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Methods and Algorithms for Automated 
Analysis of Pavement Images 

HARIS N. KouTSOPOULOS AND IBRAHIM EL SANHOURI 

The collection and analysis of pavement distress data are a pri­
mary component of any pavement management system. Different 
approaches for automatic interpretation of asphalt pavement dis­
tresses, recorded on video or photographic film, with emphasis 
on segmentation and classification of digitized distress pavement 
images are examined. Segmentation deals with the problem of 
extracting the objects of interest from the background , whereas 
classification assigns distresses to corresponding distress types. 
Results from the application of the different methods on a data 
set of asphalt pavement images are pre ented. Alternative seg­
mentation and clas ification approaches and the effectiveness of 
global geometrical descriptors characterizing the various distress 
classes are evaluated. Issues associated with the accuracy and 
validity of the proposed methods are discussed and possible sources 
of error examined. Directions for further research are also iden­
tified . 

The collection and analysis of pavement distress data are a 
primary component of any pavement management system (1 ,2) . 
Currently pavements are usually manually inspected for col­
lection of surface distress data. This form of inspection suffers 
from several drawbacks: 

1. It is slow, labor intensive, and expensive and therefore 
only a small fraction of the pavement section to be assessed 
can be inspected. This low sampling rate clearly reduces the 
accuracy of the process. 

2. It is subjective and hence consistency between surveys 
made by different inspectors on the same section may be low . 

3. Repeatability may also be poor, i.e. , the assessment of 
a section by a given inspector may differ between two in­
spections even when they are spaced so that little extra de­
terioration has occurred. 

The implications of these drawbacks are obvious, at least 
in a qualitative sense. Inaccurate condition assessment may 
result in overmaintaining of pavements, or in expensive de­
ferral of urgently needed repair . 

In order to eliminate the drawbacks of manual inspection, 
automation of the process is currently receiving increased 
attention because of its potential to provide highway agencies 
accurate and detailed data on pavement condition. Among 
the various technologies, the one based on image collection 
is the most popular. Various systems exist, or are under de­
velopment, that record the surface of the pavement on video 
tape or photographic film and subsequently analyze them either 
manually at a laboratory, or automatically using image pro­
cessing and pattern recognition methods (3-5). The majority 
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of the systems in the latter category operate off-line. The data 
are recorded by the moving vehicle and the film or tape is 
brought to the laboratory for processing, for example, over­
night. 

Figure 1 shows the main components of an automated in­
spection system that is based on imaging technology. The first 
two components of the system are hardware and the last two 
are software related. The focus is on software aspects of au­
tomated pavement inspection systems. Experience with cer­
tain preprocessing operations and approaches for classifica­
tion of pavement images into the various distress classes of 
interest are described. The system under development is cur­
rently not appropriate for real time operations and requires 
the calibration of various parameters using a set of sample 
images from the data set to be analyzed. The discussion is 
restricted to flexible asphalt pavements, which constitute the 
majority of U .S. highways. Finally, conclusions on the various 
aspects of the problem and recommendations for further re­
search are provided. 

PREPROCESSING 

Preprocessing of digitized images involves operations such as 
enhancement of the images and segmentation. The focus of 
the discussion is on segmentation, the process of extracting 
objects of interest (distresses) in an image from the back­
ground and obtaining a binary image (where the distresses 
are indicated by black pixels and the background by white). 

Segmentation is an important step in the entire process and 
various general methods exist for segmenting images (6). The 
effectiveness of segmentation greatly depends on the quality 
of the acquired images, which is affected by the hardware 
configuration used for image acquisition. For example, some 
data collection systems use artificial lighting for data acqui­
sition. Although use of artificial light is an improvement over 
natural light, it may still require special preprocessing algo­
rithms to eliminate the effects of nonuniformity of illumina­
tion. In addition, there are several intrinsic properties of flex­
ible pavement images that make segmentation difficult: 

1. The contrast between distresses and background (undis­
tressed pavement) is frequently low, because the distribution 
of intensity of distressed pixels exhibits considerable overlap 
with the distribution of the background. This is because of 
the texture of asphalt pavements mainly determined by the 
presence of aggregates of variable color and brightness. 

