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Latent Performance Approach to 
Infrastructure Management 

MOSHE BEN-AKIVA, FRANNIE HUMPLICK, SAMER MADANAT, AND 

ROHIT RAMASWAMY 

A new framework for the analysis of infrastructure performance 
and the planning of inspection and maintenance and rehabilitation 
(M&R) activities is described. The main facets of this framework 
are (a) treating facility performance, the key variable in the pro­
cess, as a latent variable that manifests itself through measun:u 
condition indicators; (b) explicitly analyzing and including in the 
decision process the errors and uncertainties in infrastructure 
condition measurement and performance analysis; and (c) ac­
counting for the interactions between the two decisions, inspec­
tion and maintenance strategies, by jointly selecting them within 
an optimization algorithm. A model system relating the latent 
facility performance to explanatory variables and to observed 
indicators is developed and parametric studies using this frame­
work are presented. The approach recognizes the errors inherent 
in the measurement of the condition indicators; these errors are 
quantified through the use of measurement error models, which 
are estimated using a rigorous statistical method. The M&R ac­
tivity planning model accounts for the presence of uncertainty in 
the output of the inspection of facility condition and the fore­
casting of facility performance. Inspection activity decisions are 
addressed jointly with the M&R activity decisions through a com­
mon stochastic optimization algorithm, which leads to the selec­
tion of cost-effective inspection activities. A parametric study 
investigating the effects of uncertainty in condition measurement 
and forecasting on life cycle costs is also presented. 

The past decade has witnessed important developments in the 
area of infrastructure management: the application of a large 
number of automated data collection technologies such as 
photographic and video imaging, laser, radar and infrared 
nondestructive technologies (J). These developments have 
made available a large quantity of data for the analysis of 
infrastructure performance. On the other hand, existing ap­
proaches to performance modeling are based on indices cal­
ibrated using subjective ratings and a predetermined set of 
indicators that were selected at a time when less-developed 
data collection technologies (mainly visual inspection) were 
being used. Examples include the pavement serviceability in­
dex (PSI) (2) and the pavement condition index PCI (3). An 
improved performance modeling methodology is needed to 
exploit these enhanced data collection capabilities. 

Before adapting a new data collection technology, its ac­
curacy and precision must be analyzed. The results of such 
an analysis serve several purposes. First, they are inputs into 
cost-benefit evaluation of new infrastructure inspection tech-
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nologies, with the aim of selecting among them. Second, 
knowledge of the precision of the measurements made by 
these technologies is a necessary input to the maintenance 
and rehabilitation (M&R) strategy selection process, to in­
corporate the risk element in decisions on the basis of these 
measurements. Finally, any algorithm determining the in­
spection frequencies for infrastructure facilities using these 
technologies must be based on the knowledge of their precisions. 

The infrastructure management process can be divided into 
three main areas: 

• Data collection and inspection, 
• Performance modelling and forecasting, and 
• Decision making for inspection and M&R. 

These areas are related in the manner shown in Figure 1. 
The facility condition data collected using different inspection 
technologies are used in two ways: to estimate infrastructure 
performance models and to select maintenance and rehabil­
itation (M&R) strategies. Infrastructure performance models 
are used in planning present and future inspection and M&R 
activities. The decision-making block not only selects M&R 
activities, but also future inspection strategies and data col­
lection procedures. This effect is represented by the feedback 
loop of Figure 1. 

A methodological framework to support the infrastructure 
management process in Figure 1 is described. The main facets 
of this framework are 

• Treating the key variable in the process, facility perfor­
mance, as a latent variable that manifests itself through mea­
sured condition indicators; 

• Explicitly analyzing and accounting for the errors and 
uncertainties in infrastructure condition measurement and 
performance analysis in the decision-making process; and 

• Accounting for the interaction between the two decisions, 
inspection and maintenance strategies, by jointly selecting 
them within an optimization algorithm. 

