a daisy-chain configuration by RS232 serial data cables. An 
IBM PC-AT microcomputer was connected to the network 
and used to upload the raw axle load information from the 
data loggers after each vehicle test run. (A load-measuring 
mat of practically any length can be constructed simply by 
adding more tiles and data loggers.) 

Copper electrode 

FIGURE 8 Schematic cross section of a 
capacitive strip wheel force sensor 
encapsulated in a polyurethane tile. 
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Test Site and Vehicles 

The field tests were performed on the Navistar test track in 
Fort Wayne, Indiana. The oval track has two lanes and is 1.9 
km long. The polyurethane mat tiles were attached to the test 
track with a sheet of double-sided adhesive tape and 12 ma
sonry anchors per tile, screwed into the asphalt road surface. 
A timber sheet of total length 19.5 m, width 1.2 m, and 
thickness 13 mm was screwed to the test track at each end of 
the mat installation. This ensured that the vehicles were nom
inally horizontal when passing over the mat sensors , and that 
transient vibration caused by the 13-mm step was reduced 
slightly. 

Three 6 x 4 tractors and three tandem-axle semitrailers 
were provided by Navistar for testing on the mat. The vehicles 
were arranged into six different tractor and semitrailer com
binations (denoted Sl to S6). Two of the tractors had tandem 
four-spring suspensions and the third had a trailing-arm tan
dem air suspension with hydraulic dampers . Two of the trail
ers had four-spring tandem suspensions, whereas the third 
had a pivoted-spring single-point tandem suspension. The ve
hicle combinations were selected to be reasonably representa
tive of the U.S. truck fleet. Each vehicle was weighed on a 
static vehicle scale immediately before or after the testing. 
The weighing procedure involved driving the vehicle onto and 
then off of the scale, one axle at a time, and recording the 
weight of each axle combination. This procedure enabled an 
estimate of the static load of each axle to be obtained as well 
as the gross weight of the vehicle. [Cebon and Winkler (7) 
provide detailed information about the vehicles and axle loads.] 

Each articulated vehicle combination was driven over the 
mat at nominal speeds of 8, 16, 32, 48, 64, and 80 km/hr (5 , 
10, 20, 30 , 40 , 50 mph) in both directions. At least six rep
etitions were performed for each test condition, giving a total 
of 460 test runs during 4 days of testing. The surface tem
perature of the mat was measured before each vehicle test. 

Sensor Performance 

Detailed information concerning the performance of the sen
sors was provided by Cebon and Winkler (7) . The important 
results are summarized here. 

Calibration and Accuracy 

Three methods were used to calibrate the sensors and test 
their uniformity. The first two used purpose-built hydraulic 
static calibrators (13). With this approach , the coefficient of 
variation of the calibration factors measured at three points 
along the length of each sensor was found to average 3.2 
percent when measured on bare sensors and 4.5 percent when 
measured on the same sensors after being cast into the mats. 
(It is believed , but not rigorously demonstrated , that this 
difference is caused mostly by experimental difficulties in the 
second procedure, not to true performance differences.) 

The third calibration was done at the test site by driving 
each of the six vehicles over the mats at 8 km/hr (5 mph) and 
comparing readings for the steer axles with the known values 
of their static loads. Careful analysis of these data (7) reveals 
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that the average baseline sensor error (i.e., with respect to 
the true applied load) is less than 4 percent. The error can 
be attributed to noise and calibration errors. 

Sensitivity to Temperature 

No systematic dependence of sensor output on temperature 
was measurable for mat surface temperatures of 15°C to 40°C. 

Sensitivity to Speed 

No systematic dependence of static load errors on vehicle 
speed could be detected and no evidence could be found of 
fore-aft weight transfer affecting the static loads for higher 
speeds. It is concluded, therefore , that the response of the 
capacitive strip transducers is not affected significantly by 
vehicle speed. 

Reliability 

Approximately 2.5 percent of all data was lost out of 460 test 
runs over the 96 sensors. Almost half of the lost data (1 
percent) was caused by a single sensor that failed. The re
mainder was caused by false triggers of the data loggers. (This 
problem has subsequently been rectified.) 

