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Optimal Pricing Policies for Temporary 
Storage at Ports 

BERNARDO DE CASTILHO AND CARLOS F. DAGANZO 

Pricing schemes for temporary storage facilities (sheds) at ports 
are examined in this paper. It is recognized that shippers respond 
to pricing changes by choosing storage times that maximize their 
profit . Two types of strategies are considered. Nondiscriminatory 
strategies set the shed storage charges as a function of shipment 
volume and time in storage alone (the same for all shippers); they 
do not require much knowledge about the shippers' behavior and 
can be found easily. Discriminatory strategies have the potential 
for improved efficiency but require more information. In some 
instances, identified in this report , nondiscriminatory strategies 
can be just as efficient as their discriminatory counterparts. If the 
demand is steady and there is no alternative storage site, we find 
that shed prices should increase linearly with time, at a rate that 
will prevent overflows without causing undue hardship to users. 
If the demand is heavy, then the shed should be close to capacity 
most of the time. There is no need for discrimination. Stochastic 
fluctuations in demand complicate matters slightly because they 
may make it worthwhile to increase shed prices at an increasing 
rate with time and to discriminate across shippers. If overflow 
can be sent to a remotely located warehouse, there is more flex
ibility and the pricing strategies are almost as simple. Two prob
lems are examined in this paper: finding the optimal shed prices 
for a given warehouse price and finding both sets of prices jointly. 
A computer spreadsheet can be used to find the best pricing 
schemes. 

The operation of temporary storage facilities can be improved 
with the adoption of rational pricing schemes. This introduc
tory section examines current pricing practices for port sheds 
and the body of the paper presents more refined policies that 
take into account the user's response to pricing changes. 

Transit sheds are buildings located within ports-usually 
alongside cargo berths-used for receiving, storing, and han
dling various types of in-transit cargo . They provide safe and 
convenient storage while freight waits for such administrative 
formalities as customs clearance and the processing of ship
ping docnments. Transit sheds also act as buffer zones be
tween fast ship-shore flow and the slower shore-inland goods 
movement. 

Within the sheds , import cargo is broken down into small 
consignments for easy access when the overland shippers come 
individually to claim it. Conversely, export loads for a specific 
ship are consolidated in the shed as they arrive, ensuring that 
they can be retrieved in the order prescribed by the ship
stowage plan. 

Warehouses perform a somewhat different function. Re
motely located warehouses are subject to much Jess severe 
capacity constraints than the sheds but require additional cargo 
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handling; this makes them attractive for longer term storage 
only. 

Shed management directly affects overall port perfor
mance . When sheds are congested, they cannot perform their 
function as buffers for the flow of goods, and this hampers 
the efficient loading of vessels and increases their turnaround 
times. Shortages in storage space may also increase costs as 
a result of additional cargo handling , insurance premiums paid 
for deteriorated or damaged goods , and shippers' failure to 
meet delivery dates. Finally, shed congestion may force ship
pers to use warehouses to store relatively fast-moving cargo, 
increasing traffic between port, warehouses, and land trans
portation terminals . 

Clearly, adequate pricing policies must avoid congestion by 
controlling the average cargo stay in the sheds . The impor
tance of this principle is recognized in practice. According to 
a 1987 United Nations Conference on Trade and Develop
ment (UNCTAD) report, 

In an Asian port , the demur rage rates for transit sheds were 
quadrupled to make it unprofitable for consignees to use the 
transit sheds for warehousing. The result was that congestion 
was considerably reduced. (J) 

Modern container terminals, prevalent in industrialized coun
tries, also need temporary storage areas within the terminal 
to serve as buffer zones between containerships and trucks or 
trains . The need to avoid abusive use of these areas is also 
clear and can be illustrated in practice. For example, at the 
TransBay Terminal in Oakland, California, a fee is imposed 
on containers that arrive more than ten days before their 
scheduled departure date (2) . 

Of course , if shippers are encouraged to reduce their transit 
time so much that the storage facility is underutilized, the 
result-wasted capacity and shipper inconvenience-is also 
undesirable. How efficient pricing schemes can be developed 
for a variety of situations is demonstrated in this report. 

In an UNCTAD study, which analyzed more than 50 ports 
(3), it was determined that most current pricing policies for 
transit sheds exhibit the following features: 

1. A fixed time period of free storage, which starts when 
the goods are deposited in the shed. 

2. Storage fees that are proportional to either the storage 
area occupied, the cargo weight, or the cargo volume, de
pending on the commodity. (The discussion here will be phrased 
in terms of volume, but no generality is lost if most of the 
commodities are priced on the same basis.) The storage fee 
per unit volume will be called price from now on . 

3. Price per unit volume increases with the excess transit 
Lime after the free period. Tariffs-defined here as the stor-
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age charge per unit volume and unit time-are either constant 
(in about 20 percent of the cases) or increase with time. Stor
age times are normally measured in days. 