Figure 2 shows the methodological framework of this re­
search. In this figure, rectangles represent observed quan­
tities, ellipses represent latent variables, and diamonds repre­
sent decisions. At the upper level of the diagram, the true 
values of condition (or performance) indicators of an infra­
structure facility are estimated from the indicator measure­
ments obtained through different measurement technologies. 
The relationship between the two is explained by a measure­
ment error model, and it is a function of technological, en-
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FIGURE 2 The latent performance theoretical framework. 

vironmental, facility and damage-specific factors. The true 
values of condition indicators are an input in the second level, 
where the performance of a facility is estimated through a 
performance model. The other inputs to this model system 
are exogenous variables such as usage, environment, past 
maintenance and rehabilitation activities, facility character­
istics, and possible performance ratings. This model system 
provides unbiased estimates of the present performance of an 
infrastructure facility, if the models are correctly specified, 
and can be used to forecast future performance. Both present 
and forecasted performance are inputs to the third level, in 
which inspection and M&R decisions are jointly made. Other 
inputs to the algorithm are the measurement error models 
estimated in the first level, the performance models estimated 
in the second level, the costs of different activities, and min­
imum performance standards. The outputs of the algorithm 
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are optimum inspection and maintenance activities that feed 
back into the higher levels of the model. 

Each of the three areas of the methodological framework 
for infrastructure management is described in the following 
sections. A parametric study demonstrating the framework 
developed and areas of further research are also discussed . 

DATA COLLECTION 

Infrastructure performance is characterized by a number of 
indicators, for example, cracking, rutting, potholes, and 
roughness, in the case of highway pavements. In order to 
measure these indicators, a range of inspection methods exist, 
ranging from manual to fully automated inspection. Tech­
nologies for surface inspection of distresses include photo­
graphic imaging, video imaging, and laser nondestructive 
measurement. The measurements by these technologies are 
subject to significant errors, which can be attributed to 

1. Technological factors (e.g. , resolution and field of view); 
2. Distress factors (e .g., dimensions of distress); and 
3. Section or location factors (e.g., pavement type). 

Measures of the accuracy of inspection technologies are 
important for several reasons. First, they can serve as an aid 
for developing new measurement technologies. Second, they 
form the basis for selecting inspection strategies. Finally, they 
can be included in a future inspection strategy and M&R 
decision model, to take into account the effect of measure­
ment uncertainty on strategy selection. 

The present approach for quantifying measurement errors. 
is based on measurement error models. These models are 
mathematical expressions that explain the difference between 
the true value of an indicator at a given location, and its 
measured value, in terms of systematic biases and a random 
error. A possible specification of a linear model is 

where 

(1) 

measured value of a condition indicator on Section 
i by Technology j; 
true value of a condition indicator on Section i; 
additive and multiplicative systematic biases of 
Technology j; and 
random error of measurement on Section i by 
Technology j, with zero mean and variance de­
noted by aJ. 

In order to use such a model, the values of ai, ~i' and aJ 
need to be known. Ideally, these parameters would be sta­
tistically estimated using a sample of measurements by dif­
ferent technologies, for indicators for which the true values 
are known. In the case of infrastructure facilities, the problem 
is that it is either impossible or prohibitively expensive to 
measure true values of condition indicators. Hence, estima­
tion of such models is only possible if an assumption is made 
that an unbiased reference measurement exists, such as from 
an unbiased average of multiple technologies. Such a mea-
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surement can be obtained if technologies with radically dif­
ferent measurement principles (such as combining measure­
ments from a video imaging technology with those from a 
laser nondestructive measurement technology) are used in 
such a manner that the average bias of the measurements 
from these technologies is zero . Such averages were devel­
oped and tested by Humplick (4). 

Given such a reference measurement, estimation of the 
model parameters can be achieved using the technique of 
factor analysis . This technique assumes that the true value of 
a condition indicator is latent and uses a sample of measure­
ments, including the reference measurement, to estimate o.i, 
13i and crJ. The advantage of this approach over simple regres­
sion methods is that it produces unbiased estimates of the 
model parameters (4) . 

