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Development of a Statistical Decision­
Making Framework for the Field 
Evaluation of Any Automated Pavement 
Distress Measuring Device 

Hos1N LEE, JoE P. MAHONEY, NEWTON C. JACKSON, AND KEITH KAY 

A pavement condition survey is one of the most essential elements 
of any pavement management system. During the last decade, 
significant progress has been made towards automating pavement 
distress survey procedures by use of advanced imaging technology 
without human interference. The procedure of reducing the pave­
ment video image into quantifiable distress data involves a num­
ber of steps that are difficult to quantify . The image processing 
algorithms adopted for the pavements always need to be cali­
brated using the field data for various field conditions. Currently, 
there is no simple and objective statistical procedure available 
for equitably evaluating various automated devices on the basis 
of resulting data. A basic statistical measurement model for es­
timating errors of measurement addresses, at least, the accuracy 
and precision of automated distress measuring devices. Factors 
that must be considered in any statistical decision-making process 
include paired versus individual measurements, threshold versus 
stipulated level of significance concept, and Type I versus Type 
II errors. Because the statistical measurement model described 
is general, it can be applied for evaluating any automated pave­
ment distress measuring device. 

A pavement distress survey is one of the most essential ele­
ments of any pavement management system. Pavement dis­
tress surveys usually involve visual examinations of pavement 
surfaces. The information collected from this type of survey 
can be used to document the overall condition of a pavement 
network, evaluate the performance of individual pavements, 
and help determine appropriate rehabilitation and mainte­
nance strategies. 

In the past, pavement distress data were normally recorded 
on various forms and transferred to a central file for storage 
and future use. Techniques to automate collection, storage, 
retrieval, and analysis of these data are being developed and 
refined. Several devices that use advanced technology such 
as video imaging have been developed and are being consid­
ered for adoption by various highway agencies. The procedure 
of reducing the video image of pavements into meaningful 
distress data involves a number of heuristic steps that seem 
difficult to analyze. 

In recent years, several research projects were conducted 
for evaluating several automated pavement data collection 
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equipments (1-3). Some previous studies applied subjective 
criteria for evaluating the operational aspects of the equip­
ment such as reliability, consistency, repeatability, usefulness, 
and ease of data processing (4). However, they did not pro­
vide an objective procedure for evaluating the resulting data. 
One study has recently demonstrated the difficulties in eval­
uating the equipment performance and identifying the pres­
ence and magnitude of various types of error involved with 
the automated distress data collection process (5). There ex­
ists a need for a simple objective procedure that can be used 
for evaluating any automated device used to conduct pave­
ment distress surveys on an equitable basis. 

The problem addressed in this study is to compare a new 
automated distress measuring device against the existing one. 
There is no theoretically absolute values against which the 
new device can be calibrated. The main objective is to present 
a statistical decision-making framework that can be used for 
evaluating any instrument for collecting pavement distress 
data. Statistical problems faced when evaluating new methods 
and equipment against the existing ones are addressed. 

Estimating errors of measurements are emphasized. A sim­
ple and objective statistical model is described. The selected 
automated distress measuring device for this research, Pave­
dex PAS 1, and its field data collection procedures and sta­
tistical analysis results are described by H. Lee in a companion 
paper in this Record. Statistical considerations necessary for 
evaluating any automated distress measuring device are dis­
cussed. 

MOTIVATION 

For highway agencies such as Washington State Department 
of Transportation (WSDOT) that have conducted visual pave­
ment distress surveys for some time, a switch to a new system 
could increase the cost and may create compatibility problems 
with the previously collected historical data. Any such state 
highway agency (SHA) that is satisfied with its currrent dis­
tress survey procedure would likely consider a switch only if 
a substantial increase in accuracy and precision in distress 
data would result from the new measuring system. 

However, the situation could be the opposite, such that a 
certain SHA is not happy with its current distress survey pro­
cedure and is looking for a new method of conducting distress 
surveys. Any such SHA would consider a switch even if a 
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small increase in accuracy and repeatability in data would 
result from the new pavement distress measuring system. 

Different situations currently existing in each SHA would 
determine the magnitude of the errors that the agency would 
be willing to tolerate in the statistical decision-making process. 
The statistical evaluation procedure for a new distress measur­
ing system should be designed to minimize the overall decision 
errors with respect to either adopting or rejecting a new 
system. 

Usually, the sample data are collected from the field to aid 
the highway engineer in any decision-making process. The 
statistical parameters computed from the sample data are to 
be used to test any decision hypothesis. The hypothesis to be 
tested in this research project is simply whether the new au­
tomated distress survey system can measure the true distress 
of the pavement as well or better than the old system. 

