
so TRANSPORTATION RESEARCH RECORD 1314

Advanced Train Control Systems
Control Flow Development and
Validation

ROBERT G. AYERS

The Railway Association of Canada and the Association of Amer­
ican Railroads initiated the Advanced Train Control Systems
(AT~) project in 1984. The railroads developed an operating
r~qmrements document and contracted a team of engineering
firms (ARINC Research Corporation , Transportation and Dis­
tribution Associate , and Lapp-Hancock, Ltd.) to act as the sys­
tem engineering team. The project then published a technology
~ssessm~nt, a number of draft specifications that defined a phys­
ical architecture , and a preliminary high-level assignment of func­
tional requirements to physical components. It soon became clear
that a method was required to document how the various com­
ponents of ATCS hould cooperate in carrying out railroad op­
erations. In 1987, the first version of this documentation , known
as Control Flows, was produced using the MacDraw software
package and consisted of a set of high-level figures depicting the
application logic. Since that time, rai lroad industry reviews have
rapidly increased the detailed information contained in each flow.
The project quickly outgrew the capabilities of the MacDraw tool
as well as the flow chart format (Easy-Flow) and computer-aided
software engineering tool (STATEMATE) that were subse­
quently adopted. The project abandoned ST ATEMATE in favor
of ADA Syntax Program Design Language, which is readily con­
vertible to software. Logic specifications written in ADA have
been published and are designed to significantly reduce ambi­
guity , enhance maintainability, and provide a solid basis for future
deve_lopment by both the ATCS project and the supplier com­
mumty.

The Advanced Train Control Systems (ATCS) project was
initiated by the Railway Association of Canada (RAC) and
the Association of American Railroads (AAR) in 1984. The
purpose of the project was to develop a series of compre­
hensive and advanced operating systems for the control of
train movement that are considered to be essential for im­
proving safety, productivity, and energy efficiency of rail­
roads . This paper describes the process by which the system
logic was developed starting from operating concepts and pro­
ceeding to detailed software specifications.

OPERATING REQUIREMENTS

The project's first major endeavor was to develop a document
entitled, " Advanced Train Control Systems Operating Re­
quirements." This document enumerated the economic, op­
erating, and safety objectives for ATCS and a set of operating
requirements.

ARINC Research Corporation, MS S-371, 2551 Riva Road, An­
napolis, Md. 21401.

The operating requirements section of the document was
structured as a hierarchical set of lists. At the lowest level of
the hierarchy were short narrative descriptions of individual
requirements. The top level of the hierarchy consisted of six
items:

1. Presence detection, train identification, and location,
2. Track and route integrity,
3. Ancillary systems interface,
4. Switch control,
5. Train control , and
6. Management of train operations.

The operating requirements document did not detail tech­
niques to be used to accomplish the requirements, the com­
ponents of ATCS , or the interfaces among components.

The ATCS project , having established its requirements,
engaged a team led by ARINC Research Corporation to act
as the systems engineer on the project.

TECHNOLOGY ASSESSMENT

The first step in the process of developing a system architec­
ture was to perform a technology assessment. This study looked
at a number of technologies that might benefit ATCS, but
concentrated on technologies supporting three major areas:
vehicle locations systems, data communications systems, and
display systems.

Having determined the likely technologies to be used in
ATCS, the project set out to develop a system architecture
and form, fit, function (F3) specifications for the ATCS com­
ponents. To facilitate this process , committees were estab­
lished that included representatives from the railroads, system
engineers, manufacturers, and system integrators. Partici­
pants from all groups provided input to the specifications;
however, when a committee failed to reach a consensus on
any issue, the railroad representatives voted to determine how
the specifications would be developed.

The committee process led to rapid advances in developing
a system architecture, hardware specifications, and data com­
munications specifications for ATCS. It became clear by 1987
that a method was required to document how the various
components of A TCS should cooperate in carrying out rail­
road operations. This led to the development of the first gen­
eration of Control Flows, which later became known as the

Ayers

"Macintosh Flows" because they were developed on a Mac­
intosh computer using the MacDraw package .

MACINTOSH FLOWS

The Macintosh Flows described each of a number of railroad
operations in a two-page format (Figures 1 and 2). One page
showed the flow of control (at a very high level) and the other
showed data flows among components. These flows were re­
viewed by railroad operations and signal representatives and
updated to reflect their inputs.

