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Development of an Intelligent System for 
Automated Pavement Evaluation 

STEPHEN G. RITCHIE, MOHAMED KASEKO, AND BEHNAM BAVARIAN 

A potential automated pavement evaluation system to address 
multisensor applications; integrate different types of sensors , 
techniques, and information; and offer more sophisticated and 
intelligent processing capabilities for improved pavement man­
agement is described. The separate components of this system 
either now exist in prototype form or are under development . 
Such a system could automate in real time much of the pavement 
data acquisition, interpretation , and evaluation process, and cap­
ture the experience and judgment of expert pavement engineers 
in performing condition assessments and identification of appro­
priate rehabilitation and maintenance strategies. This research is 
directed toward an innovative , noncontact, intelligent nonde­
structive evaluation (INDE) system, using a novel artificial in­
telligence (AI)-based approach that would integrate three AI 
technologies: computer vision, neural networks, and knowledge­
based expert systems, in addition to conventional algorithmic and 
modeling techniques. The focus of the current, initial research is 
development of an advanced sensor processing capability using 
neural network technology to determine the type, severity, and 
extent of distresses from digitized video image representations of 
the pavement surface acquired in real time. The properties of 
neural networks provide potential solutions to the inherently dif­
ficult nature of sensor integration and output interpretation in 
automated pavement evaluation. The background and conceptual 
development of an INDE system for automated pavement eval­
uation , and initial research results that demonstrate the feasibility 
of a neural network approach in a case study application using a 
multilayer perceptron and a backpropagation learning rule, are 
described. 

The vast public works infrastructure in the United States in­
cludes highway, bridge, mass transit, aviation, port, harbor, 
water supply, wastewater, solid waste, power supply, school, 
hospital, and other facilities . The deterioration of this infra­
structure and the implications for public safety and continued 
provision of essential services have become major issues in 
recent years . 

The development of economical and reliable nondestructive 
evaluation (NDE) techniques holds great promise for assess­
ing the physical and operational condition of such large struc­
tural systems, and their component construction materials, to 
quantitatively evaluate the adequacy, remaining life, and safety 
of a structure. Implementation of NDE techniques involves 
three major steps: (a) placement of sensors at strategic po­
sitions on the structure, (b) recording and processing of the 
measurements from the sensors, and (c) interpretation and 
evaluation of the results. 
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A variety of sensors can be used in nondestructive testing 
of civil engineering structures. The type to be used and where 
they are placed on the structure depend on the kind of mea­
surements desired and the type of structure. The sensors may 
be of one or more technologies using mechanical, electrical, 
acoustic, nuclear, radar, and optical techniques. 

In order to evaluate the condition of a structure or structural 
component, the sensor measurements have to be processed 
and analyzed. The analysis may be based on established re­
lationships (i.e., analytical models) between sensor measure­
ments and structure characteristics or properties of interest; 
or may be based on a set of rules for interpretation of the 
results; or a combination of both approaches. The larger the 
volume of sensor data collected, the more difficult the pro­
cessing is likely to be, as observed by several researchers (J). 
This observation is particularly so where noncontact optical 
scanning methods are used for surface distress detection on 
pavements, bridges, and other large civil engineering struc­
tures, where video or photographic images of the surfaces are 
acquired and need interpretation in real time or are processed 
later in the laboratory or office. In either case, the analysis 
involves processing the images and extracting relevant data 
for identification of the type, severity , and extent of distress 
on the structure. 

Very often, no single NDE technique offers the capability 
to provide all the information required for evaluation of struc­
tures and structural components (2 ,3). Therefore, there is 
frequently a need to use and integrate various combinations 
of nondestructive testing techniques on a single structure or 
structural component to assess its structural performance, ad­
equacy, or material properties. This need can result in a vast 
amount of data from various sensors that may not only pose 
problems in the processing stage, but may also cause difficulty 
in understanding and modeling the combined information . 
For example, in the case of highway pavements , different 
types of devices, sensors, and measurements can be used and 
combined to assess the pavement's surface distress, longitu­
dinal profile, skid resistance, and structural adequacy, as part 
of the overall pavement evaluation process. 