2. The area of a distress is small compared with the area 
of the background (the number of pixels in the digitized image 
representing distresses is small). 
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FIGURE 1 Components of automated pavement inspection systems. 

Koutsopoulos et al. (7,8) examined in detail various ap­
proaches for segmentation of pavement images and found that 
a version of the relaxation method suggested by Bhanu and 
Faugeras (9) and Rosenfeld and Smith (10) yielded promising 
results. They also developed a simple thresholding method 
for segmentation. The threshold is determined using regres­
sion analysis with the mean and the variance of the distribu­
tion of gray levels as explanatory variables. This method also 
yielded promising results. These two methods (relaxation and 
regression thresholding) are further evaluated using the ac­
curacy of subsequent classification as criterion. 

INTERPRETATION 

The interpretation component of automated pavement in­
spection systems includes two tasks: (a) classification of ob­
jects into one of the classes of interest (such as undistressed 
pavement, longitudinal distress, transverse cracking, alligator 
cracking, and block cracking), and (b) quantification, i.e., 
measurement of the extent and severity of the corresponding 
distress. The discussion focuses on dassifil.:ation, although the 
methods that are described could also be extended to cover 
the quantification task. 

Among the various approaches to classification, statistical 
methods are popular (11,12). A common component of sta­
tistical methods is the representation of the object to be clas­
sified by a feature vector. The choice of the descriptors in­
cluded in the feature vector is based on their discriminatory 
power, i.e., their ability to differentiate among the various 
classes. If n measurements are made on each object, the re­
sulting feature vector will be a point in an n-dimensional 
feature space. The basic problem is to partition this feature 
space so that there is one region for each class. Objects to be 
classified are assigned to the class in whose region their feature 
vector lies. 

If the probability distributions of the feature vector can be 
estimated (from a sample that is available), statistical methods 
such as Bayesian analysis may be used for the classification. 
In this case, it is common to assume that the feature vector 
has a multivariate Gaussian distribution, and hence the prob­
lem is reduced to one of estimating the corresponding param­
eters using standard statistical techniques. 

An approach that does not require the distribution of in­
dividual descriptors in the feature vector is based on the logit 
model (13). The various classes constitute the alternatives and 

the systematic utility of each class is defined using the de­
scriptors in the feature set as alternative specific variables. 
The probability that an object with feature vector x belongs 
to Class i is given by 

where V m is the systematic utility of Class i, defined as 

n 

V; = lAri 
j=1 

When no assumptions are made on the underlying distribu­
tions of the feature vector, the minimum distance classifier is 
a popular classification method. This approach is most effec­
tive when the class characteristic variables have clustering 
properties, i.e., when points corresponding to the feature 
vector of a given class tend to form clusters in n-dimensional 
space. In the single prototype version of this approach, each 
Class i is represented by a single prototype, assumed to be 
representative of that class, with Feature Vector Z;. An object 
with Feature Vector x is assigned to the ith class if D; < Di 
for all j -=F- i, where the distance D; is given by 

D; = llx - z;ll = (x - z;)T(x - z;) 

If the data are more irregularly clustered, another classi­
fication scheme can be devised by using more than one pro­
totype (s1 ,s2 , ••• , sN) for each class. Then the object to be 
classified is assigned to the class of the prototype that mini­
mizes the defined distance. 