The approach was applied to a data set from an FHW A 
study, Improved Methods and Equipment to Conduct Pave­
ment Distress Surveys, conducted in Texas (J). The study 
included measurement of surface distresses on highway pave­
ments using a variety of existing and newly developed tech­
nologies and methods. The technologies included three direct 
measurement techniques (mapping, manual , and logging) in­
volving visual inspection by humans; and four indirect mea­
surement techniques involving optical imaging (photol, photo2, 
and video) and a laser nondestructive measurement tech­
nique . The technologies used had a wide range of capabilities 
for resolution of measurement, sampling size, and data pro­
cessing and reduction. 

Examples of estimated models for measurements of the 
area of alligator cracking on pavement sections in the study 
by direct (manual) and indirect (photol) measurement tech­
nologies, respectively, follow : 

Jmanua1 = 132.2 + 0.39d*, 0-ma nuai = 263 ft2 , R2 = 0.94 

3 p ho1o1 = 53.3 + 0.87d*, 0-photoi = 444 ft2
, R2 = 0.95 

These models were estimated using factor analytic tech­
niques that do not require knowledge of the true value for 
measurement bias estimation. The estimation procedure and 
the major assumptions required for estimation were provided 
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by Humplick ( 4) . The goodness of fit (R2) obtained from such 
models is better than that obtained using traditional regression 
techniques ( 4). 

Estimated models such as these can be used for correcting 
the results of inspection using the estimated values of o.i , and 
f3i, and for calculating confidence intervals around the cor­
rected values using crJ. They can also be used to select among 
availablt: lt:dmulugit:s, l.Jy comparing at:t:uracit:s am.I p1t:ci­
sions of a variety of technologies. For example, from the 
models presented, photol would be selected over manual on 
the basis of lower additive and multiplicative bias. However , 
assuming systematic biases could be corrected for given that 
they are known, manual would be selected over photol on 
the basis of lower random error of measurement. Alterna­
tively, the mean squared error (MSE), which is a quantity 
combining the systematic bias and the variance of a measure­
ment, could be used . Figure 3 shows plots of the MSE for the 
alternative technologies represented in the data set as a func­
tion of the true value of alligator cracking area . The true 
value of alligator cracking was extracted from the measured 
data using latent variable modeling techniques as discussed 
by Ben-Akiva and Humplick (5). The technology photol in 
Figure 3 lies below all the other technologies and hence has 
the lowest MSE. It is therefore dominant over all the other 
technologies from a combined bias and variance perspective. 

In this research, measurement error models were estimated 
for seven different technologies, five types of condition in­
dicators, and two pavement types. A more complete descrip­
tion of the work was given by Humplick (4,6). A further 
application of this methodology was provided by Livneh and 
Ben-Akiva (7). 

PERFORMANCE MODELING 

The scope of this part of the research is the estimation of an 
infrastructure deterioration model. Such a model relates the 
performance of an infrastructure facility to a set of causal 
variables such as traffic , age, and maintenance history. Such 
a model is required for planning maintenance and rehabili­
tation activities for infrastructure facilities. 

360 400 440 480 
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FIGURE 3 Mean square error for different measurement 
technologies used in alligator cracking. 
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The main problem in estimating such a model is that perfor­
mance is not directly observable. What can be observed are 
indicators of performance, such as roughness, cracking, rut­
ting, and skid resistance, as was discussed earlier. 

Numerous studies have attempted to devise performance 
indices that combine different indicators into a single quantity, 
for example, pavement condition index (PCI) and present 
serviceability index (PSI). These indices were based on the 
subjective judgment of pavement experts. They lack rigorous 
justification, have poor explanatory power, and use a pre­
determined set of indicators that precludes incorporation of 
new condition indicators. Furthermore, when these indices 
were used together with common causal variables to estimate 
a deterioration model, the resulting fit to data was poor. 