A potential automated pavement evaluation system to ad­
dress multisensor applications, integrate different types of 
sensors, techniques, and information, and offer more sophis­
ticated, intelligent processing capabilities for improved pave­
ment management is described. The separate components of 
this system either now exist in prototype form or are under 
development. Such a system could automate in real time much 
of the pavement data acquisition, interpretation, and evalu­
ation process, and capture the experience and judgment of 
expert pavement engineers in performing condition assess-
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ments and identification of appropriate rehabilitation and 
maintenance strategies. 

The focus of this current, initial research is development 
of an advanced sensor processing capability using neural net­
work technology to determine the type, severity, and extent 
of distresses from digitized video image representations of the 
pavement surface acquired in real time. The properties of 
neural networks provide potential solutions to the inherently 
difficult nature of sensor integration and output interpretation 
in automated pavement evaluation. The background and con­
ceptual development of an INDE system for automated pave­
ment evaluation, and initial research results that demonstrate 
the feasibility of a neural network approach in a case study 
application using a multilayer perceptron and a backpropa­
gation learning rule, are described in the following sections. 

BACKGROUND 

The ultimate objective of the research is to develop an in­
novative, noncontact, intelligent NDE (INDE) system using 
a novel artificial intelligence (AI)- based approach integrating 
three AI techniques: 

• Computer vision, 
•Neural networks, and 
•Knowledge-based expert systems (KBES), 

in addition to conventional algorithmic and modeling tech­
niques. Such an approach should be feasible and should have 
a high probability of success. 

A simplified structure for this system in an application mode 
is shown in Figure 1. In this model, massive amounts of data 
from single, multiple, and different types of sensors (e.g., 
optical and electrical sensors for measuring pavement distress, 
roughness, skid resistance, and structural condition) can be 
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FIGURE 1 Simplified application 
and structure of INDE system. 
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integrated and processed by the neural network to quanti­
tatively characterize the condition of the structure on the basis 
of the analysis of the pattern of the different sensor measure­
ments. This data acquisition and processing phase could be 
accomplished in real time to save data storage and subsequent 
time requirements for postprocessing, thereby improving 
economy and productivity significantly. Application of neural 
networks is proposed for this stage because of the excellent 
pattern classification characteristics these models have shown 
in various applications in other areas (4-6). 

The subsequent KBES evaluation of the structure would 
take as input from the neural network the type, extent, and 
severity of structural distresses as well as other pertinent char­
acteristics, and would access historical records such as rates 
of deterioration, design details, climatic factors, etc., from a 
facility data base (such as that for a pavement management 
system). The KBES would apply symbolic reasoning on the 
basis of the experience and knowledge of expert engineers, 
combined with conventional algorithmic models to quanti­
tatively determine the structural adequacy, remaining life, 
and safety of the structure, as well as identifying (where ap­
propriate) feasible rehabilitation, repair, and retrofit strate­
gies, including detailed designs. 

In the initial development of this INDE system, its appli­
cation to flexible highway pavements is under investigation. 
In this application, the sensor data are a series of digitized 
pavement images that have to be processed to determine the 
type, severity, and extent of surface distress existing on the 
pavement. A real time vision and imaging system is required 
for acquisition of the pavement images. Such systems already 
exist [e.g., the Pavement Distress Imager by Roadman-PCES, 
Inc. (7)] and should be an integral part of the INDE system. 
Another basic element of the system, a KBES pavement re­
habilitation analysis and design system, already exists in pro­
totype form. It has been developed at the University of Cal­
ifornia at Irvine (8-11). 

The focus of the initial and current research is therefore a 
critical element of an INDE system, an advanced multisensor 
processing capability using neural network technology. A spe­
cific objective of this component of the INDE system is to 
determine the type, severity, and extent of distresses from 
digitized video image representations of the pavement sur­
face. (Each pixel in the image essentially provides a sensor 
value so that in a common 512 x 512 pixel image there would 
be 262,144 sensor values to process.) 

Typical indicators of structural and functional asphalt con­
crete pavement performance include the following types of 
distress: 

•Alligator, fatigue, or wheel path cracking; 
• Longitudinal cracking; 
• Transverse cracking; 
• Patching and potholes; and 
• Block cracking. 