In one of the few documented studies in classification of 
pavement images Maser (14) uses a six-dimensional feature 
vector to represent each object. The features computed are 
the fraction of the image occupied by the distress, the ratio 
of minimum to maximum moment of inertia, the inclination 
of the axis of minimum inertia to a fixed axis, the ratio of the 
area of the distress to the area of the rectangular bounding 
box enclosing it, the ratio of the width over the length of the 
bounding box, and an average width obtained by dividing the 
area of the object by the length of the bounding box. A 
minimum distance classifier was used to assign the object to 
one of six classes, namely longitudinal cracking, transverse 
cracking, alligator cracking, patching, bleeding, and uninter-
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esting blobs. The prototype vector for each class was defined 
using some typical examples for each class. Because of the 
small and rather ideal data set used for this experiment, it is 
difficult to draw any conclusions on the potential of this ap­
proach. However, the feature vector used for the analysis 
captures basic characteristics of the images under examination 
and will be used in the investigation. 

THE CLASSIFICATION STRATEGY 

In addition to the usual approach, which consists of simul­
taneous examination of all possible classes and assignment of 
the object under consideration to one of these classes, a hi­
erarchical approach is investigated for classification of pave­
ment distresses. This classification strategy is based on the 
decision tree shown in Figure 2 and according to Dattareya 
and Kanai (15) provides a more general and flexible classi­
fication framework. 

The top node of the tree differentiates between images with 
distresses and images without any distress. From the object 
node downwards, object classification is of concern. Once a 
distress has been identified, at each subsequent node a de­
cision is made that assigns the object to a subgroup of dis­
tresses. The object node branches into one-dimensional 
(1-D) and two-dimensional (2-D) distresses. The 1-D dis­
tresses consist of linear cracking, i.e., longitudinal and trans­
verse cracking. The 2-D distresses are divided into cracking 
and noncracking objects. The 2-D cracking distresses are 
further divided into alligator and block cracking. The non­
cracking 2-D distresses are divided into patches and potholes. 

It is expected that segmented distress-free images consist 
of small objects that can be eliminated easily by a noise­
cleaning process. Distress-free images, therefore, can be iden­
tified using total area as a classification criterion (8) . The 
distinction between 1-D and 2- D distresses is based on the 
fact that linear cracks are more elongated than the remaining 
distresses . 2-D cracking distresses (alligator and block crack­
ing) and noncracking distresses differ in that the latter dis­
tresses are fuller or denser. Alligator and block cracking are 
distresses that have different structural causes, and hence a 
distinction between them needs to be made for maintenance 
reasons; unfortunately the shape differences between the two 
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distresses are less obvious. In general, block cracking consists 
of approximately rectangular crack patterns, although alli­
gator cracking consists of more irregular, small polygons (16). 
The distinction between patches and potholes may be based 
on their density and the geometrical regularity of their shape. 

This classification strategy provides several advantages be­
cause it allows the use of different classification methods and 
feature vectors at different levels of the hierarchy, depending 
on the complexity of the corresponding classification task. 
Therefore it may result in reduction of the computational 
effort required for overall classification. 

CASE STUDY 

The data set used for this analysis consists of 28 images, pro­
vided by PCES (17), which belong to four distress classes: 
longitudinal cracking (2 images) , transverse cracking (8 im­
ages), alligator cracking (11 images), and block cracking (7 
images). The images are digitized and stored as matrices of 
dimension 512 x 512. Each entry of the matrix represents 
the gray scale level of the corresponding pixel (with values 
between 0 and 255). This data set was used to compare the 
two segmentation approaches presented earlier, evaluate the 
effectiveness of various descriptors in the feature vector, and 
assess the overall classification approach. Unfortunately, be­
cause neither potholes nor patches are included in the data 
set it was not possible to draw any conclusions concerning 
these distresses. 

Segmentation Results 

The regression equation that was estimated for the determi­
nation of the optimal threshold corresponding to the data set 
described is as follows: 

T* = 18.60 + 0.79µ - 0.046a2 

where µ is the mean and a 2 the variance of the histogram of 
intensity of the image. The R2 value of the regression was 
0.80 and the parameters are in general statistically significant; 
the t values for the coefficients are 0.60, 7 .17, and 2.66; fur­
thermore the tests performed demonstrate that the values of 
the parameters are only slightly affected by the sample size. 