On the other hand, the present approach does not rely on 
subjective judgment for devising a performance index. In­
deed, it does not require the predetermination of such an 
index. Instead, it treats performance as a latent variable S 
that is linked to explanatory (or causal) variables (X) and 
maintenance actions (A) through a deterioration model. 
Moreover, it is linked to a set of condition indicators (D) 
through a measurement model. These models form a system 
of equations that are estimated simultaneously, thereby pro­
ducing a much better fit to data than traditional deterioration 
models. Figure 4 shows a schematic representation of the 
process. In this figure, rectangles represent observed quan­
tities, whereas the ellipse represents the unobserved latent 
performance. 

This approach was applied to a data set consisting of 3,837 
1-mi pavement sections from Nevada. This set contained in­
formation on several condition indicators (such as cracking, 
rut depth, and roughness) for each section, as well as a set 
of causal variables (average daily traffic, percent truck traffic, 
age, maintenance by several activities, and several environ­
mental variables). 

In the process of estimating the model system, a major 
problem was uncovered that had not been resolved in existing 
deterioration models that are estimated with data from in-
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service pavements. Such pavements are subjected to main­
tenance performed by highway agencies in response to their 
level of traffic, percentage of trucks, etc. As a result, pave­
ments with the highest level of usage will receive higher levels 
of maintenance. In other words, two conflicting mechanisms 
are acting on these pavements: 

1. A deterioration mechanism, because of which condition 
decreases as traffic and age increase; and 

2. A maintenance mechanism, because of which condition 
increases as traffic increases. 

An attempt to estimate a deterioration model from in-service 
pavements without taking the second mechanism into ac­
count, as is usually the case with state-of-the-art deterioration 
models, will result in biased, counterintuitive parameter es­
timates. The correct specification for such a situation is a 
simultaneous equation model, including two separate rela­
tionships, one for each of the two mechanisms described ear­
lier. 

Several examples of an estimated deterioration equation of 
a latent variable model system have been provided (8-10). 
The results indicate that all the parameter estimates have 
intuitively correct signs. This result follows from the simul­
taneous equation specification. The value of R2

, which is a 
measure of fit to data, is also reported and is higher than is 
usually the case in existing deterioration models. It follows 
from using the latent variable approach. A complete descrip­
tion of work in this area is also provided in the references. 

DECISION MAKING 

In the process of managing their systems of facilities, infra­
structure agencies are faced with decisions. For example, to 
which facilities should an M&R activity be applied in a given 
year? These decisions are complicated by the difficulty in 
accurately predicting the future performance of infrastructure 
facilities because of the uncertainty in the deterioration pro­
cess and in the effects of various M&R activities. 

Several research efforts to develop a rigorous systematic 
decision-making process (commonly using operations re­
search techniques) to address these decisions have been made 
in the last decade. However, most of these have ignored the 
inherent uncertainty in measuring and forecasting facility per­
formance, which have made them of little use when applied 
in the field. Exceptions to this trend (11,12) adopted a sto­
chastic optimization approach to account for the uncertainty 
in predicted performance. However, this approach assumes 
that there is no uncertainty in the measured facility condition. 
Because infrastructure management requires a combination 
of inspection and prediction of facility performance, and be­
cause the uncertainty in inspection is not negligible (as dem­
onstrated in the research on measurement errors), there is a 
need to develop a methodology that takes into account both 
sources of uncertainty. 

On the other hand, infrastructure agencies also need to 
make decisions regarding the frequency of their inspections 
and the technologies to use during these inspections. Tradi­
tionally, such decisions have been made with no explicit cost­
effectiveness considerations, such as the penalty for delayed 
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detection of deterioration. A methodology that recognizes the 
potential trade-offs between inspection costs and the added 
costs of M&R is required to address the inspection decisions 
in a systematic manner. As an example of this trade-off, in­
creasing the frequency of inspections increases the inspection 
costs but enhances the quality of information available to the 
decision maker, which allows for better M&R decisions, hence 
reducing life cycle M&R costs. 

