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Detection of Thin Cracks on Noisy 
Pave111.ent 1111.ages 

LAN LI, PAUL CHAN, AND ROBERT L. LYTTON 

One of the challenging problems in the area of automatic inter­
pretation of the pavement condition videos or images is detecting 
the presence of low- to medium-severity cracking when the mean 
crack width is less than Y4 in. This problem is further complicated 
by the texture of the background pavement. The variations in 
light intensity between aggregates and bituminous material are 
similar to that of the actual cracking (noisy images). The tradi­
tional approach to solving this problem includes three techniques. 
The first is to increase the resolution of the video camera by using 
a higher resolution camera or alternatively by recording the pave­
ment image on super VHS tapes. The second technique that is 
often used in noisy images is applying a low-pass filter to remove 
the pixels with rapid intensity variations between them (inevitably 
reducing the sharpness of edges) . The third technique involves 
the use of a localized edge detector by which local edge points 
can be detected in small subareas. The shortcoming of the third 
technique is that it includes isolated noisy spots as edge points. 
Development of an innovative technique on edge detection is 
based on the Sobel operation coupled with Kittler's automatic 
thresholding and a sequence of postprocessing operations. Image 
examples of thin cracks on asphalt concrete and PCC surfaces 
are used to demonstrate the capability of this image analysis 
technique. 

Pavement distress data are critical to all pavement manage­
ment activities. Promptly collected and analyzed pavement 
distress data can assist a pavement system engineer in making 
plans and decisions. In the past, pavement distress surveys 
were conducted by a team of two pavement raters. This team 
would drive or walk along the shoulder of a road to visually 
evaluate the surface condition of the pavement (1-3). With 
the advancement of video technology, the current process of 
pavement distress surveying uses photologging of pavement 
surfaces on 35-mm high-speed film, video tape, or video disc. 
This process allows pavement surface inspection to be done 
indoors, which saves time and money. It also reduces the 
safety hazard the survey crew faces in the field. 

After improving surveying techniques , the next logical step 
is to develop image analysis and pattern recognition algo­
rithms to process the digital images of pavement surfaces 
( 4,5). This process will include identifying and quantifying 
major pavement distress types. The problem with identifying 
and quantifying cracks is noise in the image. As compared 
with any other real life images, pavement images are noisy. 
A crack in a pavement image is observed as a variation of 
grey level. In order to automatically locate cracks, gradient 
operators are frequently used to monitor the change in in­
tensity between pixels and thus to enhance any crack and to 
detect edges. The two most common edge operators are the 
Roberts gradient (6) and Sobel operators (7). Roberts gra-

Texas Transportation Institute, College Station, Tex. 77843-3135 . 

dient, which is simply the sum of the cross-differences in a 
2 x 2 region, is susceptible to noise . Sobel operators are 
3 x 3 area operators in which the weights for the two neighbor 
pixels of the middle pixel is two. This set of multipliers has 
the effect of smoothing the image and results in less sensitivity 
to noise. 

An important calculation required in processing pavement 
images is the automatic threshold calculation. But threshold­
ing with a histogram requires a bimodal or multimodal distri­
bution , which are unlikely in pavement images. 

THIN CRACK DETECTION AND MEASUREMENT 
METHOD 

In Texas, longitudinal and transverse cracks with mean width 
less than 0.25 in. are considered to be of low severity level. 
The images that are collected by the Texas State Department 
of Highways and Public Transportation are of full-lane width 
(i .e., about 12 ft). A digitized video image has 512 x 480 
picture elements (pixels). Each pixel corresponds to about 
0.23 in. A grey level value is assigned to each pixel in the 
digitization process, with 255 representing the brightest light 
level and 0 the darkest. The profile of the grey level for an 
image of a thin crack usually exhibits a valley or a dip. For 
a thin crack, the change of grey level can be small and subtle. 
This problem is further complicated by the grainy look of the 
intact pavement in the background. 

An innovative algorithm has been developed to identify a 
thin or a low-severity crack on pavement surfaces. Figure 1 
shows the major building blocks of this algorithm; the fol­
lowing sections will give detailed discussions of each . As a 
grey level image input into this algorithm, the edges are ex­
tracted with the Sobel edge operators in the image statistics 
acquisition. The image statistics will include the estimates for 
the noise in the image; this information is used in the cal­
culation of the threshold level. After the pavement image is 
segmented into a binary image, a sequence of postprocessing 
steps is carried out to quantify thin cracks. These procedures 
include the elimination of noisy spots, scanning of the crack 
segment, tracing of the boundary of the crack segment, and 
determination of the orientation of this segment. After the 
linking of crack segments , the length and width of the crack 
are then calculated. 