The Macintosh Flows were quite useful in validating the
initial assignment of functionality to components and the high­
level view of how ATCS should work with the railroad com­
munity. They had serious shortcomings as design documen­
tation, however, because their high-level view abstracted out
important decision-making processes within components, such
as how the central dispatch computer determined if an au­
thority request was safe to issue.

EASY-FLOW CONTROL FLOWS

The need to document additional details about the operation
of A TCS led to the next generation of Control Flows. These
were developed in a IBM-PC environment using a tool called
Easy-Flow (see Figure 3). These control flows used a more

@II) Fync!loo: Issue MA/WA - Exclusive

Corporals
Data

Syslems

Oala

FIGURE 2 Data flow between components in a Macintosh Flow.

<1I!J) Function; IHue MA/WA - Exclusive

1. Diepllcher requeals MNWA
I

2. ('1) CDC perlOnnS plausYy died<

""'*"! rohnff
OK 1-l----4._No_1_Ny....,~lchet 8. NolKy ~lspalcher

5. ('36) CDC makes reservallon
& pe~orms aaloly chack

OK

10. ('2) CDC/Field sol
& verify roule

a.CDC nollllea dlspalcher
I

9. ('32) Slack remainder
roque81

tfhJltd

part/al or toslrlctlonJ rel used

13. CDC nolKles dlspalcher 8. Nollly dispalChet
I I

14. ('39,40) CDC dellvers 7. Release reservallon
reS1rk:Uon, K applicable

I
15 ('37) CDC slacks remainder

ol requesl

16 ('4) CDC dellvers MNWA
I

17 ('5) OBC conllmls MNWA

I

confirmed not confirmed

19. ('41) OBC resels enlorcemenl 18. ('11) OBCICDC resolve
I excluslve MANIA

20. OBC displays 21 . CDC displays
aulhor"y aulhorlly

FIGURE 1 High-level flow of control in a
Macintosh Flow.

Dal a

Englneman

51

52

I I I DHAN/DOSP

PA'fA'~~A ream OHAH

121 OHAH
reaerve

HA 12091

r~~! r~m

invalid

part1al/
stackable

stack
re1t1ainder

1101 OI AY p•rtial
• •• •nd

ver"~=~ ~oule
12071

ok

foll
I 151 DHAH

issue
applicable
re&1r1ct1on

12171

171 OHAH
etock HA
re1r1atnder

get cancel !+---- -< dec ision f'rorn ,__ _ _
12151

1291 OHAH
reduce

r•quaat to
1Jnetecked

portion of HA

OHAN/DOSP

CBI DMAH
release

remainder of' MA
reservation

12161

FIGURE 3 Easy Flow Control Flows. (continued on next page)

traditional flow chart approach to documentation and were
published in Specification 100. The Easy-Flow control flows
are usually referred to as simply "the control flows."

Along with additional details , the new flows included ad­
ditional structure. The control flows had three levels of
hierarchy:

1. Master Flows, which were a set of tables showing what
events triggered what macro flows to execute;

2. Macro Flows , which were the direct descendant of the
Macintosh flows, in that each macro flow represented how
ATCS components cooperated to carry out a railroad func­
tion; and

3. Micro Flows, which provided additional detail on how a
step in a macro flow was to be performed.

The conversion to Easy-Flow also involved adopting a set
of conventions for describing ATCS activities . First , they
identified the "addressahle entities" or software modules in
each component. Each step in these control flows was con­
structed in a subject-verb-object format. The subjects and
objects were either addressable entities or railroad employ­
ees. The verbs were phrases describing the actions taken .

1391 OHAH
dieplay unable

to deliver
reatrJct1on& on

OOSP

191 OMAH
releaae MA
raaervat ion

12161

1301 no
further
action

TRANSPORTATION RESEARCH RECORD 1314

1121 OHAH otock
remainder of' HA
coquaat 12151

I 141 DHAH
rel•••• 11A
re•arvation

12161

cancel
raqu.at

I 131 DHAH
raleaea

remainder of' MA
reservation

12161

The external messages exchanged between A TCS compo­
nents were identified at the places where these messages were
sent in the flows.

The Easy-Flow control flows were also stored in dBase III ,
which allowed various searches and sorts to be conducted and
reports to be generated .

