
TRANSPORTATION RESEARCH RECORD 1314 63

Prototype and Test Environment for ATCS
Data Communications

DOROTHY A. COLBURN

Advanced Train Control Systems (ATCS) are distributed com­
mand, control, and communications systems that also provide an
infrastructure usable for train control and numerous ancillary
applications. A crucial stage in ATCS development is the veri­
fication of the logic that allows applications to acces this infra­
structure. The communication protocols used to connect appli­
cations in different physical components are de cribed in ATCS
Specification 200 which represents the protocols as finite state
machines using CClTT Recommendation Z.101 notation. These
state machine representations are converted into a statechart
representation in a computer-aided sofrware enginee ring (CASE)
tool. This tool simulates the protocol operations and generates
an ADA prototype of the protocols. The communications be­
tween application · within a physical ATCS component are not
standardized. For prototyping purpose , however, these com­
munications have been modeled as a software bus. The software
bus allows application to communicate with the prototype of the
protocol stack, providing an integrated environment in which the
interactions of applica1ions, the protocols, and the bu may all
be examined and monitored. The prototype code generated by
the CASE tool is supplemented by ADA code developed to sim­
ulate events that would occur within the interactions of the com­
munication protocol. The interdependency of the software bus,
the CASE-generated ADA code and the programmer-developed
ADA code provide an environment for meaningful prototyping
and testing of the access logic, as well as the communications
protocols. lnstance of this prototype may be connected through
a network emulator for use in further testing and prototyping the
ATCS communications architecture.

Advanced Train Control Systems (ATCS) are a joint U.S.­
Canadian endeavor focused on increasing railroad efficiency
and service performance . ATCS computers will automatically
monitor and control train traffic, allowing railroads to im­
prove service while reducing costs through more precise man­
agement of resources (i.e., people, capital equipment, and
fuel). During the last decade, the ATCS program has evolved
from the determination of requirements through the identi­
fication of required components and the writing of perfor­
mance specifications, to the development of procedures for
testing components and complete systems.

The A TCS data communications system structure is based
on the International Standards Organization's Open Systems
Interconnect (OSI) Reference Model (1). This seven-layer
protocol model was selected to define the points of intercon­
nection between systems . Figure 1 shows the relationship be­
tween the OSI model and the ATCS communications archi­
tecture for communications between a dispatch center and a
locomotive computer.

ARINC Research Corporation, 2551 Riva Road, Annapolis , Md.
21401.

The ATCS seven-layer architecture can be divided into two
subsystems: the lower layer protocols (LLP) and the upper
layer protocols (ULP). The LLP provide for the switching
and routing of information, media access control, synchro­
nization, framing, error detection and recovery, and the actual
movement of the bits across a transmission medium. The ULP
provide data formatting and identification, interaction be­
tween applications, and end-to-end data integrity and quality
of service.

TESTING THE ATCS DATA COMMUNICATIONS
SYSTEM

The communications components of A TCS provide function­
ality within the lower three layers of the data communications
system protocol. These are the mobile communications pack­
age, base communications package, front-end processor, and
cluster controller. All seven layers of the protocol are imple­
mented within the end-user computer system.

To test the functionalities of the lower layer communica­
tions components , a communications interoperability tester
(CIT) was developed. This test system, written in the ADA
programming language, allows for a stimulus-response, script­
based-type testing of the four A TCS communications com­
ponents in a simulation environment.

According to ATCS Specification 210, "A central objective
of A TCS is to ensure safe train movements and track occu­
pancies which avoid physical conflict, and other operational
hazards of similar magnitude." To ensure that the imple­
mented ATCS will meet this objective, development of a
simulation model of an ATCS is imperative. As a subset of
simulating an entire ATCS, a working prototype of the com­
munications protocols is being developed.

SELECTION OF A PROTOTYPE MODEL

Some of the advantages of building a prototype are discov­
ering design problems early, spotting system interface prob­
lems from the start , and using the prototype to experiment
with how proposed enhancements and modifications will af­
fect the system (2) .