Imakita ( 4) describes a simple model in which storage rime 
varies acros shippers but is insen itive to price and in which 
a remote warehouse accommodates the shippers that find the 
shed too expensive. 

Because storage times change across shippers, a shed tariff 
increase does not affect all the shippers equally. If some de
cide to switch from the shed to the warehouse, the volume 
stored in the shed will change. The relationship between pric
ing policy and various measures of performance (shed accu
mulation, shed revenue, warehouse flow, etc.) is now intro
duced as a prelude to the elastic demand models object of 
this paper. The following variables are used: 

q port's cargo flow (in volume units per 
unit time); 

q, flow through the shed; 
qw flow through the warehouse (q = q, + 

qw); 
C = static shed capacity; that is, the maximum 

cargo volume that can be stored in the 
shed at any given time (warehouses are 
assumed to have infinite capacity); 

F.,{t) proportion of the port's cargo flow that 
is stored for no more than t time units, 
assumed to be independent of pricing and 
storage locale [this function can be viewed 
as a cumulative probability distribution 
function for the time in storage T of a 
randomly chosen flow unit; the corre
sponding probability density function is 
denoted f .,{ t) J; 

Pw(t) and p,(t) warehouse and shed prices (in dollars per 
unit volume) as functions of time in stor
age; and 

t 0 indifference time in storage: Pw(t0
) = 

p,(tD). 

If shed prices are less than warehouse prices for short stays 
but escalate faster with time (.logically , the bed's marginal 
tariff should be higher) then the indifference time, if it exists, 
will be unique. Cost-conscious shippers will choose the shed 
if T < t0 , and the warehouse if T > t 0 (see Figure 1). 

The flow through the shed is then 

q, = q Fr(t 0 ) (1) 

and the revenue is p,(t0) q Fy(t0). If for a given r0 the shed 
capacity is never exceeded, the average volume in torage can 
be viewed as the average queue length in a rnultiserver queueing 
system with an infinite number of parallel channels. The av
erage volume vavg in storage is therefore 

l
,o 

vavg = q E(T I T<t 0
) = q 0 f.(t) I dt (2) 

If stochastic fluctuations in V can be ignored, the shed will 
not overflow if V.vg ::; C. Therefore, we can view V,.v~ as the 
shed capacity c,.q required to avoid overflow. With stochastic 
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FIGURE I Typical shed and warehouse 
price functions. 
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fluctuations, considered later, Ceq must be appreciably larger 
than v.vg if overflow is to be unlikely. 

Interest here is in the case where C is not sufficient to 
accommodate all the traffic: q E(T) > C. Operations will then 
be most efficient if the shed operates near capacity. Definitely, 
this is to the advantage of the shippers because as much flow 
as possible then avoid the warehou e. Maximizing utilization 
doe not nece ari ly corre pond to maximizing shed revenue, 
but rhis i likely lo be a secondary objective for the terminal 
operator; minimizing the operating cosl added by traffic to 
the warehou e i likely to be of greater importance, e pecially 
if there is competition from or.her ports. 

Because V.vs increases with 1°, full shed utilization without 
overflow is achieved if the hed price function 's indifference 
point t 0 satisfies Equation 2: t0 can be found numerically for 
any given fr(t). 

Any hed price function p,(t) that intersects Pw(t) at uch a 
1° (and such that p (1) < Pw(t) fort < 1°, and p .(t) > Pw(r) for 
t > 1n) will result in full shed utilization and no overflow. 
Thus , rhere i an infinite number of shed price functions that 
satisfy the optimali ty condition. Although cargo flow patterns 
and storage utilization are fixed if 1° i given the form of p,(r) 
in the interval [O 1°) does influence the cash flow among the 
warehou e , the hed, and the . hipper. Figure 2 depicts two 
price functions with identical shed utilization: p~(t) favor the 
shipper , with low fees and p;(t) maximizes shed revenue. 

An in-between linear price function would eem adequate 
in this case . Although constant tariffs have their advocates 
(5), nonlinear price functions (with increa ing tariffs for longer 
stays) can be effective in some of the cenarios about to be 
examined. 

The model ju t described a sumes that flow and length of 
stay are independent of storage prices. Although it is rea on
able to assume that the volume hipped is independent of 
storage prices-after all, these represent a relatively small 
fraction of the toraJ tran ponation costs incurred by the 
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FIGURE 2 "Equivalent" shed price 
functions. 
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shipper-the same cannot be said for the time in storage. 
More likely, as storage prices increase, shippers will try to 
reduce the time in storage and Fr(t) will shift towards shorter 
stays. 

If shed tariffs were increased to eliminate overflows as rec
ommended, both the indifference time and the average shed 
storage time would decline. As a result, even with constant 
throughput, the average shed accumulation would be less than 
predicted and some shed space would be wasted. Clearly, if 
storage times depend on price, the method suggested under
estimates the effect of price changes. Thus in this paper, total 
cargo throughput is considered given, but its accumulation is 
assumed to depend on storage prices. 