Drift with Time 

Insufficient time was available to detect any long-term drift 
in calibration . Glover and Newton (5) performed similar tests 
on an installation of WIMstrip sensors mounted in slots cut 
in the TRRL test track in England . They did not detect any 
significant drift in sensitivity during the 7-month testing period 
in 1989. 

WIM PERFORMANCE FOR SIX ARTICULATED 
VEHICLES 

The mat data files for the six articulated vehicles were proc
essed to determine the ECOV (p) as a function of WIM array 
design parameters (n and .:i), for each axle of each vehicle at 
the six nominal testing speeds (8, 16, 32, 48, 64, 80 km/hr). 
Figure 9 shows an example of the procedure, in which many 
three-sensor WIM arrays (n = 3) with .:i = 1.6 m can be 
obtained by averaging the outputs of appropriately spaced 
groups of sensors. Averages of this type were calculated for 
sensor spacings .:i = 0, 0.4, 0.8, ... , 12 m, and n = 2 to 6 
sensors , i.e., 155 different WIM array configurations in all . 

Because of space limitations, only a limited number of ex
perimental results are presented here . The remaining results 
are presented by Cebon and Winkler (7). 

Histograms of WIM force averages are provided for vehicle 
S4 traveling at a speed of 85 km/hr in Figures lOa, b, and c. 
Figure lOa shows the force distribution for Axle 5 on the 
trailer, calculated by considering each transducer to be a sep
arate WIM system (i.e., by setting .:i = 0). Figure lOb shows 
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FIGURE 9 Showing the calculation of 
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data from the mat. 
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the result of analyzing the same data as Figure lOa, but with 
three-sensor arrays (n = 3) and A = 4.0 m. (This array spacing 
was determined using equation 13 with V set to the testing 
speed (24 m/sec) and[= 2.5 Hz.) Similarly, Figure lOc shows 
the result of analyzing the same data with six-sensor averages 
(n = 6) and A = 2.4 m. It is apparent from the figures that 
the spread of the probability distribution (which is propor
tional to the ECOV) is reduced consiciernhly hy performing 
the three-sensor averages. The ECOV (p) is reduced from 
11.5 percent for the single-sensor system to 5.7 percent for 
the three-sensor system and 4.2 percent for the six-sensor 
system. 

Comparison of Experiment and Theory 

A graph of p versus A for the steering axle of Vehicle Sl at 
32 km/hr (9 m/sec) is provided in Figure lla. The vertical 
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FIGURE 11 WIM array ECOV p 
versus sensor spacing 4. Vertical 
lines indicate design spacings _ 
according to Equation 13 with V = 
9 m/sec, f = 2.5 Hz. (a) 
Experimental results for Vehicle Sl, 
steering axle, speed 32 km/hr; and 
(b) theoretical results for quarter-car 
model, speed = 32 km/hr • 

lines on the figure labeled n = 2 to 6 correspond to the design 
spacing ~design as calculated from Equation 13 with V = 9 ml 
sec and f = 2.5 Hz. Figure llb show theoretical curves that 
were calculated using Equation 7 for the !-car vehicle model, 
traveling at 32 km/hr. The vertical lines on the figure again 
show the design spacings, calculated using Equation 13 with 
V = 9 m/sec and l = 2.5 Hz. Several comments can be made 
about Figures lla and b. 

The general shapes and magnitudes of the experimental 
and theoretical curves are similar. This appears to verify that 
the !-car model used in the theoretical analysis is a reasonable 
representation of the dynamics of the steering axle of Vehicle 
Sl. 

The main differences between the theoretical and experi
mental curves are the spacings at which the peaks and troughs 
occur. This is because the natural frequencies of the test ve
hicle and the theoretical model are different. The theoretical 
model had a sprung mass natural frequency of 1.9 Hz. The 
natural frequency of the experimental vehicle can be deduced 
from Figure lla by considering the location of the first peak, 
which occurs approximately at A = 3.2 m, corresponding to 
B = 1. Using Equation 4, the natural frequency of the vehicle 
is given by 

(16) 

where 6 1 - sensor spacing corresponding to the first peak in 
the curve of p versus A. From Figure lla, 6 1 = 3.2 m, and 
using V = 9 m/sec, Equation 16 yields f = 9/3.2 = 2.8 Hz. 
The second peak in the curves is expected to occur when 8 
= 2, i.e., A = 2V/f = 6.4 m. This also conforms with Figure 
lla. 