Fundamental to the success of a prototype is the ability to
develop a good model of the system. As Hoover and Perry
have pointed out, "Models are not true or false, but rather
they are useful and appropriate for the analysis at hand" (3).
The type of model required for the simulation of the ULP
must have the following characteristics : descriptive , discrete,

64 TRANSPORTATION RESEARCH RECORD 1314

ATCI OPERATIOMI

APPLICATION!--; APPLICATION

D~ LA•ELINQ
PRUE N TATI ONi---1' REIEN TAT ION

HANDOffl/TMAN•P.~R• OF CONTROL OF TAAINI
a1aa10N

END TO END DEL IVE RY YER If I CAT I 0 N AND ME llACI E Al IE M I LY
TRAN IP ORT TRANIPORT

ATC a ATCI ATCI ATCI

DA.TAG RAM DATACIAAM DA.TAO RAM DATAGRAM

NETWORIC NETWORK NETWORK .. ~- ·-- · - -- ·-. -- ·- -- -- NITWORI(NETWORK

H DLC

H DLC POLL I NO OR FEC H DLC

LAP a 8ALANCED 8ALANCED BROADCAIT IALANCEI

DATAL INK --·- --- DATA.LINK ----- -- --· --- DATA LINK

Rl282 Rllll
PHY81CAL PHYllCAL , H VII CAL

DllPATCH FRONT END CLUITEA

COMPUTER PROCEeeoR CONTROLLER

FIGURE 1 ATCS data network by OSI layer.

probabilistic, dynamic, and open-loop. The purpose of this
prototype is to describe the system behavior rather than to
optimize the system; therefore, a descriptive model of the
system is required. Data packets, and messages, arrive at
discrete points in time; hence, the system model must be
discrete. The arrival times of these packets and messages
cannot be predicted, requiring that the model be probabilistic.
All communications networks are dynamic, with the number
of messages/packets in queue at any given time being variable .
Finally, a communications network is an open loop; the sys­
tem output is not fed back into the network to modify sub­
sequent outputs, but is consumed by the environment with
which it interacts.

With the required model classified as a discrete event model,
and the objective to simulate the model, the next step is to
select a technique for developing and simulating the system
model. The major tasks in model construction have been
defined as (a) develop a computer program flow chart for the

A 12 3 2

DATA.LINK DATA.LINK --··----- - DATALIMK

·1uav BIT•

CHANNEL
ACCEll R8421

PH VII CAL PHYllCAL PHYllCAL

~

IAIE
RADIO MOalLE LOCOMOTIVE

COMMUHtCATIOWI COMMUMICATIONI
COM P'UTEA/

PAC KAQ E PACKAGE
Dlll'LAY

NOTE 1 ------------ --• ACl<NOWLIDOED/fLOW CONTROLLED LINK

model; (b) select a programming language; (c) provide for
generation of random numbers and collection of performance
measure values in the program; and (d) write and debug the
program code (3).

Two approaches for developing model charts of the system
were identified: the physical flow and the state transition flow.
The pJ1ysical flow approach identifies and diagrams the phys­
ical entities of the system. For the communications network,
this would be the receive and transmit queues, processing
queues, and any internal queues between layers of the pro­
tocol (see Figure 2). The state transition approach uses state
transition diagrams (4) to represent a system. This is an event­
driven approach that u e state variable to describe the sys­
tem (see Figure 3). Both of these approaches are helpful in
understanding and diagramming the intricacies of a system.

The ATCS communications protocols are described in ATCS
Specification 200 as finite tate machines (FSMs) (see Figure
4) using CCITI' Recommendation Z.101 notation (5) .

Proo••• P•okat

I
Race Iva I I Tranamlt I
Queue I I Pecket

RHd RHnemble Tranamll

Packet Packet Packet

FIGURE 2 Physical flow chart example.

Colburn

Walt lor Next Packet

Walt lor Next Packet

Addreuee

Paoket lor
Thia Addreu

FIGURE 3 State transition diagram example.

To/From
Routing

Outbound

Odd
Out

-
Even

Out

I
I

Odd

Sorter

I

Even

65

Statecharts, extensions to FSMs, have been developed and
implemented in ST ATEMATE, a set of tools intended for
the specification , analysis, and design of reactive systems.
ST A TEMA TE was selected for the development of the pro­
totype model for the simulation of the ULP.

ST A TEMA TE allows for the development of the model
from three separate, but related, points of view: structural,
functional, and behavioral (6) . Figure 5 illustrates how these
views are linked together to create a logical model of the
system. The structural view of the model is decomposed into
modules. These modules may describe the actual hardware
components of the system, or they may define the software
components of a system: the subroutines, packages, or tasks.
This view of the system is modeled using module-charts (see
Figure 6).

The conceptual view of the model is decomposed into its
functions and controls. The functional view of the system is
described using activity charts. The system's functions are
described as activities (see Figure 7). An activity typically
accepts inputs and produces outputs. Activities that reside at
the lowest level of the system may also be described as code
in a high-level programming language. Activity charts may
also contain data stores and control activities. Data stores
portray a temporary or permanent storage area for data . Con-

-
1--

Odd
In

,...___
Even

In

-
-

CC-AF Protocol

Inbound

To/From

Bue

Slallon

Queue•

To/From

Track Ing

Suboyolem

Note: Inbound mean• from

the bue 1tallon1 ,

outbound meant towerd

the baa• 1tallon1.