In addition, the severity and extent of these distresses are 
required. For example, in the case of fatigue cracking, this 
might involve the percentage length of the wheelpaths cracked 
and whether the severity involves only hairline cracking or 
pumping and spalling. Similar measures of severity and extent 
are relevant for other distress types. 
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Currently, collection of surface condition data usually in­
volves manual visual inspection of the pavement surface by 
field personnel throughout the whole pavement system. This 
method is often dangerous , labor-intensive, and tedious, and 
potentially involves a high degree of variability and systematic 
error among personnel and regions of a state, as well as be­
tween states. Nevertheless, these same data form the basis of 
annual investments in the United States of billions of dollars 
in pavement rehabilitation programs . Considerable interest 
therefore exists in developing an automated system to capture 
and extract pavement surface distress data from video images 
cost-effectively, for NDE of highway systems. 

A fully automated system for pavement surface distress data 
collection would offer several advantages over the manual 
system. Such a system would improve safety and efficiency 
of the data collection exercise, and could offer consistency 
and uniformity of data and data quality, both locally and 
nationally. It could also facilitate distress data collection at 
higher sampling rates. 

Success of the INDE approach in this application area would 
also be significant for NDE of other concrete structures such 
as bridges, tunnels, and building exteriors, as well as for de­
velopment of INDE systems for other types of large structural 
systems, for which this prototype could serve as a basis. 

DEVELOPMENT OF AN INDE SYSTEM 

The following discussion of the INDE system is presented in 
the context of the development of an automated pavement 
evaluation system. 

Digital Imaging Concepts 

Current efforts to automate the visual rating of pavement 
surface condition focus on the application of computer vision 
and image processing technology . Most of the systems cur­
rently under development involve four main steps, namely, 
(a) acquisition of video images of the pavement at highway 
speeds, (b) conversion of the video images into digital images, 
(c) preprocessing of the digital images for noise removal and 
distress identification, and ( d) classification and quantifica­
tion of the distress (12). 

Digital imaging concepts and applications in pavement 
management were recently discussed by Ritchie (12) . Briefly, 
computer vision involves the use of sensors and computers to 
emulate human vision, and has been the research subject of 
computer scientists and electrical engineers for several de­
cades. As applied to pavement management, the sensors used 
are usually optic;illy h;ised, as in a video camera. The objec­
tive is to develop an automated approach to collect and eval­
uate pictorial data of the pavement surface. 

A digitized image is essentially a mathematical representa­
tion of a normal pictorial image (in color or gray tones). Each 
digitized frame consists of an array of integer-valued picture­
elements , or pixels . A common array size is 512 x 512 pixels, 
i.e, 512 lines vertically and 512 elements horizontally. The 
integer value of each pixel represents the color or gray tone 
of the corresponding area in the original. In pavement imaging 
work, 8 bits per pixel are common, permitting 28 or 256 gray 
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tones (0 is black, 255 is white). In this case, each pixel requires 
1 byte, resulting in 262,144 bytes of storage per frame. 

With proper illumination, pavement cracks can be observed 
on the basis of the shadow associated with the pavement 
separation (13). Cracked regions in an image therefore typ­
ically have low pixel values, because the crack shadows are 
much darker than the surrounding pavement. These differ­
ences in gray scale values can be detected and the cracked 
areas isolated, for example, by threshold techniques. The 
number of pixels indicating cracking can be counted and the 
proportion of the area cracked can be determined. 

Figure 2 shows some of these ideas in a histogram of pave­
ment gray scale pixel values for a 32 x 32 pixel section or 
"tile," representing 1.5 x 3 in. of an actual pavement surface 
containing distress. By setting all pixel values equal to about 
60 or more (in this case) to white, and all those under 60 to 
black, the modified image will , predominantly, indicate the 
cracked area, as represented by the black pixels. Before per­
forming this binary thresholding, the image could be cleaned 
up and noise removed using other suitable image processing 
algorithms. 

Recent developments in the application of digital imaging 
technology to automate the visual rating of pavement surface 
condition were presented at the First International Confer­
ence on Applications of Advanced Technologies in Trans­
portation Engineering, held in San Diego, California , in 1989. 