EDGE DETECTOR 

An edge detector is used to locate the change of the grey 
level in an image. Sobel edge detectors are chosen on the 
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FIGURE 1 Block diagram of thin crack 
detection and quantifying algorithm. 

basis of the fact that they are an area operator that can sup­
press random and isolated noisy spots. Figure 2 shows the 
horizontal and vertical masks (i.e., sets of weighting factors). 
The horizontal mask is used to extract the horizontal edge 
element, the vertical mask to extract the vertical edge ele­
ment. The magnitude of the horizontal gradient of a pixel is 
expressed in terms of the weights in the horizontal mask. 

iex1.1I = l-f;-1,1-1 - 2f;,j-1 - /;+1.1-1 

+ f;-1.1+1 + 2f;.1+1 + f;+1.1+1I (1) 

Similarly, the magnitude of the vertical gradient can be 
computed as 

iey,) = l-f;-1.1-1 - 2f;-1,1 - f;-1,1+1 

+ fi+1.1-1 + 2f;+1.1 + f;+1.1+1I 
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FIGURE 2 Horizontal and 
vertical Sobel masks. 

(2) 
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The gradient for a pixel is the maximum value of the hori­
zontal gradient and vertical gradient 

(3) 

THRESHOLD CALCULATION 

After a gradient image is obtained from the Sobel edge op­
erator, an automatic threshold level determination technique 
suggested by Kittler (8-10) is adopted. For an ideal image of 
an object with uniform grey level {0 , and the grey level for 
the background fb, the ideal threshold level should be (f0 + 
fb)/2. The threshold selection is based on the following formula. 

2:: l:tij e;1 
T = ~;_,__ __ 

2:: 2:: eij 
(4) 

i i 

In Equation 4, the grey level of each pixel (f;) is multiplied 
by its gradient (e;J; in other words, it is weighted with the 
corresponding gradient. This equation calculates the ideal 
threshold level in an ideal image. (Most images are nonideal, 
especially pavement surface images in which the aggregates 
for the pavement surface demonstrate naturally noisy im­
ages.) Kittler has suggested a technique to estimate a statis­
tical parameter for the noise and exclude the effect of noise 
in the threshold calculation. This technique estimates the stan­
dard deviation of the gradients measured assuming the noise 
has a Gaussian distribution. Only the pixels with gradients 
greater than six times the estimated standard deviation are 
included in the calculation of the threshold value. Kittler (9) 
has demonstrated experimentally for the case of a small object 
that 6u is the optimal value used in the threshold calculation 
for background noise rejection. This process ensures that only 
true edge pixels are involved in the determination of the 
threshold. Figure 3 shows the effect of this noise rejection 
scheme. Figure 3a shows a normal picture of a longitudinal 
crack. The image shown in Figure 3b is the result of the Sobel 
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FIGURE 3 Effects of the noise rejection 
scheme: (a) original longitudinal crack, 
(b) result of the Sobel operator with edge 
enhanced, (c) result of processing with 
Kittler's original threshold method, and 
(d) result of processing with modified 
method. 



Li et al. 

operators with edges enhanced. The results from processing 
with Kittler's original threshold method and modified method 
are shown in Figures 3c and 3d, respectively. 

POSTPROCESSING 

The complexity of pavement image analysis can be grouped 
into three categories. The first is the variability of the material 
used in the building of the pavement, such as the color of 
aggregates, the shape and size of aggregate, and the amount 
of asphalt cement. The second is the different forms and 
shapes of the distress types that are supposed to be quantified . 
The last group that is added to the challenging nature of 
pavement image analysis is the presence of various nondistress 
objects such as tire marks, paint stripes, shadows, and others. 
The binary image obtained from the Sobel edge detector and 
the Kittler automatic thresholding inevitably has some ran­
dom noisy pixel points and short noncrack elements (a group 
of noisy pixel points) as well as the actual cracking itself. The 
postprocessing techniques remove the noisy pixel points and 
isolate short elements to provide more accurate measurement 
of the width and length of the thin crack. The postprocessing 
can be divided into four parts. 

1. Removal of the Noisy Pixels. The random noisy pixels 
that appeared as white dots in the binary image are contrib­
uted by the rough texture of the pavement surface. They can 
be differentiated from the real cracking on the basis of the 
perimeter of the pixel group as indicated in the next paragraph. 