In Figure 3, the binary (segmented) images obtained by the 
relaxation and the regression threshold for two different dis­
tress types are compared. The two methods perform similarly; 
however, the most important criterion for the selection of a 
segmentation method is how the segmented images affect the 
accuracy of the classification process that follows. 

Classification Results 

The performance of classification procedures is usually eval· 
uated on the basis of error rates (misclassification probabil· 
ities), and various methods exist for the estimation of error 
rates (17). A common and popular method is the use of the 
available sample as both the training and the test set. Using 
this method, error rates are easy to estimate; however, these 
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FIGURE 3 Examples of segmentation of pavement images: (a) 
alligator cracking, (b) block cracking, (c) segmentation by 
relaxation, (d) segmentation by relaxation, (e) segmentation by 
regression, and (f) segmentation by regression. 

estimates are optimistic (they underestimate the true error 
rates). Better estimates may be obtained by splitting the sam­
ple into two sets, the training and test set. The training set is 
used for the calibration of the classification function and the 
test set for evaluation. This method, although it overcomes 
the bias problem, suffers from two major drawbacks that limit 
its use: (a) it requires large samples, and (b) the classification 
function that is estimated and subsequently evaluated does 
not use all the available information. A third approach which 
is computationally more involved, but provides almost un­
biased estimates of the error and does not require large sam­
ples, is Lachenbruch's holdout procedure. In the following 
analysis, the first method was used (the conclusions subse­
quently drawn are not affected by the potential bias in the 
estimation of the error rates). 

The feature vector used for the classification of the images 
into the four classes mentioned earlier consists of the following 
gt:omt:trical mt:asurt:s: 

1. Density. The area of object divided by the area of the 
bounding box; the bounding box is defined as the smallest 
rectangle with sides parallel to the image coordinate axes that 
fully encloses the object; area is the number of pixels that 
constitute the object under consideration. The density of an 
object is expected to have lower values for 2-D cracking and 
higher values for contiguous 2-D distresses such as potholes. 

2. Angle. The angle of inclination of the object's axis of 
minimum inertia (or axis of elongation) to the horizontal. The 
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angle of inclination is useful for differentiating between lon­
gitudinal and transverse cracking. 

3. Inertia Ratio . The ratio of the principal moments of 
inertia, i.e., the ratio of the minimum to the maximum mo­
ment of inertia, with the origin located at the center of gravity 
of the object. The inertia ratio is used as a measure of the 
elongation of an object. It is expected to have lower values 
for linear cracking and higher values for 2-D objects. 

4. Aspect Ratio. The ratio of the lengths of the two sides 
of the bounding box. It is a more direct measure of the elon­
gation of an object than the inertia ratio. However, because 
the aspect ratio is directly related to the bounding box, the 
measure is sensitive to existence of noise in the object . 

Simultaneous Classification 

For each distress class, the mean value for the descriptors in 
the feature vector over all members of the class in the data 
set was estimated. A single prototype was determined for each 
class using the mean values as the representative feature vec­
tor. Table 1 presents these values for each class for both the 
relaxation and regression segmented images. 

Table 2 presents the classification of the images to the vari­
ous classes according to the minimum distance classifier (for 
both the relaxation and the regression segmented images). In 
both cases, the same overall classification accuracy of 75 per­
cent is obtained. Clearly most of the misclassifications occur 
between alligator and block cracking. 

From the set of the various descriptors considered, the 
feature vector consisting of angle, aspect ratio, and density 
was the most successful in classifying the distresses. The in­
ertia ratio did not perform particularly well. Inclusion of this 
descriptor in place of the aspect ratio caused even more mis­
classifications; more alligator images were classified as block 
cracking, whereas block cracking images were misclassified 
as alligator and longitudinal cracking. 

TABLE 1 FEATURE VECTOR FOR RELAXATION­
REGRESSION SEGMENTED IMAGES 

DISTRESS INERTIA RATIO DENSITY ASPECT ANGLE0 

TYPE RATIO 

Relax. Re gr. Relax . Regr. Relax. Re gr. Relax . Regr. 