PAIRED VERSUS INDIVIDUAL MEASUREMENTS 

Two sets of pavement distress data were collected from the 
same pavement sections located around the city of Spokane, 
Washington, by both the Pavedex PAS 1 device and the hand­
mapping procedure for this research (H. Lee in a companion 
paper in this Record). The hypothesis-testing procedure adopted 
for the research used the differences between paired measure­
ments instead of individual measurements. The two groups 
of measurements, one collected by the Pavedex PAS 1 device 
and the other by hand-mapping procedures, could not be 
treated as independent because they were collected from iden­
tical sections. Therefore, paired-comparison methodology 
seemed to be a logical choice for this study. 

Furthermore, pairing would control the effects of the ex­
traneous factors that could cause significant differences in 
means and variances. Pairing will reduce the variance intro­
duced by the extraneous factors and thereby increase the 
power of the statistical test. By using maldn:u pairs, v a1 iauilil y 
of distress amount among a number of sample pavement sec­
tions can be made as small as possible (6). Another advantage 
of pairing includes placing of fewer restrictions on the data 
sets such that the samples need not be independent and two 
separate populations need not be assumed to have equal var­
iance (7,8). 

STATISTICAL MEASUREMENT MODEL 

Any measurements are composed of two parts; one is the true 
value and the other is the measurement error. In general, it 
is difficult to separate the measurement error from the true 
value (9). For example, if the amount of longitudinal cracking 
that is measured by Pavedex PAS 1 device is, say, 15 ft, then 
it is not known what part of 15 ft is the error of measurement. 
With such a single measurement, it is impossible to separate 
an error of measurement from the true value. Precision can 
be defined as a measure of the variation in the errors of 
measurement (10). The automated distress measuring device 
would possess the utmost in precision if all the errors of mea­
surement were zero (or equal). 

A problem in which two instruments are used simultane­
ously to make measurements has been extensively discussed 
by several authors (9,11,12). A technique for separating mea­
surement error from the true value has been presented and 
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significance tests for these estimators were provided (13,14). 
Such a technique was applied to evaluating an automated 
pavement distress measuring device. 

Assume that two measurements made on each pavement 
section by two different methods are denoted by X; and Y;, 
where the subscript i stands for the ith pavement section in 
a random sample. Let bx and by represent the average bias 
errors for distress measuring devices X (new automated de­
vice) and Y (hand-mapping procedure), respectively . The t; 

value is the true but unknown distress value of the ith pave­
ment section and ex; and ey; are measurement errors and are 
assumed to be independent and normally distributed with 
mean zero. The basic statistical model can be written (11) as 

In comparing these two distress-measuring procedures, two 
tests are of interest; one concerns the magnitude of the biases 
bx and b)., and the other is random measurement errors ex; 
and ey;· The unbiased estimate of the difference (bx - by) is 
the difference between the average of all the measurements 
by procedures X and Y. If the average bias of (bx - by) is 
equal to zero, then the errors of measurements average out 
to zero and the average observed value would be accurate; 
but on the other hand, the measurements may vary consid­
erably from one measurement to another. In order to deter­
mine the precision of the measurement, lhe amuunl of vari­
ation in the quantities of ex; and ey; should be examined (9). 

In order to estimate the accuracy of an automated distress 
measuring device the paired t test can be performed on the 
differences between measurements by two different distress 
measuring procedures. The theoretical sampling distribution 
of the differences may be assumed to be a t distribution with 
a mean of zero and standard deviation that is the estimated 
slanuaru t:nur of Lht: difference (7). Por hypothesis test of 
bias errors, the paired t statistic can be used to determine the 
probability of Type I errors by finding the area in the ta:il of 
the t distribution. 

By making repeated measurements from the same pave­
ment section many times, it can be assumed that there is no 
bias in the measurements. This repeated sampling practice 
would allow estimating standard errors directly, which is de­
fined as the precision of the automated distress measuring 
device. The problems of significance tests for judging whether 
ex; - ey; values differ significantly from zero need to be further 
investigated. For this research, a coefficient of variation that 
was based on the repeated measurements by the automated 
distress measuring device was adopted for precision defini­
tion. The results from the analysis of variance using various 
sets of distress measurement data are presented by H. Lee in 
a companion paper in this Record. The following sections 
discuss the basic statistical decision-making concepts that must 
be considered (but are often avoided) in most statistical 
decision-making procedures. 

THRESHOLD VERSUS STIPULATED LEVEL OF 
SIGNIFICANCE 

A hypothesis can be either accepted or rejected depending 
on the level of significance (a) selected. The question is how 
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close the sample average should be to be considered as the 
same as the true value. The acceptance region for this true 
hypothesis will be determined by the selected level of signif­
icance. Therefore, any hypothesis test should be properly 
designed through consideration of different types of and a 
tolerable amount of errors based on different levels of sig­
nificance. 