The Easy-Flow control flows were used by the project to
develop a manual simulation of ATCS. This simulation al­
lowed railroad, industry , and government representatives to
get a much more detailed understanding of how ATCS work .
The simulation was conducted by having people act out the
parts of the various A TCS components in an operating sce­
nario. Message flows were simulated by exchanging paper
forms.

The Easy-Flow control flows were also used as the basis
for developing some pilot projects by North American rail­
roads and have formed the basis for the AUSTRAC version
of the ATCS being developed on the Australian National
Railroad.

Although the Easy-Flow control flows were helpful in de­
fining ATCS functions to a greater degree of detail, they still
had some shortcomings. First, each flow contained a verb that
had only an intuitive meaning. Second, the assignment of

Ayers

11••

deter1Une if no ,,,,_~
conflict •><i•t

with thia
reaerv•tton

1321 OHAH
reeerve

euthor1tbl for
train• location

12091

1201 LAUT
reset

enforcement
11231

1341 OHRH
diapley/ennunci•t•
conflict on OOSP

Of

1191 LTRH
calculate

enforca111ent
curve 11101

FIGURE 3 (continued)

r---0

1231 No
A further -action

1261 Ot1AH 1361 LLOC
1161 OHAH 1181 OHAH note HA 1aaue note receipt

deliver HA to ~A·~~·~osf:w i---- 1n hietoricel of' querw for
LAUT log ICF 1·4·2·11

•top 26

1211 1351 DllAH 1371 lHlH
1171 LAUT invalid LAUT/OHAH decJ.de if new ., .. •end locet ion

volldota HA resolve HA li • H• end at oLB~no'eCac I 101 I conf'l ict dupetch
I 1071 boundor11

valid no

dectde 1• no

OBJECTIVE:

1221 OHAH·1-
'------M train flagged ...

To ieeue proeead 11uthorit1:11 proceed restricted authority, or work
euthorit1:1 to a 1t1ove1r1ent .

Note:

1 · "Oispla~ HA Invalid" always contains the reason f'or the
display·

2 · Thia function 18 only u&ed when the nei..i authority limit& ere
leas restrictive than the previous authoritw·

3 · Dispatcher m11y not have all of options shown dep•nd1ng on

~~:~~~ i ~~r 1 r:~ ::·!~~no~·~!~~~!::~~:!~: n~! ·~=t~~i~ ~:q~::~k
remainder)·

~A ~~·~07.~~~r:t:~t~~r~~~l~f t~ef~::~n~~~ =~~ce:b~!~lly validated

~ioI~t:t:~. 2~8~f 1 1~~!~. :l~h:bout to
answer should be no•

S • In step 32 authority to be
:lauued :la work authority for
train'& reported limits .

7 • In step 34 there 1s a
po&eible lap of outstanding
authorities and with current
loc1111on thie ia being announced ·

I 271 OHAH note
train flagged
not a •rogue"
in historical

log

"'rogue'"

.,..

m1 llllAtl no
decide 1•

tr•1n uuh1n
ntw lJ.l:lt•

~ ..

1251 OHAH
flag train ea
not 11 "rogue"

53

subjects to steps was only intuitive. Third, receipt of a single
message by a component might occur in more than one flow,
leading to ambiguity as to which logic to initiate. Fourth, there
were inconsistencies in the definition of how entities within
components cooperated. Finally, the intuitive and nonrigo­
rous nature of the steps meant that the flows were not and
could not easily be made machinable. Machinability is a key
characteristic necessary for validation of the logic.

cess the communications network. This effort should lead to
a completed prototype of the stack by the end-of 199(and
a testing program is planned for 1992.

The first step in the rehosting process was to define the
software and hardware architecture of ATCS to the CASE
tool. The hardware architecture ("module definition") went
smoothly; however, the attempt to define the software pro­
cesses ("activities") soon led to the discovery of additional
inconsistencies in the entity and function definitions in the
Easy-Flow control flows. CONTROL FLOW VALIDA TOR

These problems with the Easy-Flow control flows and the
need to validate the logic led to the establishment of the
control flow validation (CFV) project (within the ATCS proj­
ect). The CFV project was an attempt to rehost the control
flow logic into an off-the-shelf computer-aided software
engineering (CASE) tool. The tool that was chosen was
STATEMATE by Logix.