The proposed methodology addresses both these concerns. 
It recognizes the uncertainty in both facility condition pre­
diction and measurement, and it is based on the minimization 
of the sum of expected M&R and inspection costs. The first 
issue is addressed through the use of the latent Markov de­
cision process (LMDP). The LMDP is an extension of the 
traditional Markov decision process (MDP) methodology, but 
differs from it in one major aspect: it does not assume the 
measurement of facility condition to be necessarily error-free. 
instead, it recognizes that the decision maker observes out­
puts from measurement (such as results of inspection using 
the technologies discussed earlier), which are probabilistically 
related to the true condition of the facility. This methodology 
was developed in the field of manufacturing (13), and is often 
referred to as a partially observable Markov decision process 
(POMDP). 

In order to select M&R policies in a meaningful manner 
when there is measurement uncertainty, the decision maker 
cannot make decisions only on the basis of the measured 
condition of the facility. Instead, all the information available 
to the decision maker about the facility (the history of mea­
sured condition states and M&R activities) can be relevant 
to future decisions. This history is referred to as "the state of 
the information." It can be shown that if the deterioration of 
the facility is represented by a finite-state Markov chain and 
the measurement uncertainty is represented by a set of dis­
crete probabilities, then the state of the information itself will 
evolve in a Markovian fashion (14). Hence, the M&R decision 
problem is transformed from a problem of a latent state (the 
condition state of the facility) to one of an observed state (the 
state of information for the facility). Once this transformation 
has been performed, the same solution method (namely dy­
namic programming) that is used to find optimal M&R pol­
icies by minimizing expected costs for an MDP can be adapted 
to the LMDP. 

The similarity between the LMDP and the classical MDP 
can be best explained in terms of the underlying decision trees. 
Figure 5 shows a classical MDP tree. At the beginning of time 
Period t, the true state x, is observed. On the basis of this 
knowledge, the decision maker selects an activity a,. Given 
the condition state x" and the selected activity a" the facility 
moves to one of the states x,+ 1 = j with probability P(x,+ 1 

= fix" a,). The same process is then repeated in time Period 
t + 1, and so on. 

In Figure 6, part of an LMDP tree is shown. The process 
starts in Period t, when the decision maker has available the 
state of information !,. On the basis of this information, an 
activity a, is selected. Given the information state I, and a" 
the system moves to one of the states It+ 1 = K with probability 
P(/,+ 1 = Kil" a,). The same process is then repeated in time 
Period t + 1, and so on. 

The second issue is addressed by making the decision of 
when to inspect jointly with the M&R decisions. The basis 

TRANSPORTATION RESEARCH RECORD 1311 

FIGURE 5 Decision tree for the 
MDP. 

FIGURE 6 Decision tree for the 
LMDP with annual inspections. 

for this approach is that an M&R decision can be made with­
out being preceded by an inspection if the information re­
vealed by the latter does not improve on the quality of the 
former. An inspection is only performed if the reduction in 
life cycle costs, achieved by selecting a different M&R activity 
as a result of the added information provided by this inspec­
tion, offsets the cost of inspection. This idea allows the agency 
to jointly optimize expected inspection and M&R costs, thus 
achieving lower costs than are possible by addressing each 
decision separately. This joint optimization is performed within 
the LMDP framework, leading to a model that is referred to 
as the LMDP with "unconstrained inspection frequency." 

The inputs to this decision-making algorithm are 

1. Estimates of the uncertainties associated with the mea­
surements obtained from inspection technologies, which were 
obtained in the first part of this research, 

2. Facility performance models, and their uncertainties, which 
were estimated in the second part of this research, 
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3. Agency costs, for the different maintenance, rehabili­
tation, and inspection activities; and 

4. Minimum performance standards , which were required 
in this model because of the lack of realistic user cost models . 
When available, user cost models can be readily incorporated 
in the optimization in place of the minimum standards. 