Several of the most noteworthy systems, from the United 
States, Japan, and France, included the Roadman-PCES sys­
tem (7), the Komatsu system (14), and the MACADAM sys­
tem (15,16) , respectively. The Roadman-PCES system is pro­
viding the digitized images for use in this research. This system 
comprises a mobile unit, called the Pavement Distress Imager-
1 (PDI-1) that uses controlled lighting and four line-scan cam­
eras to collect 8-ft-wide continuous pavement surface images 
at speeds up to 68 mph . Pixel size is 0.1 in . longitudinally and 
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0.05 in. laterally. Postprocessing derives measures of pseu­
docracking with classifications of transverse , longitudinal, and 
other cracking. The Komatsu system comprises a survey ve­
hicle and data processing system to simultaneously measure 
cracking , rutting, and longitudinal profile. A massive 64 
(eventually up to 512) MC68020 parallel microprocessors are 
used to postprocess the crack image data using conventional 
image processing techniques. Even so, the system still does 
not apparently output the type, severity, and extent of crack­
ing. The MACADAM system also uses conventional image 
processing methods to postprocess digitized continuous 35-
mm films of pavement surface condition. Although the system 
aims to identify distress types, it appears to suffer from two 
limitations. The pixel size is almost 9 mm, which would pro­
vide very coarse resolution, severely limiting the size of cracks 
that could be detected. Also, the system is slow, processing 
about 1 km of pavement per hour . 

The limited success to date of conventional image pro­
cessing techniques in identifying the type, severity, and extent 
of distress in asphalt concrete pavement surfaces led to in­
terest in an alternative approach, involving neural networks . 
This approach offers many advantages, including faster pro­
cessing times because of the characteristic parallel processing 
approach these models use, their ability to tolerate noise in 
input data, and others, as discussed in the next section. The 
initial exploratory results (reported later) are most promising, 
supporting the high potential of the technique for this class 
of pattern recognition problem. 

Neural Network Concepts 

Research and development in neural networks has been ac­
cumulating since the early 1960s. Neural networks are infor­
mation processing structures that are based on simplified the­
oretical models of the functioning of the human brain, in 
which brain cells (neurons), and their interconnections, can 
quickly perform complex calculations. These networks consist 
of many simple processing elements (neurons) that have densely 
parallel interconnections. A single neuron can receive weighted 
inputs from many other neurons, and can communicate its 
outputs, if any, to many other neurons . Information is thus 
represented in a distributed fashion, across the weighted in­
terconnections . Such networks have exhibited learning, mem­
ory, an ability to handle noisy real-world data, and other 
significant capabilities. Neural networks can be implemented 
in hardware as parallel computing devices or as software sim­
ulations run on conventional serial computers. One of the 
principal applications of neural networks is to pattern rec­
ognition problems. 

A neural network is defined by the topology of the network, 
the characteristic or transfer function of each processing ele­
ment , and the learning or adaptation rule used to modify the 
connection weights between processing elements. Some of the 
important properties of neural networks include self-organi­
zation and generalization from training set input-output data, 
graceful degradation caused by parallel distributed processing 
nature of the network, and fuzzy decision-making capability. 

These properties have the potential to provide solutions to 
the inherently difficult nature of the problem of sensor in­
tegration and output interpretation. The neural network model 
that is explored in this research is the multilayer perceptron. 
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Knowledge-Based Expert System Concepts 

In the 1970s, research led to domain-dependent computer 
programs that were expert in specific professional domains. 
Such expert or knowledge-based systems are designed to em­
ulate the performance of an expert, or group of experts, in a 
particular problem area, largely through the use of symbolic 
reasoning. These systems are therefore applicable to problems 
requiring specialized knowledge, skill, experience, or judg­
ment for determination of solution strategies and solutions. 
Such problems have been ill structured in the sense that a 
numerical algorithmic solution is not available or is impractical. 

Ongoing research at the University of California at Irvine 
(9) has resulted in the development of a microcomputer-based, 
integrated set of interacting expert systems and algorithmic 
models known as Pavement Rehabilitation Analysis and De­
sign Mentor (PARADIGM). PARADIGM is largely driven 
by surface distress data of the sort that is expected to generate 
automatically and reliably with a neural network approach as 
part of the INDE system. Currently, data input to PARADIGM 
is interactive by a user. However, the system could readily 
accept these data from a neural network in conjunction with 
a pavement management system data base , in an automated 
fashion. This ability is a logical and highly desirable step to 
achieve greater productivity , reliability, and economy, while 
still allowing a user to benefit from the expert system's ex­
planatory and tutorial capabilities. This natural linkage to 
PARADIGM provides a powerful contribution to the devel­
opment of an INDE system. A brief description of the existing 
PARADIGM prototype follows . 

