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Use of Expert Opinion in Two Pavement 
Management Systems 

WILLIAM V. HARPER AND KAMRAN MAJIDZADEH 

The application of a pavement management system (PMS) to 
optimize the allocation of scarce budgeting resources for a net­
work of highways is becoming more common both in developed 
and in developing countries. The use of expert opinion and expert 
systems may help to improve a PMS as well as to ease the com­
putational burden in some cases. In such systems, degradation 
models are necessary to predict the impact of scheduled main­
tenance so that both the long- and short-term results are opti­
mized. Expert opinion is also often used to determine the feasible 
maintenance and rehabilitation actions for pavement in different 
condition states. From the set of feasible actions, the network 
level optimizer will select a multiyear optimal strategy. Two dif­
ferent approaches are illustrated: one for the Ohio Department 
of Transportation, and the second for Saudi Arabia. An algorithm 
is presented for updating expert opinion-based degradation models 
for pavements. Bayesian updating procedures are given that auto­
matically update the degradation models with new network survey 
data. These procedures continually self-adjust the PMS to fit the 
specific conditions found in the network. This process results in 
improved prediction models and a better use of resources. 

A pavement management system (PMS) should be able to 
predict the future degradation of the pavement as well as the 
improvement that results from a particular maintenance ac­
tion . This ability to predict may depend on many parameters 
and may be the result of empirical, mechanistic, or empirical­
mechanistic models. In order to provide a network-level 
solution, the condition prediction models must depend on 
readily available information on every segment in the net­
work. Test results that will be available for only a small por­
tion of the network may be used in a project-level analysis, 
but such information often cannot be incorporated into a 
network optimization model. 

Condition prediction models usually are based on actual 
field data relevant to the network being modeled. A PMS 
requires a well-planned data base. Even with such a data base, 
degradation models are not always readily available for a 
given network even in well-developed countries . 

Selected aspects of two different PMSs are briefly covered. 
One developed for the Ohio Department of Transportation 
(ODOT) has deterministic degradation models that are based 
on detailed statistical analysis of historical data. The ODOT 
PMS (1) predicts pavement condition rating (PCR) deduct 
values for a given pavement segment strategy considered in 
its network optimization. The second PMS discussed is part 
of a highway maintenance management system (2) developed 
for the Kingdom of Saudi Arabia that integrates a PMS, a 
bridges and structures management system, and a nonpave-
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ment management system. It is a stochastic optimization sys­
tem based on minimal historical data. It predicts the proba­
bility of a pavement segment transitioning from Condition 
State i to Condition State j for the feasible maintenance and 
rehabilitation (M&R) actions. 

ODOT PMS 

The ODOT network level optimization model is an integer 
0-1 linear program that is approximated by a standard linear 
programming (LP) solution using generalized upper bounding 
(GUB) techniques. The use of the GUB in the standard LP 
allows large 0-1 problems to be solved quickly. For the few 
noninteger solutions [theoretically there will be only a small 
number (J)], these require a project-level choice by the de­
cision maker. 

The pavement condition rating (PCR) is one of the key 
ODOT factors in determining both the condition of given 
segment as well as the condition of the entire network. The 
PCR is a weighted average of many distresses, e.g., raveling, 
bleeding, patching, rutting, and cracking. Expert opinion from 
both ODOT and other pavement engineers was used to de­
velop lumped distress groups. On the basis of the severity 
and extent of these lumped Jislress calegories, feasible M&R 
actions were selected for the different pavement types (rigid, 
composite, flexible, and continuous reinforced concrete) us­
ing a panel of experts. 

The ODOT PMS develops 6-year plans for each segment 
within the state-wide network. The plan is an ordered set of 
six M&R actions. Only a limited number of applicable plans 
can be associated with each segment while maintaining the 
entire highway system in satisfactory condition. Expert opin­
ion was used to construct an expert system that develops the 
potential 6-year plans on a segment-by-segment basis. These 
feasible plans are then input to the optimization. On the basis 
of the available budget and desired performance goals spec­
ified, the optimization selects one of the individual segment 
feasible plans for each segment. The optimization will either 
maximize performance (in terms of PCR) subject to budgetary 
limitations or it will minimize cost subject to performance 
constraints. 

The feasible 6-year plans are developed independently for 
each highway segment and thus represent the possible plans 
from a project-level point of view for a given segment. The 
optimization then selects one plan for each segment that is 
optimal from a network perspective. Thus the plan chosen 
for a given segment is determined considering all segments 
in the network simultaneously. This process could not be done 
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without the use of sophisticated optimization packages. An 
engineer can consider the possible 6-year plans in isolation 
for a segment, but it would not be possible for that individual 
to perform the trade-offs necessary to arrive at a network­
optimal solution. This expert system also reduces the solution 
space considerably and has resulted in lessening the compu­
tational burden. 