The CASE tool is also being used to prototype and test the
communications protocols used by ATCS applications to ac-

The CFV team then went through a process of restructuring
the function and entity definitions to produce an internally
consistent software architecture for ATCS. The architecture
that resulted (see Figure 4) was generic in the sense that it
could be adapted to describe not only ATCS, but any dis­
tributed command and control system. This architecture can
be conceptualized as a grid where a row of items constitutes
all of the software in a single hardware component. A column
of items constitutes the software items in various hardware
components that cooperate to form a function. Each item is

54

Function 1 Function 2 Function 3 Function n

CDC []

OBC

WIU

TFT

FIGURE 4 Components, functions, and basic units define the
software architecture for ATCS.

the software module that performs a function within a com­
ponent, and is termed a basic unit.

In this architecture , an addressable entity became a group
of related (adjacent) items in a row of the grid that shared a
data store. External messages (between hardware compo­
nents) are constrained to flow within a column. Communi­
cation between entities in a hardware component can be ac­
complished in two ways:

1. By the exchange of internal messages (which are con­
strained to flow in rows only), and

2. By the use of utilities , which may use information from
more than one entity's data store to determine a result (e.g. ,
is Device A in front of Train B).

Although the effort to restructure the software architecture
and to prototype the protocol stack using the CASE tool was
quite successful, the attempt to rehost the actual control flow
logic was much less so. The CASE tool provided minimal
support for expressing multiple instances of either hardware
entities or data items. Expressing the situation of two trains
sending location reports was a significant problem for the tool.
The CASE tool also required logic to be defined in a specific
graphical form. The amount of detailed logic that was required
to define ATCS adequately in this form required that either
a very large number of figures be developed or that all of the
accompanying text be moved into separate documents. Fi­
nally, even when the logic was defined in the required graph­
ical form, it was virtually indecipherable as a software
specification.

These problems with the CASE tool led the CFV team to
look for an alternative method for specifying the system logic.
The method had to make producing the specifications straight­
forward. There had to be a readily available method to publish
the specifications. And the specifications ultimately had to be
machinable. In the end, the CFV team decided to use ADA
Syntax Program Design Language (PDL). This decision was
reviewed and approved by the A TCS system engineering task
force . The specifications being developed in this form are

TRANSPORTATION RESEARCH RECORD 1314

variously called the system logic specifications, or the control
flow specifications.

CONTROL FLOW SPECIFICATIONS

The new control flow specifications are based on the ATCS
software architecture developed with the CASE tool. A sep­
arate specification was cieveloped for each component. Each
specification contains a standards and conventions section, a
description of the components functions, and a lower-level
specification for each entity in the component.

The entity specifications describe the entity's purpose, list
the basic units in the entity, and contain a lower-level spec­
ification for each basic unit in the entity. The basic unit spec­
ifications describe the basic unit's purpose and contain a list
of all of the transactions in the basic unit, followed by a lower­
level specification for each transaction in the basic unit .

The transaction specifications contain the real substance of
the control flow specifications. Each transaction defines the
logic to be executed upon occurrence of a unique event or
trigger. The types of triggers in a basic unit are as follows:

1. Initialization of the basic unit,
2. Termination of the basic unit,
3. Receipt of an internal or external message,
4. Expiration of a timer (previously started by the basic

unit), and
5. Other special-purpose triggers used by the stack and ses­

sion manager basic units to interact with the communications
protocols.

Each transaction specification (see Figure 5) contains a header
defining the transaction's purpose, a definition of each con­
dition affecting the flow of logic control in the transaction ,
and the logic of the transaction . The logic sequence defined
for a transaction is assumed to be noninterruptible.

The transaction logic defines what steps (primitive events)
are performed under what conditions and in what order . Low­
level calculations and interactions with data structures are not
shown in the transaction but are carried out by the logic in
the primitive events. The primitive event logic is not devel­
oped and distributed with the specifications but must be de­
veloped by the component manufacturer. Primitive event names
begin with one of a limited set of verbs (e .g., SEND MSG,
GET MSG, or START (TIMERS]) .

Each verb has a description in the specification of what type
of activities it may perform. Each transaction specifies what
conditions (used by the transaction) that a primitive event
must set. The part of the primitive event name following the
verb describes what is to be done (e.g., the SEND MSG verb
is followed by a message numbt:r Lu form a primitive event
(SEND MSG 6 2 1]).