The outputs from the measurement error models and the 
performance models estimated in the first two parts of this 
research are discretized before being used in the decision­
making algorithm , because the latter operates on a discrete 
facility performance state space. 

The algorithm provides the decision-making agency with 
the following outputs: (a) optimal maintenance and rehabil­
itation policies for all the years of the planning horizon ; (b) 
optimal inspection policies (whether to inspect or not), for 
all the years of the planning horizon; (c) minimum total ex­
pected cost of inspecting and maintaining the facility for the 
duration of the planning horizon, for the optimal policies; and 
(d) other statistics of interest, such as the expected number 
of inspections for the facility for the duration of the planning 
horizon , for the optimal policies. 

PARAMETRIC STUDY 

This new approach, beyond being a tool for selecting M&R 
and inspection strategies, can serve as a means for quantifying 
the expected benefits from using more precise , and more 
expensive, measurement technologies . To investigate the value 
of these expected benefits, a parametric study was performed, 
in which the precision of the measurement technologies used 
(as given by the standard deviation of the measurement) were 
varied, while the inspection frequency was constrained to once 
a year, and the minimum expected life cycle costs obtained 
by the algorithm were plotted. 

The study indicated that the expected life cycle cost in­
creased monotonically with decreasing forecasting precision 
of the performance model used. This is shown in Figure 7, in 
which the horizontal axis represents the standard deviation 
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of measurement, the vertical axis represents the minimum 
expected lifecycle costs , and different curves represent dif­
ferent forecasting precisions of the performance model. (The 
inverse of precision is used, as given by the standard error of 
the forecast , s.e.(S).] The study also indicated that there exists 
an optimum value for the precision of the measurement tech­
nologies, as shown in Figure 7. For precisions above this 
optimum value, the minimum total expected costs increased 
because of the increase in the costs of inspection, using an 
increasingly precise and expensive technology. For precisions 
below this optimum value, the minimum expected total costs 
increased due to the increase in the expected M&R costs, due 
to the uncertainty in the output of the measurement tech­
nology. This trend is more pronounced for low precisions of 
the performance model [s.e .(S) > 0.4 in Figure 7]. When the 
performance model forecast becomes more precise, inspec­
tions provide less new information , so that their contribution 
to reducing total cost is limited, as can be seen in the lower 
curves of Figure 7. At the extreme, where the performance 
model forecasts contain almost no uncertainty (the lowest 
curve in Figure 7), increased inspection precision does not 
provide any information at all , so that increased precision 
only leads to an increase in inspection costs without reducing 
M&R costs. This is why, if the forecast is perfect and if in­
spections are to be performed annually, the optimal inspection 
technology is the one that is the least precise . 

The same parametric study was repeated, this time without 
constraining the inspection frequency to once a year. In Figure 
8, the minimum expected life cycle costs are shown as func­
tions of the standard deviation of measurement, with different 
curves representing different precisions of the performance 
forecasting model. The shape of the curves shown here is 
somewhat different than in the constrained case. 

In the case when the performance forecast contains no un­
certainty (s .e.(S) = 0.2], the curve is flat, which means that 
the minimum expected life cycle costs are independent of the 
measurement uncertainty . The reason for this is clear: because 
there is no uncertainty in performance forecasting, inspections 
cannot contribute to reducing expected costs, so it is optimal 
not to inspect. This can be verified by examining Figure 9, 

• 
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FIGURE 7 Effect of measurement uncertainty on annual 
inspections. 
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FIGURE 8 Effect of measurement uncertainty on optimal 
inspection frequency. 

which shows the expected number of inspections for the 
10-year horizon (using the optimal policy) as a function of 
the standard deviation of measurement. The first curve of this 
figure indicates that the optimum expected number of in­
spections, when s.e.(S) = 0.2, is zero. As the standard de­
viation of forecasting increases, so does the need for inspec­
tions. This result is shown in Figure 9, in which for a given 
measurement technology, the number of inspections increases 
as the precision of the forecast of the performance model 
decreases. 