2. Location and Identification of Crack Segments. A thin 
crack usually has a defined width and a continuous array of 
edge pixels and all pixels may have similar grey levels. After 
thresholding, the thin crack may appear as broken pieces of 
crack segments. A boundary searching algorithm (11) is ap­
plied to find the boundary (perimeter) of the object . This 
scheme not only locates the crack segments but also deletes 
the isolated noisy pixels according to the threshold set for the 
perimeter. A threshold value of 20 is used for the perimeter, 
where the selection is based on the trade-off between noisy 
spots and short segments. If the threshold is set too high , real 
short crack segments will be discarded. On the other hand, 
if the threshold is set too low, noisy spots will appear. Figure 
4c shows the image with crack segments, with noisy pixels 
resulting from binary thresholding. The resulting image (Fig­
ure 4d) indicates the removal of noisy pixels on the basis of 
magnitude of the perimeter. Because the display contrast set­
ting for the binary image in Figure 4c is high, the isolated 
noisy spots that are in close proximity to the crack segments 
are easily misconceived to be part of the crack segments. Once 
these spots are removed on the basis of the determined thresh­
old for the boundary length, the details of the crack segment 
in Figure 4d appear different from those of its predecessor. 
These differences can be observed as thinner crack widths or 
shorter crack segments. 

3. Connection of Crack Segments to Form the Crack. As 
the binary thin crack image is scanned and the boundary of 
a crack segment is traced out, the characteristic points of the 
crack segment are also recorded . These points include the 
location of the center of gravity, which can be approximated 
by the average of all the coordinate pairs that form the bound-

(a) (c) 

(d) (1>) (f) 

FIGURE 4 Illustration of thin crack detection: (a) original 
crack image, (b) result of the Sobel operator with edge 
enhanced, (c) image with crack segments, (d) image after 
removing noisy pixels and elements, (e) boundary image of 
crack segments traced out, and (f) final result of detecting 
crack. 
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ary of the crack segments. Furthermore, the smallest and 
largest coordinate pairs in the horizontal as well as in the 
vertical direction can be used to connect to other crack seg­
ments . The orientation of the crack segment is usually in 
agreement with that of the whole crack; this information will 
lead to determining how and where the crack segments are 
connected. Furthermore, a threshold distance is determined 
experimentally to connect close short segments while rejecting 
short noisy spots in parallel with real cracking that are usually 
farther away. For example, a transverse crack segment will 
connect from its largest horizontal point to the right and small­
est horizontal point to the left. Finally, the thin crack is re­
constructed from a set of crack segments and connecting straight 
lines. Figure 4f shows the result of the technique. The current 
connection method is only suitable for longitudinal and trans­
verse cracking. Further research efforts will be required to 
quantify the extent of alligator cracking where linear cracks 
cross one another in an irregular pattern. 

4. Estimation of Lengths and Mean Widths of Thin Cracks. 
The crack lengths and mean widths are usually recorded on 
pavement surface evaluation data sheets. The ability to detect 
thin cracks is not only based on the image analysis algorithm 
but also on the resolution and field of view of the video 
camera. Detection of thin cracks or even hairline cracks (i.e., 
in a higher-resolution camera or a smaller field of view) pro­
vides vital information for early warning of road surface con­
dition . The crack lengths and mean widths can be estimated 
from two methods. 

1. The length is estimated by adding all the connecting 
straight lines and all the lengths of the crack segments. The 
mean crack width is calculated by dividing the crack area by 
the crack length. The crack area is estimated by summing the 
area of the crack segments and all the connecting straight 
lines, assuming a width of one pixel. 

2. This method is similar to the preceding one with the 
exception that the length of the crack is approximated as the 
line joining the first crack to the last crack segment. 

A set of mat boards with different sizes of graphic tape 
attached to each board was used to calibrate the image pro-
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cessing and analysis system. Tape widths of 'Is, %, and Y2 in. 
were attached to three individual boards and an image of each 
was obtained. In order to simulate the random orientation of 
pavement cracking, images with each tape line positioned at 
five different angles were obtained. The calculated width at 
each direction is compared with the known width and an 
average percent error is calculated. About 20 percent is found 
for the 112-in . uniform width, whereas the percent error for % 
in. is as high as 100 percent. The main reason for this high 
error rate is that the highest resolution for this particular 
camera and image processing system is 0.23 in . In other words , 
when a coverage of 10- x 10-ft area is digitized into 512 x 
480 elements (pixels), the theoretical size of the smallest ob­
ject that can be detected is 0.23 x 0.23 in. With the presence 
of noise, camera distortion , and spatial quantization error , 
the total percent error will be unacceptable for object detec­
tion for an object of width one pixel. It is recommended that 
the desired smallest crack width should be at least two pixels 
for crack detection. 