Alligator 0 .378 0.388 0.0272 0.0212 0.87 0.87 56.7 51.7 

Block O.I5I 0.202 0.0262 0.02I6 0.76 0.76 28.6 29.2 

Transverse 0.0I4 0.0I4 00698 0.0476 0.2 1 0.21 7.4 2.4 

Longitudinal 0.050 0.043 0.1463 0.075 0.25 0.25 85.4 85. 1 

TABLE 2 SIMULTANEOUS CLASSIFICATION RESULTS, 
RELAXATION AND REGRESSION (PERCENT 
CORRECTLY CLASSIFIED IN PARENTHESES) 

Distress Tmal Classified as 

Type Number Alligator Block Longitudinal Transverse 

Alligator 11 8 (73%) 3 0 0 

Block 7 2 4 (57%) 0 I 

Longitudinal 2 0 0 2 (100%) 0 

Transverse 8 0 0 0 8 (I00%) 
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Table 3 presents the results of the estimation of the logit 
model with alligator cracking used as the base alternative. 
The parameters are in general statistically significant. Tables 
4 and 5 present the classification of the various distresses as 
suggested by the logit model. The overall classification ac­
curacy (a measure not usually recommended for evaluating 
model performance) is 78 and 82 percent for relaxation- and 
regression-based segmentation, respectively. An important 
difference from the results obtained using the minimum dis­
tance classifier is the types of misclassification that occur. 
Images with alligator cracking are classified with very high 
accuracy; however, only 28 percent of block cracking is cor­
rectly classified, with the majority of the images (57 percent) 
classified as alligator cracking. Another difference between 
the two approaches is that the use of inertia ratio performed 
as well as the aspect ratio when used in the logit model. This 
difference is interesting given the sensitivity of measuring the 
aspect ratio especially in the presence of noise. 

Hierarchical Classification 

The minimum distance classifier was used as the main clas­
sification method . Table 6 presents the mean values of the 
descriptors as they apply at each node of the decision tree. 
These values are used to represent the prototypes from each 
class. The aspect ratio was used to discriminate between 
1-D and 2-D distresses, the angle to classify 1-D distresses 

TABLE 3 ESTIMATION OF LOGIT MODEL PARAMETERS 
(I-STATISTICS IN PARENTHESES) : p2 = 0.59 , p2 = 0.38 

Distress Incnia Ratio Densily Angle 
Type 

Relaxation Regression Relaxalion Regression Relaxation Regression 

Block -3.84 -2.75 9.81 7.67 
(-1 .65) (-1 .48) (0.58) (0.37) 

Longitudinal -118.88 -136.71 86,89 I04.96 1,01 0.75 
(-1.49) (-1.28) (1.50) (1.36) (0.58) (0.58) 

Transverse -112.80 -141.05 140.84 209.27 -8.86 -8:99 
(-1.64) (-1.79) (2.22) (2 .35) (-1.71) (-1.52) 

TABLE 4 LOGIT CLASSIFICATION RESULTS FOR 
RELAXATION (PERCENT CORRECTLY CLASSIFIED IN 
PARENTHESES) 

Disrress Tota l Classified as 

Type Number Alliga1or Block Longitudinal Transverse 

Alligator II 10 (91%) I 0 0 

Block 7 4 2 (29%) 0 1 

Longitudinal 2 0 0 2 (JOO%) 0 

Transverse 8 0 1 0 7 (87%) 

TABLE 5 LOGIT CLASSIFICATION RES UL TS FOR 
REGRESSION (PERCENT CORRECTLY CLASSIFIED IN 
PARENTHESES) 

Distress Total Classified as 

Type Number Alligator Block Longitudinal Transverse 

Alligator 11 II (100%) 0 0 0 

Block 7 4 2 (29%) 0 1 

Longitudinal 2 0 0 2 (100%) 0 

Transverse 8 0 0 0 8 (100%) 