PARADIGM consists of three main component systems: 
SCEPTRE, OVERDRIVE, and Network Optimization. These 
three main systems are represented and controlled through 
the production rules in the knowledge base of PARADIGM. 
The overall structure of PARADIGM is shown in Figure 3. 

SCEPTRE evaluates project-level pavement surface dis­
tress and other user inputs and recommends feasible reha­
bilitation strategies for subsequent detailed analysis, design, 
and network optimization. SCEPTRE also performs cost­
effectiveness analysis, on the basis of life cycle costs and pave­
ment performance, for each feasible strategy. Surface con­
dition evaluation is typically based on interpretation of field 
measurements relating to three performance indicators: ride 
quality, safety , and surface distress . Evaluation of a pave-
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FIGURE 3 Overview of PARADIGM structure. 
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ment's surface condition enables a judgment to be made re­
garding the pavement's adequacy for current service and prob­
able causes of surface distress, as well as the need for structural 
evaluation. It is also used to determine the need and priority 
for various maintenance and rehabilitation strategies, on the 
basis of expert judgment. Of the three performance indicators 
used in the pavement surface condition evaluation, the most 
important is surface distress. 

The knowledge base in SCEPTRE has been constructed 
using the combined expertise of two pavement specialists with 
extensive experience in pavement rehabilitation in the states 
of Washington and Texas in the United States. The specific 
types of surface distress in SCEPTRE are compatible with 
those used in the Washington State Department of Trans­
portation's (WSDOT's) pavement management system (PMS). 

OVERDRIVE is an expert system for the assessment of 
existing structural adequacy, and the design of flexible asphalt 
concrete overlays on existing flexible pavement. OVERDRIVE 
is based on the component analysis overlay method, which is 
a traditional design method that involves a comparison be­
tween the existing pavement structure in terms of its com­
ponent layers and a new full-depth design, and takes into 
account site-specific conditions such as the severity and extent 
of distresses, number of pavement layers and their thicknesses 
and materials, and subgrade strength and traffic loading. Eval­
uation of the existing pavement structure focuses on deter­
mining the effective thickness of each layer of the pavement. 
OVERDRIVE can also perform life cycle cost analysis of 
both the overlay and do nothing alternative through an in­
terface to an external program. 

The knowledge base of OVERDRIVE is the result of 
knowledge engineering efforts with a pavement specialist 
combined with a synthesis of state-of-the-art and other re­
ports, papers, and manuals relating to the Asphalt Institute 
overlay design method for asphalt concrete overlays on flex­
ible pavement. 

Case study applications of PARADIGM have been per­
formed using, in part, actual field data provided by WSDOT. 
SCEPTRE has been successful in identifying the feasible RAMs 
and most cost-effective RAM strategy compared with the ac­
tual decisions of WSDOT. Although there are variations be­
tween the major overlay design methods, the comparative 
performance of OVERDRIVE has been found to be most 
encouraging. OVERDRIVE continues to be used on a regular 
basis in practice by WSDOT. 

THE MULTILAYER PERCEPTRON 

The multilayer perceptron (MLP) is probably the most studied 
neural network model, although no applications to date of it 
or other neural network models in civil engineering are known. 
The MLP consists of three or more layers of neurons, or 
processing elements, with each neuron in a layer connected 
to all neurons in the preceding or following layers of neurons, 
or both, through weighted interconnections. This topology 
represents the evolution of the previous two-layer network 
introduced by Rosenblatt (17). The output of each neuron in 
a layer is a function of the sum of the weighted outputs of all 
the neurons in the immediate preceding layer. When the MLP 
is used as a pattern classifier, a vector to be classified is pre­
sented in the input layer and the computed vector at the 
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output layer corresponds to the classification of the input 
pattern. The MLP can generate any set of hyperplanes in the 
information vector space to separate classes, making it suit­
able for pattern classification work, which is the primary rea­
son for selecting it for this application. 