Attempts are made to overcome the limitations of this model 
in the remainder of this paper. The next section introduces a 
model of shipper behavior that attempts to explain how ship
pers choose their storage time. The following section exam
ines situations without a warehouse, under both deterministic 
and stochastic demand, and the final section adds the ware
house. The amount of information needed to implement each 
policy is discussed, as well as the policies themselves. Both 
discriminating strategies (which offer different tariffs to dif
ferent customers) and nondiscriminating strategies are con
sidered. The calculations can be easily automated in spread
sheet form and numerical examples are presented. 

SHIPPER BEHAVIOR 

Shipper costs can be classified as moving expenses (including 
transportation and handling) and holding costs (capital tied 
up in inventory and storage rent costs) (6) . Moving costs tend 
to decrease with time in storage , t, as cargo can then be 
consolidated into more efficient shipments. Holding costs, on 
the contrary, increase with time in storage, t. It has already 
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been shown that the rent costs-represented by the price 
functions p,(t) and Pw(t)-usually increase with t. 

Here interest is in examining the behavior of a cost
minimizing shipper when the storage rent price functions are 
changed. The sum of all the logistics costs , not including the 
port storage charges, is called external costs. They typically 
decrease with t when tis small, eventually reaching a minimum 
and then increasing. (Fort close to zero, shippers would have 
to retrieve items from the shed on short notice, which would 
be expensive. As t increases the external costs decrease, be
cause items can then be carried in larger batches, which re
duces moving costs-inventory costs are a negligible part of 
the external costs for small t . If t continues to increase , the 
moving cost economies of scale eventually disappear, but in
ventory costs continue to increase; as a result, the external 
cost must eventually increase.) 

The external savings function, s(I), represents the shipper's 
external cost savings (per unit volume) if the freight is stored 
near the port for an average of t days rather than being col
lected on the first day. By definition, the savings should vanish 
for small t; in most cases s(t) should be concave with a single 
maximum . In our examples, s(t) will be approximated by a 
quadratic function. (In reality, s(t) should be determined from 
observed data. The quadratic form is used for the examples 
because it is likely to be a good approximation and because 
it yields simple and intuitive mathematical results.] 

Presented with a storage price function p(t) , the shipper is 
assumed to choose the length of stay ( that maximizes its 
actual (net) savings: s(t) - p(t). This is represented by the 
vertical separation between the two curves in Figure 3a. For 
the optimal (, the marginal savings obtained by using the 
storage must equal its marginal cost . This can be written as 

s'(t) = p'(t') . (3) 

In practice, it is easier to estimate s'(t) than s(t) . Because s'(t) 
suffices to determine ( (see Figure 3b), the marginal savings 
and storage price curves s'(t) and p'(t) are often worked with . 
' Additional measures of performance obtained from the 

marginal curves include the shed/warehouse revenue per unit 
flow : 

p(t') = p(O) + r p'(t) dt (4) 

The shipper's total savings per unit flow, eyual Lu lhe area 
between s'(t) and p'(t) in the interval (O,(] (see Figure 3b): 

s(t) - p(t') = s(O) - p(O) + r (s'(t) - p'(t)) dt (5) 

The sum of the storage revenue and the shipper's net sav
ings, corrected by the cost of operating the storage facility 
per unit of flow, h(t), is a measure of total benefit per unit 
flow (or "system benefit") generated by the operation of the 
facility, w. Because h(t) should be nearly independent oft if 
the storage facility is below capacity, it is assumed that it is 
constant, that is, h(t) = h . Thus, the system benefit is 

w = s(t') - h = + r s'(t) dt, (6) 
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Benefit (except for h) 

(b) 

~l) 

Shipper's 
Exlerna l Savings 

t* 
Benefit (except for h) 

FIGURE 3 (a) Savings and price functions 
for one shipper. (b) Marginal savings and 
price functions for one shipper. 

which, except for the constant h, is the shipper savings; that 
is, the area below s'(t) in the interval [O,t] as depicted in 
Figure 3b. Because system benefit is independent of p(t) for 
a given t', any two price fun ·tion yielding the same ( also 
yie ld the same ysrem benefi t. 

Although the tornge/ret rieval cost is as urned to be fixed 
for a given torage facility this co. t can be quite different for 
differe nt facilities. lf a warehou e i remotely loca ted , then 
its fixed storage/retrieval cost, hw, will be much greater than 
the equivalent co. t for a shed , h>. This will become important 
when systems with two storage facilitie · a re con idered , as 
total system benefi t will b used for comparing strategies. 