FIGURE 4 Specification 200 finite state machine example.

66

Conceptual Model

Phyelcal Modal

FIGURES Structure of a STATEMATE model.

trol activities, the behavioral view of the system, are described
as statecharts (see Figure 8).

The ST A TEMATE simuiation tool can be used to simulate
the dynamic behavior of the system at any stage during and
after its development. The simulation tool may also be used
to debug and verify that the system works as expected. It can
also be used to demonstrate the behavior of the system or to
run it through various scenarios and observe the system's
interactions.

TRANSPORTATION RESEARCH RECORD 1314

PROGRAMMING THE MODEL

After a model has been developed and analyzed, STATE­
MA TE can then translate the developed system into code in
one of two available high-level programming languages, ADA
or C. This prototype code represents the executable concep­
tual model of the system. This code may be compiled and
linked as is, or it may be enhanced to call other code devel­
oped by programmers.

For implementing the ULP, ADA was selected as the pro­
gramming language for code development. One of the main
reasons for the selection of ADA is that the CIT, which was
built to test the lower three layers of the protocol, was de­
veloped in ADA. Should the ULP model and any of the CIT
software need to interface, the process would be expedited
because they were both developed in the same language.

Although there are arguments that the overhead associated
with the use of ADA in OSI-style communications systems is
significant (7), the intent is not to develop an efficient model
of the system as much as it is to develop an accurate model
of the system. Therefore, any overhead introduced by the
language would be moot.

There are also arguments that code generated by CASE
tools is cumbersome, poorly structured, and inefficient. The
ST ATEMATE developers admit that the code may be inef­
ficient (7) . However, the advantages of having the CASE tool
generate the code outweigh the disadvantages. Having the
system generate the code that can then be compiled and linked
to form the executable program ensures that the final program
accurately and precisely correlates to the diagrammed model.
The only potential areas of deviation from the communica­
tions specification are (a) incorrectly entered diagrams or
(b) incorrect implementation of the manually produced
primitive event code.

:~~:=~====·=~=-~ ~~~~o!=~~·~~-~u_s~=~-~~= ==~==~===~=====]
US_TOJ.6 us_TOJ.5

ULP _JiTACK

L6_TOJIUS

LAYER...6

L5_TOj.6

'
TIMER ~:--t..o..~~~~"'-..~~~~~~ ~~~T"'""_J

I

'
I

• - ,.. .. •• I

LAYER_4

L3_TO_L4

NETHORK_TO_L3

FIGURE 6 ULP module chart example.

L4_TO_L3

LAYER_3

L3_TO ETHORK

SOFT WAREJlUS

RCV MSG 6 TO US

@LAYER_6__RECEIVE Cl
LAYEA_6_.PROC..}lCV.J4SG

L5_L6_ClUEUE

LAYER_5

FIGURE 7 ULP activity chart example.

LAYER_6_CTL
~LOAOJ.6..PA TA

L6_J..5_!lUEUE

llLAYER_6_CTL

L6J_5 IGN LS

L5J.6 IG LS

(L6 J.IESSAGE TO SENO) /st! (LAYER 6J'ROC_5ENO.J4SG)

l

(L6_GET ACC CALL) /st! (LAYER_J)J' ROC_,ACC_CALL)

J

(L6_GET __REJ CALLI /st! (LAYER 6J' ROC_REJ_CALLI

,. J
LAYER_6_WAI TING

[L6_J;ET _fl.CY MESSAGE) /s t! (LAYER 6_.PROC_RCV _MSGI
)

[L6 GE T INC CALLI /st! (LAYER 6 J'ROC_INC_CALLI

l

(L6 GET 5UCC MSG} /St l (LAYER 6 PROC _succ _MSGI

J

(L6 GET J AIL MSG) /st! (LAYER_6 P ROC_FAIL_MSG)

J

FIGURE 8 ULP statechart example.

68

Using the code-generation tool also reduces the number of
hours required to develop the simulation model. For example ,
the STATEMATE-generated code handles the ADA tasking
development and synchronization, a function that can take a
programmer weeks to refine .

Because the purpose of this project is to develop a fully
functional model uf the system, the prototype code produced
by ST A TEMA TE is edited to call modules written by the
programmer-referred to as primitive events. These primi­
tive events are called to perform such things as storing a
message header in a queue or retrieving a message header
from a queue.

MODEL IMPLEMENTATION

At the current writing, Layers 5 and 6 of the ULP have been
diagrammed in ST ATEMATE, verified using the testing tools
of STATEMATE, and the ADA code generated for these
two layers . The code has been edited to call the programmer­
developed primitive events. After being compiled and linked
together, the code was debugged by stepping through the logic
of the model.