Design and implementation of an MLP requires two phases, 
a training phase and a testing phase. In the training phase, a 
backpropagation learning algorithm (5 ,6) is used to adjust the 
weights between each pair of interconnected neurons using a 
set of training images. The training is done by presenting the 
MLP with a set of training patterns and adjusting iteratively 
the connection weights as a function of the error between the 
computed output and desired output for each input pattern. 
The next phase is to test the trained MLP (i.e., the generated 
weight matrix) with a second set of images to evaluate how 
accurately it is able to correctly classify the input patterns. 

As compared to other neural network paradigms such as 
the bidirectional associative memories (BAM) and the Hop­
field crossbar network, the three-layer perceptron is simpler 
to implement and has better performance in capacity and 
percentage of correct recall. 

For the INDE system, the use of a three-layer perceptron, 
whose schematic representation is shown in Figure 4, is under 
investigation. The network shown has P processing elements 
(PEs) in the input layer, Q PEs in the output layer, and a 
variable number of PEs in the middle or hidden layer. The 
characteristic equation is identical for all PEs. For the nth PE 
in the mth layer, the output is defined by 

where 

t = discrete time index, 
m = 2 for the hidden layer PEs and 3 for the output 

layer PEs, 
Nm-i number of PEs in layer m - 1, 

Wm_ I ,k.n weight of the interconnection between PEm - i .k 

and PE"'·"' 
0,,,,n threshold for PE"'·"' and 

f = nonlinear activation function. 

This function is typically selected as a monotonically increas­
ing bounded function. A sigmoid function is usually used. 

The learning law for the perceptron is a simple error feed­
back. The network learns the associations between input and 
output patterns by being exposed to many training samples. 
The samples are presented to the perceptron repeatedly and 
each time the weight matrix is adjusted in proportion to the 

FIGURE 4 P input-Q output 
three-layer perceptron. 
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error between the computed and the desired outputs until the 
desired target output is produced. This weight adaptation 
strategy is referred to as the backpropagation learning law. 
At the output layer, the error associated with PE3 J is 

(2) 

where di is the desired output of the jth output PE and o3 .i 

is its actual output. The error for the ith PE in the hidden 
layer is defined as 

ez - = "e3.W2 ·· , I L_i 1 } , l , j 

j 
(3) 

The weight adaptation law is then given by 

wm-1,;)t + 1) = wm-1,Jt) + ~wm-1,;,it + 1) (4) 

where 

(5) 

andf' is the derivative with respect to the function argument, 
and Tl is a parameter of the learning rate and is always 0 < 
T) < 1. Rumelhart et al. (5) found that for a sigmoid function 
the adaptation law is an implementation of the gradient de­
scent in the output error. Although the gradient descent pro­
cedure does not provide any theoretical proof that a solution 
can be found, Rumelhart et al. (5) and other researchers have 
tested the procedure in a number of practical problems and 
have found that it led to solutions in most cases. The potential 
problem of local minima was rarely encountered. Hence, con­
vergence of the learning process using backpropagation can 
be achieved in most practical applications. 

The algorithm for perceptron training (i.e., weight adap­
tation) can be summarized in the following steps: 

Step 1. All weights W mJ.i are initialized to small random 
values; 

Step 2. An input vector Iv / 2 , ••• , Ip, is presented together 
with its corresponding desired output vector o1, 0 2 , ••• , oQ; 

Step 3. On the basis of the input, the actual output of each 
PE for each layer is computed using Equation 1. If a sigmoid 
activation function is used, then the output is given as 

1 
(6) 

where 

Nm-1 

~n = L Om-1.At)Wm-1,k,n(t) 
k~I 

Step 4. The error between the desired output and the actual 
output for each PE, computed from Equation 2 or 3, is used 
to adjust the weights as given in Equations 4 and 5. For a 
sigmoid activation function, Equation 5 simplifies to 

(7) 

Convergence is sometimes achieved faster if a momentum 
term is added and weight changes are computed as a function 
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of the previous adjustment, i.e., 

0 < O'. < 1 (8) 

where ex is the momentum rate. 
Steps 2 to 4 are repeated for each training input as many 

times as is necessary to achieve convergence, i.e., until the 
error between computed and desired outputs for each PE for 
each training pattern is reduced to the maximum allowable. 