ODOT'S DETERMINATION OF FEASIBLE M&R 
ACTION PLANS 

Conceptually, the PMS network optimization models could 
allow the possibility of assignment of any M&R action to a 
pavement segment. Although this assignment would not the­
oretically cause any difficulties, it may create problems in 
practice. It is often mandatory to follow agency policies that 
may not permit certain M&R actions for pavement segments 
in given conditions. Thus it is reasonable to develop an expert 
system for the network-level selection procedures that deter­
mine the feasible M&R alternatives available to the optimizer. 

The PCR for a given segment is the sum of weighted deduct 
values representing the severity and extent of many pavement 
distresses. Table 1 indicates how these individual distresses 
are lumped into categories for the four ODOT multilane pave­
ment types. Jointed concrete, for example, has three lumped 
distress categories: surface, Joint 1, and Joint 2. Table 2 pre­
sents the possible M&R actions that may be applied to a 
segment in a given year. Table 3 presents the feasible M&R 
actions for Interstate jointed concrete pavements as a function 
of the severity and extent of these lumped distress categories. 
Majidzadeh et al. (1) give similar information for both In­
terstate and other multilane pavements for the four pavement 
types seen in Table 1. 

Table 3 is used to select the maintenance actions that would 
be appropriate for each of the different distress groups. The 
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TABLE 2 DEFINITION OF ODOT M&R ACTIONS 

Description Action Code 

Do nothing 000 

Routine maintenance 010 

Seal coat 020 

Joint crack underseal repair 030 

CPR 040 

Non-structural overlay with minimum repairs 050 

Non-structural overlay with repairs 060 

Structural overlay with minimum repairs 070 

Structural overlay with repairs 080 

Crack and seat 090 

PCC structural overlay 100 

Reconstruction with flexible 110 

Reconstruction with rigid 120 

Reconstruction with composite 130 

individual distresses are combined, and on the basis of expert 
opinion-established limits (1) the lumped distress categories 
are characterized by severity and extent. 

As an example, let a given segment of jointed concrete 
Interstate have medium severity and extensive extent for both 
Joint 1 and Joint 2. This segment also has low severity and 
occasional extent for surface. These values result in Actions 
010, 040, and 080 for Joint 1 and Joint 2, and Action 000 for 
surface. Thus, the possible actions for this pavement are 000, 
010, 040, and 080. (The possible actions from each distress 

TABLE 1 COMPOSITION OF ODOT PCR GROUPS FOR DIFFERENT PAVEMENT TYPES 

Flexible 

Structural 1: 
•potholes 
•bleeding 
•settlement 

Structural 2: 
•rutting 
• wheel track cracking 
• block and transverse 

cracking 
• corrugation 
Surface: 
•ravelling 
•bleeding 
• random cracking 
• crack sealing 

deficiency 
• longitudinal cracking 
• edge cracking 

Composite" 

Surface 1: 
•raveling 
• popouts 
• longitudinal 

cracking 
• crack sealing 

Surface 2: 
• rutting 
• debonding 
• settlement 

Joint I: 
• pressure damage 
•patching 
•pumping 
• shattered slab 

Joint 2: 
• transverse cracking 
• joint reflection 

cracking 
• other reflection 

cracking 

Jointed Concrete 

Surface: 
• surface deterioration 
•pumping 
•settlement 
• longitudinal cracking 

Joint 1: 
• pumping 
• faulting 
• transverse cracking 
• corner break 

Joint 2: 
• pressure damage 
•patching 
• joint spalling 
• seal damage 

"Either jointed concrete or CRC covered with an asphalt overlay. 

CRC 

Pavement: 
•patching 
• settlement 
• transverse cracking 
• longitudinal 

cracking 
• punchout 
Surface: 
• spalling 
• pressure damage 
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TABLE 3 ODOT M&R SELECTION CHART FOR INTERSTATE JOINTED 
CONCRETE PAVEMENTS 

Distress 

Group Severity Occasional 

Joint Low 000 

1 & 2 Medium 010/070 

High 030/080 

Surface Low 000 

Medium 000/010 

High 050 

group are rank-ordered and duplicates eliminated.) Of course, 
only Action 080 (structural overlay with repairs) would repair 
all problems, but the other actions cannot be ruled out as 
being cost-effective when considering a multiyear planning 
period and a finite money supply. 