TABLE 6 FEATURE VECTOR AT THE NODES OF 
THE CLASSIFICATION 
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INERTIA ANGLE' ASPECT DENSITY 
RATIO RATIO 

Relax. Re gr. Relax. Regr. Relax. Re gr. Relax. Re gr. 

l·D 0.021 0.020 0.23 

2-D 0.290 0.331 0.82 

Longitudinal 85.4 85.1 

Transverse 7.4 2.4 

Alligator 0.87 0.87 0.027 0.021 
2 2 

Block 0.76 0.76 0.026 0.021 
2 6 

into longitudinal or transverse cracking, and the density and 
the inertia ratio to classify 2-D distresses into alligator and 
block cracking. 

The results of the classification are presented in Table 7. 
The classification performed well at the top of the tree with 
96 percent classification accuracy between 1-D and 2-D dis­
tresses. The only misclassification came from the same block­
cracking image that is consistently classified as transverse 
cracking for reasons that will be explained in the next section. 
Similarly, the distinction between longitudinal and transverse 
cracking was accurate. Most of the misclassifications occur in 
the treatment of block cracking. If the angle is added as a 
third descriptor in the feature vector (for classifying 2-D 
distresses), the results become identical to the simultaneous 
classification (as expected). However, it is not clear what are 
the physical characteristics of the images that the angle cap­
tures to provide the higher accuracy. 

To complete the analysis, and because the most difficult 
aspect of the classification seems to be the distinction between 
alligator and block cracking, the logit model was also used 
for the classification of 2-D distresses. The logit approach, 
using inertia and density as components of the utility func­
tions, slightly improved the results obtained by the minimum 
distance classifier by assigning correctly more images with 
alligator cracking. The misclassifications are again concen­
trated around block cracking. The addition of the angle in 
the utility function improved the classification accuracy even 
more; all alligator cracking images were correctly classified, 
whereas four of the block cracking images were misclassified 
as alligator cracking. Overall, this approach of using the de­
cision tree and combining different classification methods at 
each node provides great flexibility and efficiency and is most 
promising. 

TABLE 7 TREE CLASSIFICATION RESULTS FOR 
REGRESSION AND RELAXATION (PERCENT 
CORRECTLY CLASSIFIED IN PARENTHESES) 

Distress Total Classified as 

Type Numb 1-D 2-D LongiLudinal Transverse Alliga1or 
er 

1-D JO 10 0 
(100%) 

2-D 18 1 17 
(94%) 

Longitudinal 2 2 (100%) 0 

TransvcrSc 8 0 8 (100%) 

Alligator 11 9 (73%) 

Block 6 4 

Block 

2 

2 
(33%) 
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ANALYSIS OF RESULTS 

It is important that the main sources of error in the results 
presented in the previous section be examined and analyzed 
in detail. To provide a better understanding of the effective­
ness of individual features used in the analysis and the major 
sources of error, the two-dimensional plots of inertia ratio 
versus density are shown in Figures 4 and 5 for both relaxa­
tion- and regression-segmented images. (Each distress obser­
vation is represented by the first letter of the distress group 
to which it belongs.) The means of the inertia ratio for 1-D 
and 2-D distresses differ by a large margin, and there is little 
overlap between the two classes. There is no 1-D distress 
with inertia ratio greater than 0.10. However, several 2-D 
distresses have low inertia ratios . 

Density does not appear particularly useful for distinguish­
ing between alligator and block cracking. The mean values 
of the density for the two distress types differ only slightly 
for the relaxation segmented images (0.0272 for alligator ver­
sus 0.0262 for block cracking) and for regression thresholded 
images (0.0212 for alligator versus 0.0216 for block cracking) , 
and the overlap is clearly demonstrated in Figures 4 and 5. 
It is not clear whether the density is a geometrical feature 
with low discriminatory power or that other factors have con­
tributed to its poor performance. 