A number of factors influence the rate of convergence of 
the algorithm. For example, the higher the value of the learn­
ing rate, T), the faster the algorithm may converge but the 
higher the likelihood of instability, i.e., it may lead to oscil­
lations. Hence one needs to select a value of Tl big enough 
to speed up convergence but small enough not to cause in­
stability. A similar tradeoff is required in selection of ex. 
Threshold values 0" also affect the rate of convergence, al­
though not in an obvious way. One may often choose to use 
trainable threshold values, starting with random assignments 
of threshold values for each PE and updating them during 
the training process in the same way the weights W m,iJ are 
trained, i.e.: 

CASE STUDY 

The objective of this preliminary case study was to train a 
three-layer perceptron to classify 32 x 32 pixel pavement 
images by type of cracking, in this case to identify whether a 
given image displays transverse or longitudinal cracking. These 
images are components of 512 x 512 pixel real pavement 
images (Figure 5). 

Although in practice images acquired in the field are of 
much larger dimensions, typically 512 x 512, the 32 x 32 
pixel-sized images were selected for this initial study mainly 
because one of the original objectives was to investigate the 
performance of the perceptron, and the smaller size images 
reduce the computational burden, and hence speed up the 
learning and testing processes. Also, because the feature ex­
traction procedure does not preserve the relative positions of 

FIGURE 5 Typical 512- x 512-pixel pavement image. 
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the distresses on the image (only identifying the general ori­
entation of the distresses), doing the processing in two steps 
may be advantageous, first processing 32 x 32 segments, or 
tiles, of the images, and then linking the results from the 
various tiles. In this way, the relative positions of cracks in 
the 512 x 512 image can be much more easily preserved. For 
this study, 20 512 x 512-pixel, 8-bit gray scale images each 
representing 2 x 4-ft images of asphalt concrete pavement 
were provided by Roadman-PCES, Inc. The images repre­
sented different types of surface distress, mainly transverse, 
longitudinal, and alligator cracking. 

In order to prepare a set of 32 x 32 pixel training subimages 
(each subimage representing a 1.5- x 3-in. pavement image), 
each of the 512- x 512-pixel images was partitioned into 32-
x 32-pixel binary images by simple thresholding, whereby a 
pixel was given a value 1 if its gray scale value was less than 
the threshold, indicating a distressed pixel, or 0 otherwise. 
Then 256 of these subimages were carefully selected to form 
the set of training images, each consisting of one of four types 
of distress, namely, no distress, transverse cracking, longi­
tudinal cracking, or combination distress, the last representing 
diagonal cracking, random cracking, patches, etc. Because 
these subimages were small, an alligator cracking classifica­
tion could not be used because such distress could only be 
observed from the 512 x 512 images. The allocation of these 
subimages to their actual classification in the training set was 
performed by manual inspection and a majority vote of three 
observers, on the basis of the display of each digitized sub­
image on the computer monitor. 

A set of features was extracted from each subimage to form 
an input vector for perceptron training. The features were 
based on summary row and column st;:itistics for e;:ich im;:ige 
and included 

• Mean number of distressed pixels per row or column of 
a subimage, 

•Variance of the number of distressed pixels per row, 
•Variance of the number of distressed pixels per column, 
• Mean number of runs per row, 
• Mean number of runs per column, 
• Mean run length per row, and 
• Mean run length per column. 

A run is defined as an uninterrupted sequence of distressed 
pixels in one direction, and run length is the number of pixels 
in a run. Currently, only the first three features are used for 
training and testing of the perceptron, but additional features 
may later be included when classification of the images is 
expanded to include severity and extent of distress. This fea­
ture extraction approach has been pursued in preference to 
a direct approach, whereby each pixel of an image is an ele­
ment in the input vector to the perceptron. The two main 
reasons for this, which were verified in an earlier study using 
hypothetical images, are that 

• A smaller number of training samples is required since 
the features provide better characterization of the distinction 
between different types of cracking in the images; and 

• The size of input vector is reasonably small and indepen­
dent of the size of the images, thus facilitating faster learning 
for the perceptron. 