In later sections, differences across shippers will be cap
tured by difference in their external saving. function .. These 
differences will be the result of the shipp r ·inland locations, 
the value of their freight, and so on. Pricing strategies that 
differentiate across commodities can also be easily con
structed. They are discussed in the conclusion. Figure 4 shows 
the external savings functions for two shippers and a price 
function; it also depicts the marginal savings functions, the 
tariff (marginal storage price) function, the desired storage 
times, and the system benefit per unit flow for the two ship
pers. 

FIGURE 4 (a) Savings and price functions 
for two shippers. (b) Marginal savings and 
price functions for two shippers. 
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One can see at a glance that if the tariffs, p'(t), were to be 
increased, t1 

• and t2 ' would decrease, and so would the total 
system bene fit. Thus, one would like to lower p' (t) as much 
as possible ubject to the storage capacity limita tions . This 
point will be addressed in the next section. 

The relationship between system benefit and tariffs can also 
be captured analytically. If the marginal price p'(t) and mar
ginal external savings s'(t) functions are linear 

p'(t) = ex + p t and 

s'(t) = a - b t 

Then, assuming that a > ex, ( and w are given by 

( = (a - ex)/(b + P) 

w = b(a2 
- cx2

) + 2ap(a - ex _ h 
2(b + p)2 

(7) 

(8) 

(9) 

(10) 

As expected, ( and w decrease if the tariff coefficients (ex 
and p) increase. 
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NO WAREHOUSES 

Deterministic Demand 

In this section, a situation where many shippers must utilize 
a single storage facility is investigated. Each shipper sends or 
receives through the port q; volume units of freight per unit 
time a t a steady rate (Iq1 = q). The external savings function 
for hipper i is denoted s,(t). 

A pricing policy that maximizes system benefit while en
suring that the shed capacity is not exceeded is sought. A 
discriminatory pricing policy would allow different price func
tion for different customer · in the most general case , each 
cu tamer could be offered a different price function p,;(t). A 
noadjscriminatory pricing policy would assume that all ship
per are treated equally, with the same shed price function 
p,(r) for all. Nondiscrimtnatory policies are more common 
but they may a lso be less efficient ince they embody addi
tional restrictions . 

The remainder of this subsection shows that for the current 
situation-with no warehouse and steady demand-discrim
inatory and nondi criminatory strategies are equivalent; in 
fact, a constant tariff is optimal: p"(r) = p;. 

Becau e total system benefit per day. W, only depends on 
the price policy through the equilibrium times t;' for each 
shipper 

" w = 2: q; [s;(t;) - hJ (11) 
i=l 

and because the total freight accumulation in the shed at any 
time is also a function of these variables 

" 
v.vg = 2: q; r:, (12) 

i =J 

only the optimal ( need to be found. Any price functions 
yielding these ( will be optimal. The optimal times maximize 
W, subject to Vavg::; C and t; ~ 0 (for all i). 

If the maximization of system benefit without the capacity 
constraint yields a v.vg strictly smaller than C, then the re
sulting times are optimal. These are the times that maximize 
the individual .>"1 curves , which are obtained for a pricing policy 
with zero tariff. Thus , if heel space is plentiful , then allowing 
free storage maximizes system benefit System qenefit i. 11lso 
maximized if the port charges a fixed price per unit volume 
independent of length of stay provided the charge is so low 
that no shippers are di couraged from u ing the shed . 

If, as is more likely, shed space is at a premium the capacity 
constraint will hold as an equality. Consideration reveals that 
any positive ( must satisfy for optimality 

s;(t;) = o: (13) 

where o: is the Lagrange multiplier for the capacity constraint. 
To achieve this result the discriminatory pricing functions 
must satisfy 

(14) 

Note that o: can be viewed as the optimal tariff at each (. 
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Because it is the same for all i, discrimination is clearly 
unnecessary. A nondiscriminatory pricing function with con
stant tariff should satisfy the above condition. Simply let p,;(t) 
= o:t, for all i, and increase or decrease o: until the average 
volume in the shed closely matches its capacity. 

This simple policy maximizes system benefit without any 
knowledge of individual shipper behavior. 

Example 

Let us consider a simple case where the si(t) are quadratic 
functions s;(t) = a, - b; t. 

For a given o:, the condition {s;(() o:; if t;' > O} yields 

• { ar - o:} t, = max 0, - b-
1
- (15) 

This expre sion recognizes that the shipper can only benefit 
from storage if o: < a;. If o: > a; then the tariffs increase too 
rapidly for the shed to be of use to shipper i. (In Figure 3a, 
the pricing curve would be steeper than the external savings 
curve near the origin, and thus ( = 0.) 