Detailed examination of the images that were misclassified 
and images whose descriptor values were outliers suggested 
the following possible sources of error and external factors 
that contribute to the poor performance of some of the de­
scriptors: 

1. Segmentation . Some images in their binary form had 
representations that were drastically different from their orig­
inal shape. The main reason for their appearance is that after 
segmentation and noise removal the distresses are frag­
mented. They consist of a large number of individual segments 
without clear connectivity. An example of this is shown in 
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FIGURE 5 Inertia ratio versus density (regression). 

Figure 6. Figure 6a is the original image of an alligator crack 
of high severity. The relaxation-segmented version of this 
image after noise removal as shown in Figure 6b has lost a 
substantial part of the distress outline, making the original 
distress pattern hard to recognize. Similarly, it is difficult to 
recognize the alligator crack in the regression-thresholded 
image in Figure 6c (although fewer segments are missing). 
The value of the inertia ratio for the relaxation-segmented 
image was 0.205, whereas for the regression thresholded ver­
sion the value was 0.279; both these values are below the 
average for 2-D distresses. lt is possible that the segmentation 
method itself has contributed to the poor appearance of some 
of the images examined below. 

2. Hardware. The naturally low contrast between distresses 
and background is a possible explanation for the fragmented 
binary images. Furthermore , it has been observed (in the data 
set) that the missing segments in the binary images usually 

.. correspond to distress components that are aligned with the 
direction of movement . As Figure 7a shows, the longitudinal 
components of the block cracking are faint compared to the 
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FIGURE 6 Example of poor 
segmentation: (a) alligator cracking, 
(b) segmentation by relaxation, and 
(c) segmentation by regression. 

-

transverse ones. As a result, the regression thresholded image 
shown in Figure 7b contains the transverse components of the 
distress but not the longitudinal ones. The effect of this dom­
inance is obvious in the value of the inertia ratio for the 
distress, which is only 0.043 . Hence, this image is consistently 
classified as transverse cracking and it is difficult even for the 
most sophisticated segmentation algorithms and statistical 
methods to analyze it correctly. It is possible that nonuniform 
illumination or the particular hardware configuration used 
contribute to the reduced contrast in the direction of travel. 

Finally, it should be pointed out that the sample size, al­
though small, is probably the size one would expect to have 
available in practice for training purposes. The longitudinal 
distress class with two representatives is the group with the 
smallest sample size and this may raise questions with respect 
to the validity of the results. However, it is clear from the 

(a) 

.: 

.. 

(b) 

FIGURE 7 Example of possible hardware effects: (a) block 
cracking, and (b) segmented by regre sion. 
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analysis that longitudinal and transverse cracking have similar 
characteristics (except the angle of inclination) and may be 
treated as one class (i.e., linear cracking, with a total of 10 
members). The angle of inclination then suffices to differ­
entiate between longitudinal and transverse cracking, as was 
demonstrated in the hierarchical approach. Because angle of 
inclination is such a powerful descriptor, the small sample size 
associated with longitudinal cracking does not create any 
problems in interpreting the results. 

CONCLUSIONS 

On the basis of the analysis presented in the previous sections, 
the following conclusions can be drawn: 

• The results obtained are promising and suggest that ac­
curate interpretation of pavement distress images is possible. 
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It should be pointed out that distress-free images were not 
included in the data set; because these images are easily iden­
tified , incorporating them into the analysis would increase the 
classification accuracy significantly. 

• The two segmentation methods tested (relaxation and 
regression thresholding) produce similar classification results. 
Hence regression may be preferred over relaxation because 
of its simplicity and computational efficiency. 

• Simultaneous and hierarchical classification provide sim­
ilar results, but hierarchical classification has an advantage 
over the simultaneous approach because of its flexibility. 

• Angle and density seem to capture the expected char­
acteristics of the various distress classes. Inertia ratio, when 
used with the minimum distance classifier, failed to differ­
entiate between 1-D and 2-D distresses. However, it per­
formed comparably to the aspect ratio when used with the 
logit model. 