The above scheme has resulted in reducing the possible 
number of actions from 14 to 4 in the example given , although 
some combinations of pavement distresses may result in more 
actions. Only the highest four actions are chosen if this list 
also contains Actions 000 or 010 (do nothing or routine main­
tenance); if one of these actions is nut part uf the list, Action 
010 is inserted as a fifth action . This is necessary in order to 
deal with budget constraints . 

The same procedure is used in other years of the planning 
horizon. First, the condition of the pavement 1 year after 
applying a particular action is predicted using PCR perfor­
mance prediction models ; then the appropriate tables are used 
to determine the proper actions for these (new) conditions. 
This procedure is carried out for each year in the planning 
period, except that the number of actions is restricted to three 
(or four if Action 010 has to be added) for the second year 
and two (or three if Action 010 has to be added) for the third 
through the sixth years . 

Although this procedure has drastically limited the number 
of possible action plans for a particular pavement segment , 
the resulting number of plans (a maximum of 1,620 plans are 
possible) is still too large to be practical either in real life or 
as far as the optimizer is concerned. Therefore , a set of heu­
ristic rules has been developed to further reduce the number 
of possible plans to be considered by the optimizer. These 
rules have been developed in consultation with ODOT design 
and maintenance engineers. 

By definition, 

kn = number of actions in Yearn, 
en = pavement condition at the beginning of Yearn, 
A,, = action taken in Yearn, and 
Pn = PCR at end of Yearn (after Action A" taken) . 

The rules used to reduce the number of action plans are 
presented in Table 4. The rules to reduce the possible number 
of actions for Year n + 1 are applied according to Table 5 
for Yearn. The following considerations apply: 

Extent 

Frequent Extensive 

000 010 

010/070 010/ 040/ 080 

040/ 090/100 040/ 090/120 

000 000/010 

000/ 010 060 

060 060 

1. Actions An are selected on the basis of pavement con­
dition e,,. The maximum number of actions is five for the first 
year, four for the second year, and three for subsequent years 
(see Rule 3 of Table 4) . 

2. If Action A., <:: 050, P,, = 100; otherwise only those 
distresses directly addressed by Action A n are eliminated. 

3. Using Action A ,,, the amount of distress in each distress 
group expected in Year n + 1 is predicted from the PCR 
performance prediction equations. The condition e" + 1 is ob­
tained from the condition en and the predicted distresses de­
veloped during 1 year. 

4. For mandatory projects k 1 = 1 and the action is that 
specified for the mandatory project for Year n = 1. Actions 
for years n > 1 can be selected in the normal fashion or the 
entire action plan over the planning period can be input as 
mandatory. 

This expert system has been extensively tested and vali­
dated. It is an important part of an efficient multiyeur PMS 
that also provides guidance to the project-level analyses that 

TABLE 4 ODOT RULES FOR REDUCING THE POSSIBLE 
NUMBER OF ACTION PLANS 

Rule No . Rule 

1 . If year n action ~ 020, year n+i action 

:<:; 010. 1 - l, 3 

2 . If year n action 2:, 040, year n+i action$ 

010, i - 1,5 

3 . The maximum number of actions considered 

each year are k 1-4, k2- 3, k 3 to k 6-2 if 

either action 000 or 010 are among the 

feasible actions; otherwise action 010 is 

added to the list and the maximum number 

of actions is increased by one. 

~- If year n action is ~ 020, year n+i action 

cannot equal m; i - 1,4. 
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TABLE 5 APPLICATION OF ODOT RULES FOR YEAR 
n TO DETERMINE FEASIBLE ACTIONS FOR YEAR 
n + 1 

Year n action App l y rule(s) 

000/010 Non e 

020 4 , 1 

<: 040 4,2 , l 

Note: If ~ ... 1 - 0 as a resul t of applying the 

above rules, then ky,. 1 .., 2 and actions are 

000 and 010 

follow the completion of the optimization runs. Complete 
documentation of the entire system was provided by Majid­
zadeh et al. (J). 

SAUDI ARABIAN PMS 

Saudi LP Formulation Illustrating Restriction to 
Feasible M&R Actions 

The Saudi PMS uses a different approach that is more ap­
plicable to the situation with limited historical data. The Saudi 
PMS uses a stochastic network-level optimization that is based 
on a Markov process and automatically updates its condition 
prediction models using Bayesian procedures discussed later. 
In addition, it also uses expert opinion to determine the fea­
sible actions for pavement in any condition state. It explicitly 
addresses the limited number of feasible M&R actions in its 
network optimization models. An example of this is given 
later, but it is worthwhile to briefly describe the three net­
work-level LP models used in this PMS . 