Cebon and Winkler 

The spacings given by Equation 13 and shown by the ver
tical lines in Figures lla and b would be reasonable choices 
for the array design spacings. The vertical line corresponding 
to n = 2 falls slightly to the right of the first trough in the p 
versus d curve in Figure lla because the natural frequency 
of the vehicle is 2.8 Hz, which is slightly greater than the 
design frequency J = 2.5 Hz. Conversely, in Figure llb , the 
vertical line for n = 2 falls to the left of the first trough, 
because the natural frequency of the model is 1.9 Hz. 

As explained previously, arrays with three or more sensors 
are more robust to frequency and speed variations because 
they have relatively wide, flat-bottomed plateau regions 
(troughs) as indicated by both the experimental and theoret
ical curves (Figures lla and b ) . As a result, the vertical lines 
for n = 3 to 6 in both graphs lie at spacings that are appro
priate choices to minimize the ECOV (p), despite the fact 
that the operating frequencies are different to the design fre
quency J. Also, a small error in spacing of the two-sensor 
system caused by, say, a different vehicle speed, would cause 
a more rapid decrease in accuracy than for the systems with 
three or more sensors. 

A second comparison between experiment and simulation 
is shown in Figures 12a and b. Figure 12a shows. a graph of 
p versus d for Axle 5, on the four-spring tandem trailer sus
pension of Vehicle S4, traveling at 85 km/hr. From the y
intercept, the DLC value is approximately 11.5 percent, which 
corresponds to the ECOV value determined previously from 
the histogram in Figure lOa. 

The sprung mass natural frequency of the experimental 
vehicle can be estimated from the first peak of Figure 12a 
(corresponding too = 1) using Equation 16 (f = 23.6/6.0 = 
3.9 Hz). This is significantly higher than the array design 
frequency J = 2.5 Hz, but is within the expected range of 1.5 
to 4.5 Hz discussed earlier. As a consequence, the design 
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FIGURE 12 WIM array ECOV p versus 
sensor spacing ~. Vertical lines indicate 
!!_esign spacings_according to Equation 13, 
V = 24 m/sec, f = 2.5 Hz. (a) 
Experimental results for Vehicle S4, Axle 5 
(on trailer), speed 85 km/hr; and (b) 
theoretical results for quarter-car model, 
speed = 85 km/hr. 
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spacing for n = 2, at approximately 4. 7 m in Figure 12a, is 
far away from the optimum at approximately 3.0 m. The RMS 
error for n = 2 at the design spacing is approximately 8.8 
percent. 

The design spacing for n = 3 (at approximately 4.2 m) is 
just within the plateau region of the p versus d curve for n 
= 3. Consequently, the RMS error for n = 3 at the design 
spacing is approximately 5.7 percent, a substantial improve
ment over 8.8 percent, for n = 2. This illustrates the signif
icant benefit, in terms of operating speed and frequency ranges, 
that is obtained by using a WIM array with three or more 
sensors. Cebon and Winkler (7) obtained many results similar 
to Figures lla and 12a, with three-sensor WIM errors p(3) 
usually in the range 3 to 7 percent for d des;gn chosen according 
to Equation 13. 

Figure 12b shows theoretical predictions using the !-car model, 
with a speed of 85 km/hr. In this figure as in Figure llb, the 
vertical line for n = 2 falls to the left of the trough in the 
ECOV curve for n = 2. This is because the natural frequency 
(1.9 Hz) is less than J = 2.5 Hz. 

Influence of Tire Tread Pattern 

The contact pressure distribution under a rolling tire depends 
on the tread pattern. Off-road tires can have large local con
tact pressure variations in the vicinity of the individual tread 
elements. When such a tire rolls over the mat, some of the 
strip transducers will be loaded by high-pressure regions of 
the tire contact area and others will be loaded by low-pressure 
regions. The wheel force measurement involves integrating 
the output of each strip sensor (which is proportional to the 
local contact pressure) throughout the period of contact be
tween tire and sensor. Thus, if some sensors experience a high 
contact pressure, they will register an abnormally high load. 
Conversely, some sensors will register an abnormally low load. 
This problem is dependent on the construction of the tire and 
the tread pattern. It is expected to occur for any type of narrow 
strip WIM transducers, not just capacitive strips. Thus, it can 
be considered to be a fundamental limit on the accuracy of 
strip sensors. Fortunately, the majority of highway vehicles 
use highway tread (rib) tires and these do not display a sig
nificant variation of local contact pressure because of the tread 
elements. Thus, for most vehicles, tire tread effects are not 
likely to cause serious errors with strip WIM sensors. 