Publication

The system logic was grouped into three major areas (control ,
monitor, and flexibility) . The control flow specifications are
being developed by area. The monitor functions were com­
pleted and published in March 1991. The control functions

A yers

co_9_M_30_78
01

3·Apr·1991 07:43:56
28-Mer-1991 08:47:38

1 with co_9_M_30_78_PRIMITIVES;

55

VAX Ade V2.2·38 Page
[USERS.TMANNING.TRANS]C0_9_M_30_78.AOA;1 (1)

2 ··--- - ------------------------------- - ------------····· - - - -- - -------···-···
3 •· Transaction: CD_9_M_30_78
4 ·· Basic Unit CD_ISSUE_AUTHORITY
5 •• Purpose
6
7
8

This transaction processas message 30.78,
REPLY_VERIFY_ctJRRENT_TRAIN_AUTHORITY_AND_LOC_MSG, which is used
by the dispatcher to indicate th1t the current status of ell
tr1ins is correct 1s displayed.

9

10 · - Created
11 ·· Modified
12 -· Modified

28 March 1991

13 ····---·-·· · ---··-··-·····--····-·-····-········- ---·- ······ · · ··· ·--·· · ····
14 ui.e CD_9_M_30_78_PRIMITIVES;
15 procedure CD_9_M_30_78 is
16
17 -· ebbreviations:
18
19 ·- conditions:
20 -- VERSI011_2 Indicates the revision level of the message is level 2.
21 DEFAULT: TRUE
22 SET BY: GET_MSG_30_78
23
24 begin
25 GET_MSG_30_78;
26 if (VERSI011_2) then
27 SEND_MSG_56_3;
28 SENl>_MSG_50_114;
29

30 else
31 SEND_MSG_42_5;
32 end if;
33 end co_9_M_30_78;
34 pr agma page;

FIGURES Transaction specification.

are scheduled to be completed in December 1991. The flex­
ibility fu.nctions are scheduled to be completed in 1992.

Due to the size of the control flow and message specifi­
cations, they will only be published and distributed on mag­
netic media and only upon receipt of payment from an in­
terested party.

Concurrent with the development of the new control flow
specifications, version control procedures were put into place.
Each future publication of the me sage, data and logic spec­
ifications will have a version number. The project will make
efforts to ensure that versions are backward-compatible to
the extent feasible. This will not include compatibility with
draft specifications. A configuration management plan for
ATCS is underdevelopment and will be relea ed later in 1991.

A tool set to be used with the software and message spec­
ifications is also under development. This tool set will allow
the project to maintain the specification in a controlled man­
ner and also provide facilities for vendors and railroads to
extend the specifications in a consistent manner when adding
proprietary features. This tool set will operate in a VAX/

-· CD_9_M_30_78 1lgorithm

-- process message version 2
·- note results in historical log
-· request dispatcher to verify gang
-· authorities and locations
-- invalid message version
•• version error report to MON_HEALTH

VMS environment using VAX RDB and VAX ADA. The
tool set is scheduled to be available by the end of 1991.

Future Uses

The fact that the software specifications and message speci­
fications are machinable means they can be used for a variety
of possible future projects:

1. Automated consistency checking of the specifications­
some of this will be included in the tool set .

2. Development of an ATCS system model-this would
use the control flow specifications as the engine of a model
that could be developed in a modular fashion. A completed
model would allow A TCS-based railroad operations and sce­
narios to be executed and tested on a computer.

3. Development of prototype components-the addition of
primitive event , transaction scheduling, and protocol stack
logic to the control flows would allow a prototype of a com­
ponent to be developed directly from the specifications.

56

4. Development of production components-the addition
of vitality checking logic to a prototype component, along
with proprietary features, and optimization of selected
transactions for improved execution speed would provide a
vendor with a production component. This technique would
likely reduce both first cost (to develop) and collateral costs
(to maintain and upgrade) the production software , when
compared with conventional software development tech­
niques.

TRANSPORTATION RESEARCH RECORD 1314

CONCLUSION

The development of the control flows over a period of years
has progressed fro m a relatively high-level conceptual over­
view of ATCS to a detailed software specification. This spec­
ification is designed to reduce signifi cantly ambiguity , en­
hance maintainability and provide a solid basis £or future
development by both the ATCS project and the supplier
community.