As o: is increased, thus, shippers with the smallest a; are 
excluded from the shed-or are forced to use it for a minimal 
amount of time. If o: is optimal, the remaining shippers must 
use up the shed's capacity; that is 

(16) 

where the summations are only taken for i such that a; > o:. 
A imple exp.re sion for ex is obtained if all the a; are large 
so that no shippers are excluded. The summations in Equation 
16 then are independent of ex, and 

2: q; a/b; - c 
2: q/b; 

(17) 

A simple computer spreadsheet was developed using these 
expressions. The spreadsheet can be used to test different 
price functions when the shipper data are given; the shed price 
functions and the external savings functions are assumed to 
be quadratic. In addition to system benefit, other performance 
measures, such as shed revenue and percent of occupied ca
pacity, are calculated. 

In this example, the optimal shed price function for a sit
uation where five shippers must utilize the shed is calculated. 
The data set is as follows: 

Shipper 1 

a, 10 
b, 0.5 
q, 500 

2 

11 
0.5 

500 

3 

12 
0.5 

500 

The static shed capacity, C, is 2,000 units. 

4 

13 
0.5 

500 

5 

14 
0.5 

500 

Expression 7 predicts o:' = 8. The spreadsheet confirms 
that nonlinear price functions are inferior and that the best 
pricing policy is indeed to charge a flat rate of $8.00 per unit 
of cargo per day. The resulting system benefit table, showing 
benefit values in thousands of dollars per day for different o: 
and 13, is partially reproduced in the following (negative sys
tem benefit values indicate shed overflow): 
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~ 

ex 0.0 0.1 0.2 

7.00 -235.00 117.20 186.99 
7.25 -141.97 203.19 179.38 
7.50 -38.89 194.70 171.62 
7.75 76.03 186.00 163 .70 
8.00 205 .00 177.08 155 .61 
8.25 194.84 167.95 147.37 
8.50 184.38 158.59 138.97 
8.75 173.59 149.02 130.40 
9.00 162.50 139.24 121.68 

Stochastic Demand 

More realistically, it is now assumed that the volumes shipped 
change from day to day, without any seasonal trend. Then, 
the volume from shipper i arriving on any given day can be 
viewed as the outcome of a random variable Q; with time
independent mean and variance: 

E[Q;] = q; and 

var[Q;] = I; q; 

where I; is a coefficient with volume units. 

(18) 

(19) 

The volume in the shed, V;, can also be viewed as a random 
variable changing from day to day. Because the system is 
ergodic, Little's formula holds and E(V;) = q; t;, where t; is 
the average time in storage for items i. 

The variance of V; depends on the behavior of shippers, 
but the expression 

var[V;] = q; I; I; (20) 

will be used for illustrative purposes. This expression holds 
if shipper i sends (receives) constant size shipments so infre
quently that two of its shipments are almo t never in storage 
imultaneously . (In hat ca e the con rant 11 can be shown to 

repre ent the ·ize of a hipment.) The expression al o ho.Ids 
fo r frequent and variable size shipments, provided that all the 
shipments remain in storage for a fixed time t; . 

If shippers act independently, then the total volume in stor
age V = I V; must satisfy 

E[V] = L q; l; and (21) 

var[V] = L q; t; I; (22) 

Without a warehouse, overflow must be avoided. Thus, the 
capacity constraint is modified as follows: 

( )

112 

2: q; t; + K L q; l; I; :s c, (23) 

where K is a number of standard deviations (comparable with 
3) that will ensure that random fluctuations in the shed's 
accumulation are unlikely to reach its capacity. 

If the coefficients of variation I; are different from zero, 
the Lagrangian optimality condition no longer implie th.at all 
s; (1;) should be equal, as was the case in the deterministic 
problem. It is now 

(24) 
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This indicates that discriminating pricing functions, which al
low shippers with small I; to stay longer, may be desirable . 
The same system benefit level can be achieved with a non
discriminatory price function satisfying p~(() = s;(t;); this 
function will exist if all the t;' are different. 

Because the best nondiscriminatory function is likely to be 
awkwardly shaped, in practice one may want to select the 
best candidate from a family of acceptable price functions, 
even if the resulting system benefit is lower. This problem 
can be solved easily. One would express t; as a function of 
the parameters in the price function, which would then be
come the decision variables of the optimization problem: max
imizing W, subject to the stochastic capacity constraint. Be
cause a reasonable family of functions would only include a 
few parameters (e.g., 3 at most) , the optimization problem 
can be solved easily within the scope of a computer pread
sheet. 

Example 

An example with only two shippers is used because the op
timal solution can then be easily obtained analytically, for 
comparison with the numerical spreadsheet solution. 

The data are as follows: 

Shipper 1 2 

a; IO 12 
b; 0.5 0.5 
q; 500 600 
I; 400 1000 

The safety coefficient, K, is 2, and the shed capacity is still 
2,000 units. 

The analytical solution, obtained using Equation 25, is a 
= 4.075 and fj = 0.204. 

If this price functions were adopted, cargo from Shippers 
1 and 2 would spend 8.414 and 11.254 days in storage, re
spectively, and the average shed accumulation would be 10,955 
units (I q; t; ), with 9 ,045 units of storage to spare as a buffer. 
The total system benefit would be $115,928 per day. 