Many uses of the final product of this model have been
suggested. One plan calls for further development of a limited
version of the entire ATCS. This would require a simulation
model that could simulate ATCS behavior in the command
and control of trains. To pass messages from the ULP model
to the planned models of ATCS components , a "software
bus" has been developed. This software will pass simulated
ATCS communications between the ULP model and the com­
ponent models during simulation of the system.

Plans have also been made to use the model to test a ULP
stack developed by other organizations. In this manner, the
peer-to-peer relationships of the ULP under test could be
verified.

MODEL VERIFICATION AND VALIDATION

The ULP model is being developed using modularity and
stepwise refinement. The first segment of the model devel­
oped was Layer 6 of the protocol. This module was then
interfaced with the software bus and a stub of Layer 5, de­
bugged, and tested. Layer 5 was then developed, debugged,
and tested in the same manner. Layers 3 and 4 will follow
this same development method.

At completion of the entire model, the model will be val­
idated. Verification and validation of a model is at best an
inexact science , yet the credibility of the model must be es­
tablished. Many formalized methods for model validation have
been developed , such as the Delphi Method, the Turing Test,
and the Structured Walk-Through. Although all of these
methods have something to offer, and the exercise of any of
them will , no doubt, turn up errors in the model's logic, each
has its own drawbacks .

Plans are to test the ULP model by first stepping through
it with the debugging tools available in the VAX implemen­
tation of ADA and the debugging tool in STATEMATE.
This process will validate the layer-to-layer services of the
model. The next test will be to perform communications be-

TRANSPORTATION RESEARCH RECORD 1314

tween two executing copies of the model to validate peer-to­
peer functionalities of the model. A third validation of the
model will be its execution with the software bus at the upper
end of the ULP stack and an A TCS network emulator at
the lower end of the ULP stack. This process will validate
the end-to-end functionality of the protocol model between
the user application and the network emulator.

At each of these validation stages, the model should be
tested not only to ensure that it functions properly under
normal conditions but also to observe its behavior under ex­
tremes.

CONCLUSION

Prototyping is based on building a model of the system under
development and then simulating the system's behavior using
the model. The use of ST A TEMA TE to visually formalize
and then generate code to develop the ULP simulation model
takes advantage of the benefits of prototyping. The use of
ADA as the programming language exploits the tasking ca­
pabilities of the language and provides for future interfaces
to the CIT. This approach maximizes the capabilities of the
available technologies and the computer system. The result
should be the development of a model that accurately repre­
sents the real system, its functionalities, and its behavior.

ACKNOWLEDGMENT

The author would like to thank Robert Ayers, Jack Bailey,
and Denny Lengyel of ARINC Research Corporation, with­
out whom this project never would have begun. Robert Ayers
deserves special thanks for his technical support , assurances,
and constructive criticism during the development of the model
thus far and for his design and development of the software
bus. Thanks also to Jennifer Miller for keeping the devel­
opment computer system and software up and running during
this project .

REFERENCES

1. The International Telegraph and Telephone Consulta1ive Com­
mittee. Daia Com11111 11icatio11 Ne1111orks Open Sy$tems lnterco11-
11ec/io11 (OSI) System Description Techniques, Recomme11datio11$
X.200- X.250, Vol. vm, 1985.

2. K. E. Lantz. The Prototyping Methodology. Prentice Hall , En­
glewood Cliffs , N.J.

3. S. V. Hoover and R. F. Perry. Sim11la1io11 : A Problem-Solving
Approach. Addison-We Icy, New York 1989.

4. A. M. Davis. A Comparison of Techniques for the Specifica tion
of External System Behavior. Com1111111icatio11s of rlre A CM, Vol.
31, No. 9, Sept . 1988, pp. 1,098- 1, l tS.

5. The ln re rnational Telegraph and Telephone Consultarivc Com­
mittee . Functional Specification a11d Description Language (SDL),
Recommendations Z. JOO-Z.104. Vol VI, Fascicle Vl.10, 1984.

6. D . Harel, H. Lachover. A. Naamad, A. Pneuli , M. Politi , R.
Sherman, A. Shtull-Trauring, and M. T rakhtenbrot. STATE­
MATE : A Work ing Envi ronmenl fo r the Development of Com­
plex Reactive Systems. lEEE Trum·11t·tiu11s 0 11 Software Engineer·
ing, Vol. 16, No. 4, April 1990 pp. 403-413.

7. N. R. Howe and A. C. Weaver. Mcasuremenls of ADA Over­
head in OSI-Style Communications Systems. IEEE Tra11$actio11s
of Software E11gi11eeri11g, Vol. 15, No . 12, Dec. 1989, pp. 1,507-
1,517.