A graphic example of the tire tread effect can be seen in 
Figure 13 for Axle 3 of Vehicle S4, which was the only test 
suspension to have off-road tires . Because of the air suspen
sion, this vehicle is expected to produce relatively small dy
namic loads (1,3). However, Figure 13 shows a large value 
of p(l) of approximately 16 percent at d = 0, for a speed of 
11 km/hr. This was one of the largest ECOV values measured 
in all of the tests. The p(l) value for Axle 3 of Vehicle S4 
was found to remain approximately constant with speed, in
dicating that it was not influenced by the dynamics of the 
vehicle. For every other suspension, there was a significant 
increase in p(l) with speed. 

The first peak in Figure 13 occurs at d 1 = 2.0 m. If this 
peak were caused by dynamic loads, it would shift with speed. 
For example, if the speed increased from 11 to 85 km/hr, 
d 1 would be expected to increase to d 1 = 2.0 x 85/11 = 
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FIGURE 13 Measured WIM array 
ECOV p versus sensor spacing .:i for 
Vehicle S4, Axle 3 (off-road tires), 
speed = 11 km/hr. 

15.5 m. This was not found to occur in the experimental re
sult (7). In fact, the position of the first peak was found to 
stay relatively constant for speeds up to 51 km/hr and then 
decrease slightly with higher speeds, to Li 1 = 1.8 m at 85 
km/hr. 

The explanation for this behavior is related to the tire tread 
pattern and is described in detail by Cebon and Winkler (7). 
It transpires that five sensor spaces (2 m) correspond to a 
prime number of tire tread elements and hence the maximum 
contact pressure can only coincide with the location of every 
fifth sensor. This is an example of undersampling or aliasing. 
The sensor array cannot distinguish between tire contact pres
sure variation with wavelength equal to the tire tread interval, 
and a force component with wavelength 2.0 m. This result is 
dependent only on the tread pattern and so the aliased wave
length of 2.0 m is largely independent of speed. For high 
vehicle speeds, the driving torque and hence longitudinal creep 
or slip of the driven wheels becomes significant . This causes 
an effective reduction in the wavelength of the contact pres
sure distribution along the mat and a decrease in the aliased 
wavelength from 2.0 to 1.8 m. 

CONCLUSIONS 

1. A simple equation defining a good design spacing for the 
seJ1su1s i11 a mulliµle-~enwr WIM system was derived from 
theoretical considerations and verified by experiments with a 
lmtrl meiisnring miit. 

2. Arrays with three or more evenly spaced sensors will be 
more robust to speed and frequency variations than two
sensor systems. 

3. A good design choice is to use three-sensor arrays that 
are likely to give RMS errors of t to i of the errors for single
sensor systems. In the near future, it should be possible to 
routinely estimate the static axle loads of vehicles traveling 
at highway speeds with RMS errors of approximately 5 to 8 
percent (compared with 12 to 29 percent for existing systems). 

4. The response of the capacitive strip sensors in the load 
measuring mat was found to be independent of (a) vehicle 
speed in the range 8 to 80 km/hr, (b) mat surface temperature 
in the range l5°C to 40°C, and (c) long-term drift. 

5. The average sensor baseline error caused by noise was 
found to be less than 4 percent RMS. 

6. Approximately 2.5 percent of all data was lost out of 460 
test runs over the 96 sensors. Almost half of the lost data 
(1 percent) was caused by a single sensor that failed. 

TRANSPORTATION RESEARCH RECORD 1311 

7. The strip sensors were found to be inaccurate for tires 
with an off-road tread pattern. This effect is a fundamental 
limitation of strip WIM sensor technology and is expected for 
any type of strip transducer. 

8. No evidence was found of fore-aft static load transfer in 
the test vehicles because of speed. 
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