The spreadsheet finds a = 5.25 and fj = 0.1 as the optimal 
coefficients, yielding a system benefit of $114,447 per day: 

~ 

ex 0.00 0.10 0.20 0.30 

4.25 -858.28 - 872.93 114.41 103.71 
4.50 - 861.13 -875.92 111.47 100.89 
4.75 -864.13 -879.02 108.44 98 .00 
5.00 -867 .30 -882.24 105 .34 95.05 
5.25 -870.63 114.44 102. 15 92.04 
5.50 -874.13 111.00 98 .87 88.97 
5.75 -877.78 107.44 95 .52 85 .83 
6.00 -881.60 103.78 92.08 82.63 
6.25 114.42 100.00 88.56 79.36 

Although the coefficients a and fj are different from the an
alytical one for t in the range of optimality (8 to 12) , the 
two p;(t) and the corresponding times in torage are very 
close. For the new set of param ters, the times would be 7.92 
and 11.25 days (as opposed to 8.414 and 11 .254) . The total 
system benefit in both cases is also similar: $114,437/day ver
sus $115,928/day. 

Although the solution obtained using the spreadsheet is 
marginally worse than the one obtained analytically, the 
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spreadsheet method can be applied to cases in which there 
are many shippers. The spreadsheet also supplies at-a-glance 
informaiion on other measures of performance and can ac
commodate simple constraints easily. 

SHEDS AND WAREHOUSES 

In this section, a case in which cargo can be stored either at 
the shed or at one or more remotely located warehouses is 
analyzed. Although shed capacity is limited, it is assumed that 
enough warehousing space is made available to accommodate 
demand; that is, there is no capacity restriction at the ware
house. Because shed overflows can now be routed to the 
warehouse without serious disruptions to port operation, sto
chastic phenomena need not be considered as explicitly as in 
the previous section. Focus here is on a deterministic model 
and stochastic effects are discussed qualitatively. 

For the maximization of system benefit, it is assumed that 
the cost of sending one unit of flow through the warehouse 
is g.i ven by an increa ' ing function of the time in storage lw:hw(tw). 
Paid by the port, the warehouse or the public (but not by the 
shipper who is charged a fee Pw(tw) for the service), this cost 
accounts for handling in ·ide the warehouse, transportation 
between the port and wareh use, the provision of secure stor
age space, as well as noise and congestion in the surrounding 
area. In most cases, hw(O) is considerably greater than the 
handling cost through the shed h,. 

Two related questions are examined: For a given warehouse 
price function pw(t) outside the port's control, how should the 
shed price function be chosen? If Pw(t) is under the port's 
control, how should the two price functions be chosen jointly? 
The answer to the first question will help with the econd. 

Fixed Warehouse Price Function 

Given shed and warehouse price functions, it is assumed that 
shippers choose the most cost-effective duration and form of 
storage. As before, pricing strategies will be compared on the 
basis of their contribution to system benefit (i.e., joint benefit 
to port and shippers) . It is assumed that the given warehouse 
price function is nondiscriminatory. Therefore, the following 
quantities associated with shipper i are fixed as follows: 

tw; shipper's chosen storage time at the warehouse, as 
explained previously; 

swi shipper's external savings per unit volume if the 
warehouse is used; that is, s;(tw;); 

hw; = cost generated by the shipment of said volume unit: 
hw(tw;); 

Ww; = system benefit generated by the same volume unit: 
Swi - hwi· 

In addition to these constants, the total system benefit gen
erated per day is only a function of the fraction of flow sent 
by each shipper through the shed X;, and the associated time 
in storage t,;. The total system benefit is 

(25) 

If the system benefit obtained when all the flow is routed 
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through the warehouse (a constant, k q;wwJ is subtracted from 
this expression, an equivalent objective function W' is ob
tained: 

(26) 

This expression can be interpreted as the shed's contribution 
to system benefit. We seek the 0 ~ X; s; 1 and I,; 2:: 0 Lhat 
maximize W' while satisfying the shed capacity constraint 

(27) 

A occurred in the previou · e tion , if tw shipper u e the 
shed- (x1, 11,..r1,11) > 0- then their marginal external saving 
mu t be equal: ;(t,1) "" sj 1,1). The argument is ·imple. If 
; > si, then increa ·ing the time in the shed by a mall amount 

t l(q.,x;) for hipper i, and decrea ing .it by e.l(qy:i) for shipper 
j , atisfies all th con traints and increa es y t 111 benefit b 
e (s; - sj) > 0. 