The first is a long-term (or steady state) goal-setting model. 
It determines the optimal condition states of the network so 
that cost is minimized subject to top management's perfor­
mance objectives. In all three models (solved for each stra­
tum) , top management specifies lower and upper bound con­
straints for the minimum and maximum proportion of the 
stratum that should be in desirable and undesirable condition 
states, respectively. 

The second network optimization model is the multiyear 
model that determines the optimal policy to move from the 
current network condition levels to the optimal steady state 
levels determined by the long-term model mentioned in the 
previous paragraph. This model is also solved separately for 
each stratum. If the sum of the desired budget from all strata 
is within the amount that can be obtained, then this is the 
last model run in the sequence of the three optimization models. 
These first two models closely parallel the Arizona models 
( 4) that have become well known. 

The third network model is a financial exigency model that 
ties together all the strata with a global first-year budget con­
straint. This budget constraint links together the individual 
multiyear optimization models described briefly in the pre­
vious paragraph by the use of a Lagrange multiplier and para­
metric programming techniques. 
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Obviously , the computational burden of solving these three 
LP models can be considerable. This is especially true of the 
latter two models that are large linear programs. 

The notation for the multiyear model objective function is 
defined as follows: 

Parameter notation: 

I = index set of condition states ( = 1, 2, ... , n); 
M; = index set of feasible Maintenance Actions a for 

pavement segments in Condition State i (a1 , a2 , 

. . ·,am) ; 
C;0 (s) average cost of applying Maintenance Action a 

to one pavement segment in Stratum s and Con­
dition State i; and 

r = discount rate for computing net present value. 

Decision variable notation: 

w~0 (s) = proportion of the segments in Stratum s that is in 
Condition State i and should receive Maintenance 
Action a in Year t. 

Dependent variable notation: 

C(s) = expected net present value of cost per segment in 
Stratum s of a maintenance policy. 

The multiyear optimization model objective function for 
Stratum s follows: 

T 

Minimize C(s) L L L (1 + r) 1 - 1 w~a(s)C;.(s) (1) 
r= l iE / a E Mi 

As seen in Equation 1, the summation of the objective 
function is over Time t , Condition States i, and Actions a. 
However, instead of all possible Actions a, only those that 
are determined to be feasible (based on expert opinion) for 
Condition State i are allowed as choices in the LP (as indicated 
by the summation over a E M; instead of over all possible 
actions). This procedure results in savings of computational 
resources because only a subset of the possible M&R actions 
is considered for each condition state. 

Saudi Prediction Models 

Expert opinion has played a major role in the development 
of the initial condition prediction equations for the Saudi 
PMS. An extensive search of the literature as well as use of 
mechanistic models was used to develop initial empirical 
regression equations. Because of the lack of historical field 
data, the initial regression equations could not be directly 
developed for actual Saudi conditions. Expert opinion from 
pavement engineers was used to modify published prediction 
models , where available, for the variables used to determine 
the condition state of each pavement segment in the Mar­
kovian-based network optimization models used in this PMS. 

The Saudi PMS classifies a pavement segment into one of 
324 possible condition states on the basis of rutting, cracking, 
delta-cracking (1-year change in cracking), index to first crack, 
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and roughness . Three condition prediction equations are re­
quired for each M&R action within each stratum. Within the 
PMS, there are 20 possible M&R actions (Table 6) and various 
strata (based on functional class, climate, etc.). Condition 
prediction equations for the change in rutting, change in 
roughness, and change in cracking were developed. These 
equations predict the 1-year change in the corresponding dis­
tress for a given M&R action. The change in cracking pre­
diction model is used to produce joint probabilities for crack­
ing and delta-cracking. No prediction equation is required for 
index to first crack because it is a table look-up based on the 
chosen M&R action. 

Past published work for a similar climate in the state of 
Arizona (5) in the United States resulted in empirical linear 
regression models for cracking and roughness; however, the 
literature review could not find any similar empirical predic­
tion equations for rutting. Stepwise regression analysis of 
available data combined with expert opinion was used to de­
velop an empirical regression for rutting. A team of pavement 
engineers worked to modify these equations to adjust them 
as much as possible to conditions in Saudi Arabia. 