• The classification method based on the logit model pro­
duced more consistent and robust results and with the same 
or higher accuracy than the minimum distance classifier. 

•From the various distresses examined, block cracking ap­
pears to be the most difficult to classify-with the geometrical 
descriptors and method used in the research. On the other 
hand, images with alligator cracking were correctly classified 
in most cases (with 100 percent accuracy when the logit model 
was used). Given the importance of alligator cracking in the 
evaluation of pavements, this result is significant. 

Finally, several potential areas of further research have 
been identified: 

1. Segmentation. Because of the characteristics of pave­
ment images discussed earlier, the segmentation method used 
was unable to extract the full object . As a result, several 
binary images were fragmented. Although it is possible that 
some of these problems are hardware related, improving the 
quality of the binary images (removing noise and connecting 
distress fragments) may improve some of the statistics in the 
feature space and increase their discriminatory power. It is 
therefore important to examine methods that can be used 
after the initial segmentation is completed to restore the con­
nectivity of the binary images. 

2. Feature Vector. The feature vector used for the classi­
fication approach was based exclusively on geometric char­
acteristics of images under consideration. However, as the 
analysis indicates, additional features, which capture differ­
ences other than those of shape, may be needed for reliable 
differentiation among the various distress types (especially 
block cracking). For example, the distance of a distress from 
the wheelpaths can be computed and used as a feature . This 
may help to distinguish between loa<l-associaled types of dis­
tresses such as alligator cracking and block cracking (which 
is similar in shape). Other statistics that may prove useful 
include textural descriptors and edge detectors. These addi­
tional statistics will be most useful in differentiating between 
the two classes when the majority of the misclassifications 
have occurred, namely for alligator and block cracking. 

3. Classification Methods. The fact that the more advanced 
statistical method, based on the logit function, provided sim­
ilar results, indicates that for improved accuracy more em­
phasis should be placed on developing more appropriate fea-
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ture vectors , rather than using more elaborate classification 
techniques. Once such a vector is developed, various methods 
may be evaluated further, if necessary. 

4. Highway Engineering Knowledge. More knowledge from 
the highway and pavement maintenance domain should be 
incorporated in the process. For example, as mentioned ear­
lier, the distance of the location of the distress with respect 
to the wheelpath could be used as descriptor. It is also im­
portant to determine the levels of accuracy for measuring the 
various distresses that are needed for a practical pavement 
management system and to develop a quantification of the 
cost of misclassification on the basis of its effect on the main­
tenance process. Such parameters can then be used in the 
classification methodology to minimize misclassification cost 
(instead of error). The classification hierarchy suggested fa­
cilitates the incorporation of such parameters. Each pavement 
image also usually covers a small section of the pavement. 
Furthermore, images are analyzed independently of each other. 
Hence, there is important spatial information that is being 
ignored during the process . For example, a distress in the 
image may be identified as transverse cracking, whereas in 
reality it may be part of block cracking. However, this can 
only be identified if more than one pavement image is ex­
amined together. Hence, by looking at the problem from a 
macroscopic point of view and including spatial information, 
the classification task may be improved. 

5. Transferability. An important future research activity 
should be the investigation of the transferability of the esti­
mated parameters from system to system and from pave­
ment to pavement. Transferability is a desirable property 
because it can greatly simplify the implementation of the 
methods suggested here and facilitate (if necessary) real time 
operation. 

SUMMARY 

Methods and algorithms for the automatic analysis of pave­
ment images were presented with emphasis on evaluating 
(a) algorithms for segmentation of pavement images, (b) geo­
metrical descriptors for characterizing the various distress 
classes, and (c) alternative classification methods and ap­
proaches. The results are promising and indicate that the task 
of automating the analysis of pavement images is feasible. 
Various issues associated with problems were discussed and 
directions for further research were identified. 
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