As a result. if the X; are given , the positive t,; in the optimal 
solution must satisfy s; (t,;) = ct for some ct. It is not difficult 
to see along the same arguments that if one shipper j does 
not use the shed, the sj s; ct. Clearly, ct represents a tariff; if 
a was known the t,; could be identified as per the construction 
of Figure 3a, with a price function p,(t) = ct t. The problem 
thus reduces to finding ct and {xJ 

Because the 1., are fix d conditional n et. ~ r a given ct the 
ptimal {x;} are the solution ro a knapsa k m.iximization prob

lem with W' a' the objective function and ~ t/ ~\' ;I" :s as rhe 
constraint. The optimal solution, thus, satisfies 

X; = 0, if [w,;-ww;]lt,i < T, 

0 s; X; :s 1, if[w,;-ww;]lt,; = T, and 

X; = 1, if [w,;-ww;]lt,; > T (28) 

for a constant T that ensures the capacity constraint is met as 
an equality. The resulting system benefit W'(ct) should then 
be compared with the system benefit for other tariffs; the 
largest can be chosen. 

Note that the optimal tariff should be the same for all 
shippers, a happened in tht! previ us ·ecrion. The optim.i l 
splits {x;} can be obtained with di ·criminatory . heel price func
tions (with the right ordinate. a t 1he optimal t., to en ure that 
the shipper's choice is as desired); also as before, this would 
require information on the individual s;(t) functions. 

Nondiscriminatory Policies 

In the absence of this information-or if price functions must 
be kept fair and simple-we may wish to choose a nondis
criminatory price function with constant tariff, pJt) = a t, 
and let each shipper choose its split and storage times. 

The consh·ucti n of Figure 3a reveals that t,; and S;(I,;) are 
decreasing ftanciions of ex. Because the attractiveness of the 
shed to shipper i (as measured by s;(t,;) - ct t,;) decreases with 
ct, X; also decreases with ct. Consequently, both W' and the 
left side of the shed's capacity constraint decrease with ct. 

Obviou ly , thus if one wishes to accommodate the resulting 
shed v lum s without overflow (e.g., to avoid disgruntled 
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customer ), the smallest tariff consistent with the shed's ca
pacity must be optimal. No information is needed to reach 
this decision. 

If the demand varies unpredictably from day to day and 
overflows are to be avoided, the tariff should be a little larger. 
The average accumulation in the shed will then be a little 
smaller than its capacity, allowing the accumulation fluctua
tions to be absorbed. The desired tariff would satisfy 

(29) 

(30) 

(Note that the left side of this equality sti ll decreases with a.) 
If overflows are acceptable, then it may be optimal to set 

a tariff so low that systematic overflows ensue even in the 
deterministic case. But detailed information on the S;(t) is 
needed to determine the precise tariff and the value of W'(a). 
If this information is available, one might want to choose the 
price fun.c.tion fr ma larger family of curv (e.g., quadratic) . 

For a given p,(1) sh ipper i' d cisions (x; and 11) a re known. 
Th se ca n be u ed to determine the l roportion of shed traffic 
that is not diverted to the warehouse, y 

y = min {1, } 
L<J,X; I., 

(31) 

In the deterministic case, if all the shippers have the same 
probability of being routed to the ware h u e (against their 
wishes) , then it is a simple matter to calculate W' (a) 

(32) 

For stochastic demands, the expression for W' is identical, 
but the overflow will be somewhat greater than y. The ap
propriate queueing expression (e.g., for a multichannel queue 
without a buffer, as would apply to tel phone systems) hould 
be used. 

The best price function can be found by testing the members 
of the price function family u ing a spreadsheet. In all case 
though if some traffic is flowing to the warehouse the hed 
must be fully used . 

Example 

In this example, five shippers may use a shed or a warehouse 
for temporary storage. The table below summarizes the data 
for the problem: 

Shipper 1 2 3 4 5 

a, 10 11 12 13 14 
b, 0.5 0.5 0.5 0.5 0.5 
q, 500 500 500 500 500 

The capacity of the shed is 20,000 units, and the warehouse 
is assumed to have unlimited capacity. The handling cost as
sociated with shed usage, h, is 5 $/unit, and use of the ware
house costs hw(t) = 40 + t $/unit. The price of warehouse 
storage to the shipper i. pw(t) = 50 + 2, $/unit. 

lnitially, let us determine a nondiscriminatory policy with 
a constant tariff such that all shed volume can be accom-
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modated without overflow. As discussed earlier, in this case 
the optimal policy is to charge the smallest tariff consistent 
with the capacity of the shed. 

In practice, the desired result cou ld be achieved by starting 
with a very high tariff and decreasing it until th hed reached 
its capacity, or by sta rting with a low tariff and increasing it 
unti l no more shed overflow were ob erved. For th data 
presented in the preceding, the spreadsheet indicates that the 
lowe t no-overflow tariff would be 4.6 $/day/unit. 