A natural question to ask at this point is, what level of 
significance should be used? Common values that are most 
often used in practice are 0.01, 0.05, and 0.10, but the ra­
tionale for the selection of a particular level of significance is 
not usually discussed. For example, the level of significance 
of 0.01 was used for evaluating nuclear density gauges (15) . 
What if the level of significance was set at 0.05 instead of 
0.01? There is no one universal answer to the question of 
what level of significance should be used. Indeed, different 
individuals including statisticians will select different levels of 
significance for the same hypothesis test (16) . 

One way to answer this question is to compute the threshold 
level of significance that will just barely cause the hypothesis 
to be rejected . Normally , in the past, the hypothesis tests 
were conducted in three steps: 

1. Determine the level of significance (say, 0.1), 
2. Compute the sample statistics, and 
3. Reject (or accept) the hypothesis. 

This procedure is simple and straightforward. But, what if 
the level of significance was set at 0.05 instead of 0.1? Then, 
the procedure must be repeated for any different level of 
significance. For example, suppose the level of significance 
was set at 0.1, the test was performed, and the hypothesis 
was rejected. Suppose the threshold level of significance that 
would just barely cause the hypothesis to be rejected is then 
computed as 0.02. This means that even if the level of sig­
nificance had been set at 0.05 instead of 0.1, the hypothesis 
would still have been rejected. However, if the level of sig­
nificance had been set at 0.01, then the hypothesis should 
have been accepted. 

Instead of determining whether the hypothesis should be 
rejected for the stipulated level of significance, the threshold 
level of significance was computed and used throughout this 
research. The threshold level concept seems more compli­
cated than the stipulated level of significance concept. But, 
this approach allows the highway engineer to make the final 
decision through easily asking what-if questions with regard 
to different levels of significance. Furthermore, this computed 
threshold level of significance will provide the highway en­
gineer with the additional insight into how strong a conviction 
should be held with regard to his decision (16). 

TYPE I VERSUS TYPE II ERRORS 

As previously discussed, the hypothesis testing method is to 
choose a decision procedure so that there would be a mini­
mum probability of making an incorrect decision (17). There 
are two ways that errors can be made in evaluating the new 
automated device . For example, WSDOT could conclude that 
the new device (Pavedex) does not meet the accuracy re­
quirements when, in fact, it does. In some cases, WSDOT 
can conclude the Pavedex device meets the accuracy require-
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ments when, in fact, it does not. The former is the Pavedex's 
risk (called Type I error) , and the latter is WSDOT's risk 
(called Type II error). Because making an incorrect decision 
is always possible, it becomes desirable to compute the prob­
abilities associated with those errors. 

The probability of rejecting the null hypothesis when it is 
true (Pavedex's risk) is denoted by a, and the probability of 
accepting the hypothesis when it is false (WSDOT's risk) is 
denoted by 13. In other words, a is the probability of Type I 
error occurrence, and 13 is the probability of Type II error 
occurrence (17); a is often called the level of significance. 

The Type I and Type II errors are typically shown in Figure 
1. Further, the distribution of both the null hypothesis and 
the alternate hypothesis are schematically shown in Figure 2. 
The area with horizontal lines in Figure 2 represents the prob­
ability of Type I error, and the area with vertical lines repre­
sents the probability of Type II error. As shown in Figure 2, 
Type I error can be made only when the null hypothesis is 
true as determined from the probability distribution of the 
null hypothesis. 

The Type II error can be made only when the null hy­
pothesis is false, and requires the probability distribution of 
the alternate hypothesis. The probability of Type II error is 
difficult to determine because it only occurs when the true 
mean is different from the mean of the null hypothesis. There­
fore, the probability of Type II error varies with the magni­
tude of that difference. As shown in Figure 2, the probabilities 
of Type I and Type II errors are in general inversely related, 
i.e., the larger the probability of Type I error (a), the smaller 
the probability of Type II error (13) (17) . 

Assume that the hypothesis that there is no significant dif­
ference between two sets of measurements of longitudinal 
cracking can be rejected with the probability of Type I error 

Decision 
Accept Null Reject Null 
Hypothesis Hypothesis 

T Null correct Type I 
Hypothesis decision error 

t 
h Alternate Type II correct 

Hypothesis 
error decision 

FIGURE 1 Two types of errors in hypothesis 
testing. 

Null 
Hypothesis 

"'-.... 