Automated annual surveys will be performed for the entire 
pavement network in the Kingdom. This procedure provides 
the field values for the variables defined earlier as well as 
others, e.g., raveling and skid resistance. These annual net­
work surveys will provide the field data necessary to improve 

TABLE 6 LIST OF POSSIBLE M&R ACTIONS FOR SAUDI 
HIGHWAY NETWORK 

Action No . M&R Action 

Do Nothing 

2 Minor Maintenance (Crack Sealing, Pothole , Patching) 

Seal Coat (Sand, Slurry, or Fag Sealine;) 

4 Surface Treatment (Aggregate Chip Seal) 

Overlay with Repair - 30 mm 

Overlay with Repair - 50 mm 

30 mm mill + 30 mm replace 

30 mm mill + 60 mm replace 

50 mm mill + 50 mm replace 

10 50 mm mi 11 + 80 mm rep lace 

11 80 mm mill + 80 mm replace 

12 80 mm mill + 110 mm replace 

13 110 mm mill + 110 mm replace 

14 >110 mm mill + >110 mm replace 

15 50 mm Recycling 

16 80 mm Recycling 

17 110 mm Recycling 

18 > 110 mm Recycling 

19 Reconstruction on Aggregate Base 

20 Reconstruction on Asphalt Concrete Base 
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all the prediction equations. The initial regression equations 
will be automatically adjusted using Bayesian statistical up­
dating techniques. 

Bayesian Updating of Condition Prediction Parameters 

The condition prediction models mentioned earlier generate 
the transition probabilities that drive the Markov-based linear 
programs. They also provide the prior distributions required 
for the Bayesian updating (6) . The regression parameters of 
the prediction models are self-adjusted using new annual sur­
vey data and result in improved transition probabilities. This 
automatic adaptation of the condition prediction models re­
sults in more accurate degradation estimates over time. 

A general description of Bayesian updating of the regres­
sion parameters follows. The notation is generalized from the 
explicit equations used for the condition prediction of indi­
vidual variables. The following notation is to be used: 

Y Vector of dependent values, e.g . , the data for the 
actual change in cracking; 

X Design matrix created from the independent varia­
bles, e.g. , from the variables in the right hand side of 
a condition prediction equation; and 

b Regression parameter vector to be estimated. These 
are the coefficients of the prediction models. 

Then the least squares solution for the initial prediction equa­
tions is 

(2) 

The prior distribution for the b is then a multivariate normal 
(MVN) as follows : 

Prior distribution of b = MVN(b;";" V;n;,) 

where Vini• = covariance matrix of bini•· 
These equations address the development of the initial 

prior distribution. i.e.' vinit becomes the first v prior and binit 
becomes the first bprior· After each Year t, the prior will be 
updated to develop a posterior distribution that will be used 
to calculate updated transition probabilities. Upon comple­
tion of that , the posterior distribution for Year t becomes the 
prior distribution for Year t + 1. In the development of the 
posterior distribution, it is assumed that Year t data have just 
been collected. From this, ordinary least squares parameter 
estimates for Year t data will be used to perform the Bayesian 
updating resulting in posterior parameter estimates. 

For Year t, 

b, = (X'X) - 1X'Y 

V, = Year t covariance matrix for b, (3) 

where X and Y now represent the current year's data . 
Then the posterior distribution for the desired regression 

parameter vector bposi is calculated. 
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Posterior distribution of b = MVN(bp0 ,,, VP051 ) 

where 

(4) 

(5) 

This process will continue annually, and the posterior pa­
rameters will be used to develop the updated transition prob­
abilities. In the following simple example, the regression is 
modeling only a simple straight-line relationship between the 
dependent variable y and a single independent variable x . The 
prior estimates were formed using ordinary least squares with 
the following results: 

y =_ 11.33 + 4.38x 

b~rior = (11.33, 4.38) 

vprior = [ 69.80 

-4.56 

-4.56] 

0.32 

The current survey data (time period t) results in the following 
(using ordinary least squares): 

y = 17.43 + 3.92x 

b; = (17.43 , 3.92) 

v, = [ 31.40 

-2.16 

-2.16] 

0.16 

Following these mathematical formulations results in the fol­
lowing posterior parameter estimates. 

y = 15.56 + 4.04x 

b~OSI = (15.56, 4.04) 

[ 

21.49 

-1.45 

-1.45] 

0.11 
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From these updated parameter coefficients, the desired tran­
sition probabilities are generated. 

CONCLUSION 

Pavement management systems are becoming more sophis­
ticated with the use of both expert opinion and expert systems. 
Two PMSs that make use of expert opinion in reducing com­
putational burden by forcing the network optimization models 
to select from a subset of the possible M&R actions were 
described. Additionally, a Bayesian statistical procedure that 
provides automatic condition prediction model updating was 
given for a Markovian-based linear program. 
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