If this tariff were adopted, Shippers 1, 2, and 3 would use 
the shed, storing their cargo for about 11, 13, and 15 days, 
respectively. Shippers 4 and 5 would choose to use the ware
hou e for 22 and 24 days. The sheet would be almost fully 
utilized, with no overflow, and the total system benefit gen
erated would be approximately $259,000/day. 

It will now be assumed that all the preceding information 
is available to the shed authority, and pricing policies that 
create . y tematic overflow are considered acceptable. The 
objective is simply to maximize system benefit, which can be 
ace mpli'11ed by ·cuing up a system benefit table analogou 
to the ones in the previous examples as follows. 

CJ. 0.00 0.10 0.20 

2.00 260.00 259.60 254.34 
2.25 260.32 259.07 253.07 
2.50 260.53 258.39 251.64 
2.75 260.61 257.57 253.54 
3.00 260.56 256.59 251.82 
3.25 260.36 255.44 245.63 
3.50 260.00 256.91 242.66 

As this table shows, it is possible to increase system benefit 
by reducing the ·hed tariff to 2.75 $/day/unit. This tariff would 
cause approximately 57 pe r ·ent of the traffic to be routed to 
the warehouse because of shed overflow, but the total system 
benefit would increase to approximately 261,000 $/day. In this 
example, the ava ilability of additional information w uld rep
re. cnt an additional system benefit of about 2,000 $/day. 

Variable Warehouse Price Function 

The X; and t,; that maximize W' remain the same whether pw(t) 
can be changed or not. We have already seen that for a given 
warehou ing price function . there is a discriminating set of 
shed price functions that can achieve the optimum .The que -
tion now is whether the optimum can be achieved without 
discrimination. 

We now show that the optimal system benefit is achieved 
if Pw(t) = h,v(t), the cost of sending a unit of flow through 
the warehouse when the storage time is t, and p,(t) = h, + 
a t, in which the a is the lowest shed tariff that avoids 
overflow. 

With these price functions, the shed times only depend on 
a and are denoted by t,;(a). The shed will be chosen, X; = 1, 
if 

(33) 
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If this inequality is reversed, the shipper prefers the ware
house, X; = O; if the relationship is a pure equality the shipper 
is indifferent about the form of storage. If a is chosen equal 
to T (as small as possible without creating overflow), then 
these conditions are identical to the knapsack condition for 
{x,}, specified in the previous subsection. Therefore , the so
lution is optimal. 

The conclusion is simple: system benefit is maximized if the 
storage facilities are priced at cost and a constant tariff is 
added to the fixed capacity shed to prevent overflows. 

CONCLUSIONS 

Temporary storage facilities and regular warehouses accom
plish di 1inct functions and ·houl<.I therefore be ana lyzed and 
managed differelllly. E. tablishing h d pricing policie · using 
procedures developed for regular torage facili tie r by trial 
and error will usually lead to sub-optimal utilization of the 
facility. 

Efficient u e of temp rary storage facilitie at transporta
tion terminal not ju t ports, can be achieved through the 
adoption of rational pricing policies. T detennin u h pol
icies, management must define th perational objective of 
the facility , taking into account the con equences of overflow. 

Optimal hed pricing policies are affected by th· capaci ty 
of the shed ·. by the characteristics of irs users, and by the 
avai labi lity of warehou . With this information the shed 
pricing strategy that maximize · a given objective e.g . . system 
benefit, bed revenue, a combination of the ·e . etc.) can be 
found using a computer ·preadsheet , as d ' monstratecl in th 
body of this report. If system benefit is the objective, the best 
shed pricing policy often is very simple and can be identified 
analytically. 

Data requirements for the optimization are modest . Even 
in situation in whicb the s1(t) are needed. rhe quadratic ap
proximation. for the savings function s1(1) h uld be adequate 
in most practical ca e . That being Lhe case , the co (ficients 
a, and b, should be easily estimable from shippers' responses 
to pa t rnte changes and/or from shipper urveys. An empirical 
determination of the best functional form for the s,{1) i be
yo nd the cope of thi paper, however as it would require 
before and after data. 

The results of this paper can be u eel to cl velop pricing 
schemes that discriminate across both hipper and comm dity 
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type . Shippers that tran p rt more th an one commodity can 
be simply viewed as an aggregati n of ' ingl -comm dity ship
pers. If one wishes to cliscriminal a ro commoditie only, 
all shippers tran ·p rting th same commodity would be viewed 
as a single shipper. 

The results of this paper apply to terminals other than bulk 
and c()ntainer port , since nothing in the derivations was port 
specific. The model applie. , f r e.xample , t the pricing of 
hort-terrn and Jong-term airpon parking service - if a a first 

approximation we ignore that hw and h, may depend on the 
traveler i. If both parking rates are determined by the airport 
commission then to maximize system benefit these services 
should be priced at c st, with a short-term parking surcharge 
proportional t time . Th surcharge , perhap changing ea
sonally , should be low en ugh to en ure that the short term 
lot is not underutilized. 
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