For a given forecasting precision, the benefits of inspection 
have to be traded off against the cost of inspection. When 
the costs, and precision, are excessively high, as for the mea­
surement technology shown at the left in Figure 9, the costs 
of inspecting offset the benefits brought about by reduced 
uncertainty. Towards the right in Figure 9, the optimal num­
ber of inspections increases as the measurement precision 
decreases, until a point, after which it decreases. This vari­
ation in inspection frequency with decreasing inspection cost 
can be explained intuitively: initially, the cost of a single in-
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spection decreases faster than its precision (and than the value 
of the information it provides) so it becomes optimal to inspect 
more often. However, after some point the precision of the 
measurement decreases faster than its unit cost, so that the 
information revealed by each inspection no longer justifies 
the cost, so it becomes optimal to inspect less . 

The results of such a study can be used as part of a cost­
benefit evaluation of new inspection technologies with known 
precisions. The reduction in expected life cycle costs resulting 
from using more precise measurement technologies, which 
are calculated in this study, can be compared to the fixed costs 
of acquiring these precise inspection technologies. A more 
detailed description of the work in this area was provided by 
Madanat (14). 

FURTHER RESEARCH 

Several refinements on these methodologies are possible. Some 
of them are 

standard deviation of measurement 
• s.e.(S)-0.2 + s.e.(S)-0.4 o s.e.(S)·0.6 "' s.e.(S)-0.8 x s.e.(S)-1.0 

FIGURE 9 Effect of measurement uncertainty on expected number 
of inspections. 
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1. Incorporation of the severity dimension into the analysis 
of measurement errors. The measurement error models pre­
sented earlier did not investigate the effects of severity on the 
measurement biases and variances in different situations , be­
cause this information was not available in the data used in 
the study. 

2. Linking the latent performance variable to different mea­
sures of user costs . This process will allow including user costs 
in the cost minimization algorithm of the decision-making 
model, instead of relying on minimum performance stan­
dards, as is the case now. This can be achieved by estimating 
a system of user cost equations simultaneously with the perfor­
mance model system described earlier. Such an effort is cur­
rently in progress at Massachusetts Institute of Technology. 

3. Extending the joint decision-making algorithm to handle 
network-level considerations, such as a budget constraint. 
Possible approaches for this extension are currently being 
evaluated. 

CONCLUSIONS 

A new framework for the analysis of infrastructure perfor­
mance and a new approach for M&R decision making were 
described. The framework, which is based on the concept of 
latent performance, recognizes the fact that performance is a 
latent variable that cannot be measured directly. Instead , what 
can be measured are different performance indicators that are 
probabilistically related to it. These indicators are , in turn, 
measured with error, and their true value is also latent. Models 
for relating the measured value of performance indicators to 
their true value, and the true value to the underlying latent 
performance, have been developed in this research. In ad­
dition to these measurement models, a structural model re­
lating latent performance to a number of exogenous variables, 
such as usage and environment , has been estimated . 

These models serve as inputs to a decision-making algo­
rithm. This algorithm specifies optimum M&R and inspection 
policies, taking into account the uncertainty inherent in the 
input models. As a result, the specified policies represent the 
best compromise between optimality and risk in decision mak­
ing. Furthermore, this approach represents the first use of 
cost-effective approaches in making inspection decisions in 
the area of infrastructure management. Finally, this approach 
can be used as a decision aid in selecting among different 
inspection technologies. 

ACKNOWLEDGMENTS 

Support was provided by a grant from the Army Research 
Office to the Center for Construction Research and Educa­
tion , Civil Engineering Department , Massachusetts Institute 
of Technology. Sue McNeil was responsible for the early stages 
of this research while she was at Massachusetts Institute of 
Technology. 