EXPERIMENTAL RESULTS AND ANALYSIS 

In order to test this algorithm, three images of asphalt surface 
and four images of PCC road surface were chosen. The three 
evaluation criteria are as follows: (a) how well this algorithm 
can detect the presence of a thin crack, (b) how accurate is 
the estimation of the length and width of the crack, and (c) 
how it performs for different pavement types . The pavement 
surface images that are recorded by the automatic road ana­
lyzer (ARAN) covered a trapezoidal area of 8 ft of upper 
side, 14 ft of lower side, and a latitude of 10 ft. This area is 
mapped onto a digital image with 512 horizontal pixels and 
480 vertical pixels. Each pixel width corresponds to about 
0.23 in. after the geometric compensation is considered . The 
extracted test images are 128 x 128 pixels representing about 
6.25 ft1

• Figures Sa through 5g show the originals and the 
results processed with this algorithm . Table 1 presents the 
computed lengths and mean widths for the linear crackings 
of asphalt pavement surfaces. Table 2 presents the mean width 
of a transverse crack on concrete pavement as well as the 
extents of three spalled cracks. The width and length of the 
spalled area are recorded to determine the severity of each 
crack. 

Between the two methods that estimated the length of the 
thin crack, the single straight line method can compute the 
length in shorter time but is less accurate, whereas the mu!-

TABLE 1 COMPUTERIZED EVALUATION OF THREE 
ASPHALT CRACKING IMAGES 

Di =ress Type Le ngt:n Mean Wi dth Severl. t Y. 
(inch) ( inch ) Level 

LOnlitudinal l 17 . 66 0. 36 Medium 
F g. S(a) 

Lonyi tud1nal 2 23 . 55 0.40 Medium 
F 9· 5 (b) 

Trans ve r se 20.61 0.24 Low 
Pig. 5(c) 

Note: 
Low Severity: Mean Crack Width < 1/ 4" 
Medium severity: Mean Crack Width > 1/4" 
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FIGURE 5 Examples in asphalt: (a), (b) 
longitudinal cracks, and (c) transverse 
crack. Examples in concrete: (d) transverse 
crack, (e)-(g) spalled cracks. 
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TABLE 2 COMPUTERIZED EVALUATION OF FOUR PCC 
CRACKING IMAGES 

Dl.stress Type Mea n Crack Crac K sla~.L .L :;paJ..L Severr cy 
Width Length w dth Length Level 
(inch) (inch) (inch) (inch) 

Transverse 0.46 23.37 --- --- Medium 
Fig. 5(d) 

$palled c r a c kl 
Fig. 5(e) 

1.10 0.66 Low 

Spalled c rack2 
Fi g . 5(f) 

1. 02 1.13 Low 

Spalled crack3 1. 02 1. 24 Low 
Fig. 5(g) 

---
Note: 

Transverse Crack 
Low Severity: Mean Width < 1/ 8". 
Medium Severity:l/ 8" < Mean Width <1" . 

Spalled crack 
Low severity: Spalled width 1" - - 3" . 
Medium Severity:Spalled width >3 " . 

tiply connected straight line requires longer computation time 
but yields more accurate length measurement. This trade-off 
can be studied further in detail when a length of roadway is 
processed. 

Because of the complexity and variability of pavement sur­
face images, the thin crack obtained from this algorithm may 
not resemble the original image perfectly. This effect will 
contribute to the error in the length estimation. On the other 
hand, the mean width calculation is based on the crack area 
as well as the estimated length measured from the image. For 
example, if an underestimated area is divided into an under­
estimated length, the result will actually yield a crack width 
with lower percent error. In order to rate the pavement sur­
face condition , the knowledge of the severity of cracking, 
which is based on the mean crack width, is critical and the 
algorithm provides this value . 

SUMMARY AND CONCLUSION 

The Sobel edge detector and an automatic thresholding tech­
nique based on Kittler et al. (9), adding a sequence of post­
processing to identify and quantify low-severity-level crack­
ing , have been described . From the examples, this technique 
has successfully detected and extracted the information for 
these thin cracks . The advantage of using an automatic thresh­
old is that it does not rely on the needed bimodal distribution 
for threshold selection as in histogram thresholding. This tech­
nique has been found able to detect and quantify thin cracking 
despite the noisy background image. The resolution can be 
further improved using a higher resolution camera (1,024 x 
1,024) and smaller coverage of the camera (6 x 6 ft), even­
tually allowing the detection of hairline cracks. This technique 
can quantify the length and width of the thin crack in an 
accurate manner, hence providing a tool for automatic pave­
ment distress evaluation. 
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