TRANSPORTATION RESEARCH RECORD 1311 

Software implementation of the three-layer perceptron for 
the case study was developed in Con a SUN-SPARCstation. 
Convergence of the perceptron during training was achieved 
using trainable threshold values for the PEs and low values 
of TJ and a of between 0.1and0.2. It generally required 18,000 
iterations for the system to converge, which took about 4 to 
6 hr on the SUN-SPARCStation. An iteration is one round 
of presentations of the training samples. The system was said 
to have converged when the average error between the com­
puted and desired output of the PEs was reduced to 0.05. It 
took about 5 sec to classify the 256 tiles of one 512 x 512 
pixel image. 

In order to evaluate the performance of the perceptron in 
classification of the tiles, each tile was processed by the per­
ceptron and its classification was compared to its human visual 
classification, or actual classification. Table 1 presents the 
comparison between the actual and perceptron results for the 
training set of 256 tiles; Table 2 presents the results for a test 
set of 4,864 tiles; and Table 3 presents the results for the 
combined set of 5,120 tiles. 

Clearly, the 100 percent correct classification of the per­
ceptron for the training set is impressive. (Recall that a feature 
vector of only three simple features was used.) Performance 

TABLE 1 PERFORMANCE OF THE 
PERCEPTRON ON CLASSIFICATION OF 
THE TRAINING SET 

none trans long comb Total %-corr 

none 143 143 

A 
trans 66 66 

long 36 36 

comb II 11 

Total 143 66 36 II 256 

TABLE 2 PERFORMANCE OF THE 
PERCEPTRON ON CLASSIFICATION OF 
THE TEST SET 

100% 

100% 

100% 

100% 

none trans long comb Total %-corr 

none 4389 33 9 4431 

A 
trans 7 132 3 142 

long 10 233 243 

comb 9 6 4 29 48 

Total 4415 171 246 32 4864 

TABLE 3 PERFORMANCE OF THE 
PERCEP'l'l{UN UN CLASSlflCATlUN OF 
ALL THE TILES 

99% 

93% 

96% 

60% 

none lrnns long comb Total %-corr 

none 4532 33 9 4574 99% 

A 
lrans 7 198 3 208 95% 

long 10 269 279 96% 

comb 9 6 4 40 59 68% 

Total 4558 237 282 43 5120 
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on the much larger test set resulted in correct classifications 
for 99 percent of the nondistressed tiles, 93 percent for trans­
versely cracked tiles, and 96 percent for the longitudinally 
cracked tiles. These results were also excellent. 

The classification results for tiles with combination distress 
were not as impressive, achieving only 60 percent correct 
classification on the test set, even though 100 percent correct 
classification was achieved for the training set. This result is 
probably because of several factors including the small size 
of the training set and the fact that this distress type includes 
various distress patterns that do not have homogeneous char­
acteristics. Another reason is the presence of a lot of noise 
in the tiles, which made it difficult even for the human ob­
servers to classify some of the tiles. Possibilities for improving 
the performance of the model in classification of this class of 
distresses include increasing the training set size, reducing 
noise in the images before the training and classification pro­
cess, and splitting this classification into two or three separate 
classes. For example, diagonal cracking, random cracking, 
and patches could all be separate classes. 

Overall, however, these initial results are most encourag­
ing. 

CONCLUSIONS 

A potential automated pavement evaluation system to address 
multisensor applications; integrate different types of sensors, 
techniques and information; and offer more sophisticated, 
intelligent processing capabilities for improved pavement 
management has been described. The results of the case study 
indicate the potential for application of neural network models 
for distress classification of pavement images as part of the 
proposed INDE system. More work needs to be done to 
improve the accuracy and speed of the classification process. 
For example, there is need to incorporate image preprocessing 
to reduce noise in the images. Inclusion of additional features, 
proper selection of training examples, and use of other types 
of neural network models also needs to be explored. In ad­
dition, the potential for real time application of such a system 
may well depend on effective hardware implementation of 
the system. 

In the next stage of this research, classification of the 
32- x 32-pixel images will be refined to include severity and 
extent of distress. Integration of the results of these 32- x 
32-pixel images for classification of an entire 512- x 512-pixel 
image will also be explored. Ultimately, evaluation and anal­
ysis of the system for field implementation, including hard­
ware implementation and use of standard pavement surface 
distress data collection and reduction criteria, will be 
investigated. 
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