195 

REFERENCES 

1. W. R. Hudson , G. E. Elkins, W. Uddin, and K. T. Reilley. 
Improved Methods and Equipment to 011d11ct Pavement Distress 
Surveys. Final Report, FHWA-TS-87-213. FHWA, U .S. De­
partment of Transportation, 1987. 

2. Special Report 73: The AASHO Road Test. HRB, National Re­
search Council, Washington , D .C., 1962. 

3. M. Y. Shahin and S. D. Kohn. Pavement Maintenance for Roads 
and Parki11g Lots. Technical Report M-294. Con truction En­
gineering Research Laboratory , U .S. Army Corps of Engineers, 
Champaigne , Ill., 198 1. 

4. F. Humplick. Highway Distre Evaluation: Modeling Measure­
ment Error. Transportation Research , Part B, to be published . 

5. M. BeD-Akiva and F. l-Iwnplick. A Methodology for Es1imating 
the Accuracy o f Inspection Systems. Tra11spor1atio11 cience, to 
be publi hed. 

6. F . Humplick. Theory and Me1/1ods of A 11alyzi11g l11/ rastr11cture 
/11spectio11 Output: Applicatio11 10 Highway Pavemerrt Surface 
Condition Eva/11a1io11 . Ph .D. dissertation , Department o( ivil 
Engineering, Massachu e trs Institute o f Technology, Cambridge, 
Aug. '1 9 9. 

7. M. Livneh and M. Ben-Akiva. A Stntistical Me thodology co An­
alyze the Effect of Changes in Testing Technology on Mea ure­
ment Results. Pre ented at 6th (nternational Conference on Ap­
plications of Statistics and Probabiliry in Civil E ngineering, Mexico 
City, 199 1. 

8. R. Rama wamy. Esti1111,i1io11 of Late/I/ Pa vemefll Pe1forma11ce from 
Damage Measureme111s. Ph.D . dissertation, Department of Civil 
Engineering, Ma achusetts Institute of Technology, Cambridge, 
June 1989. 

9. R . Ramaswamy and M. Ben-Akiva . Estimation of Highway Pave­
ment Deterioration from In-Service Pavement Data. In Trm1s­
portation Research Record 1272, TRB , National Research Coun­
cil , Washington, D.C., 1990. 

10. M. Ben-Akiva and R. Ramaswamy . Estimation of Latent Pave­
ment Performance from Damage Measurements. Proc., 3rd ln­
ternntional Conference on Bearing Cap11city of Road and Air­
fields, Trondheim , Norway, 1990. (An earlier and extended version 
of thi paper appears in Selected Proc., 5th World Conference on 
Tramport Re earch, Vol. I, Yokohama, Japan, 1989.) 

11. K. J. Feighan, M. Y. Shahin , K. C. Sinha , and T . D. White . 
Application of Dynamic Programming and Other Mathematical 
Techniques to Pavement Management Systems . In Transporta­
tion Rese11rclr Record 1200, TRB , National Research Council , 
Washington , D . ., 1988. 

12. J. V. Carnahan, W. J. Davis, M. Y. Shahin, P. L. Keane, and 
M. I. Wu . Optimal Maintenance Decisi ns for Pavement Man­
agement. Journal of Transportation Engineering, Vol. 113, No . 
5 , 1987. 

13. R. mallwood and E. Sondik . The Optimal Control of Partially 
Observable Markov Processe Over a Finite Horizon. Operations 
Research, Vol. 2 1, 1973 , pp. L071 - 1088. 

14. S. Madanat. Optimizing Sequential Decisions Under Measure­
ment 1111cl Forecasting U11cerwi11ty: Application to l11frastr11cture 
Inspection, Mai11/em111ce a11d Rehabilitation. Ph .D. dis ertation , 
Department of Civil E ngineering, Massachusetts Jnst!1ute of 
Technology , Cambridge, Feb . 1991. 

Publication of this paper sponsored by Committee on Pavement Man­
agement Systems. 