Type I Error 

Alternate 
Hypothesis 

Type II Error 

FIGURE 2 Distribution of the null and 
alternate hypotheses. 
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of 0.13. In other words, on the basis of the sample data, the 
longitudinal cracking data measured by the new automated 
device are different from the data measured by the hand­
mapping procedure and a Type I error could be made with 
approximately 13 percent probability (i.e., this conclusion will 
be wrong 13 times out of 100). If this probability of Type I 
error seems too high , then accept the hypothesis that the 
Pavedex device is as good as the hand-mapping procedure 
with respect to longitudinal cracking. 

Further, additional checks can be made with regard to the 
hypothesis test. If the null hypothesis is to be accepted, then 
the Type II error needs to be determined because this error 
is the risk the WSDOT takes when accepting a false hypoth­
esis. However, the probability of a Type II error is difficult 
to determine because the probabilities vary with the mean 
value of the alternate hypothesis . 

However, if the mean of the alternate hypothesis is known, 
the probability of Type II error can be obtained by computing 
the area under the distribution of the alternate hypothesis for 
the acceptance region as previously determined on the basis 
of the stipulated level of significance. As an example, for 
longitudinal cracking measurements, assume that the hypoth-

Null 

Hypothesis 

meanO ""'-.... 
s tandard tmur 4.57 leet ~ 

Probabilily of 

Type II Error 

of 0.32 

Alternale 

Hypothesis 

/mean 10feet 

FIGURE 3 Probability of Type II error of 0.32 for 
longitudinal cracking with mean of 10 ft for alternate 
hypothesis. 

Null 

Hypothesis 

mean O feet '­
standard error 4.57 foot "'a. 

Sign ificance 
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esis was accepted at the stipulated significance level of 0.10 
(say, 10 percent probability of making Type I error allowed 
by WSDOT) . The mean value of the alternate hypothesis is 
assumed to be the 10-ft difference in measuring longitudinal 
cracking. The Type II error can be computed by finding the 
area under the t distribution function of the alternate hy­
pothesis between the acceptance boundaries for the 0.10 level 
of significance. 

As shown in Figure 3, the computed Type II error is 0.32. 
This Type II error seems too high; thus the decision to accept 
the null hypothesis at the level of significance of 0.10 should 
be cautioned. However, this Type 11 error can be reduced by 

1. Assuming the mean value of the alternate hypothesis 
would be more different from that of the original hypothesis 
(e .g., assuming 15 ft of difference instead of 10 ft); 

2. Increasing the stipulated level of significance (e.g., in­
creasing the level of significance up to the threshold ex of 0.13 
instead of 0.10); and 

3. Incre.asing the number of samples. 

For example, if the mean value of alternate hypothesis is 
assumed to be 15 ft instead of 10 ft, then the probability of 
Type II error is significantly reduced to 0.06 from 0.32, as 
shown in Figure 4. In general, it is difficult to accurately 
estimate the probability of Type II error, and it could be 
reduced to an acceptable level as needed. Therefore, only 
Type I error is considered in this study, like most other 
statistical decision-making procedures used in practice. 

SUMMARY AND CONCLUSIONS 

The purpose is not to evaluate a specific pavement distress 
measuring device about its operating characteristics but to 
present a simple and objective statistical decision-making 
framework for evaluating the relative accuracy and precision 
of an automated distress-measuring device . The presented 
statistical model is general , and can be applied for evaluating 
any automated distress-measuring device. The rationale for 
selecting the most appropriate statistical model for the prob­
lem has been discussed. 

Alternate 

Hypothesis 

/ mean 15feet 

~ Measurernon1 Diffe rences 
In Linear Fool of 
Longitudinal Crackitig 

FIGURE 4 Probability of Type II error of 0.06 for longitudinal cracking 
with mean of 15 ft for alternate hypothesis. 
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There always exist some measurement errors in any dis­
tress-measuring device. The overall decision as to whether 
the measurement error is significant or not depends on factors 
such as needs in the agency for the new survey method, the 
type and amount of errors allowed, and the validity of sam­
pling and data collection procedures. A valid statistical de­
cision-making framework that can be used for evaluating the 
accuracy and precision of any pavement distress measuring 
device has been demonstrated. 

Several devices that use advanced technology such as video 
imaging have been developed and are being considered for 
adoption by many highway agencies. However, the procedure 
of reducing the video image data into meaningful distress data 
involves a number of steps that are difficult to quantify. The 
heuristic image-processing algorithms adopted for the pave­
ments must be calibrated using the field data for various field 
conditions. Therefore, the statistical decision-making frame­
work described is timely and appropriate, and addresses an 
important problem facing highway engineers who must eval­
uate alternate procedures for equitably evaluating various types 
of automated distress-measuring device. 
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