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Prototype and Test Environment for ATCS 
Data Communications 

DOROTHY A. COLBURN 

Advanced Train Control Systems (ATCS) are distributed com­
mand, control, and communications systems that also provide an 
infrastructure usable for train control and numerous ancillary 
applications. A crucial stage in ATCS development is the veri­
fication of the logic that allows applications to acces this infra­
structure. The communication protocols used to connect appli­
cations in different physical components are de cribed in ATCS 
Specification 200 which represents the protocols as finite state 
machines using CClTT Recommendation Z.101 notation. These 
state machine representations are converted into a statechart 
representation in a computer-aided sofrware enginee ring (CASE) 
tool. This tool simulates the protocol operations and generates 
an ADA prototype of the protocols. The communications be­
tween application · within a physical ATCS component are not 
standardized. For prototyping purpose , however, these com­
munications have been modeled as a software bus. The software 
bus allows application to communicate with the prototype of the 
protocol stack, providing an integrated environment in which the 
interactions of applica1ions, the protocols, and the bu may all 
be examined and monitored. The prototype code generated by 
the CASE tool is supplemented by ADA code developed to sim­
ulate events that would occur within the interactions of the com­
munication protocol. The interdependency of the software bus, 
the CASE-generated ADA code and the programmer-developed 
ADA code provide an environment for meaningful prototyping 
and testing of the access logic, as well as the communications 
protocols. lnstance of this prototype may be connected through 
a network emulator for use in further testing and prototyping the 
ATCS communications architecture. 

Advanced Train Control Systems (ATCS) are a joint U.S.­
Canadian endeavor focused on increasing railroad efficiency 
and service performance . ATCS computers will automatically 
monitor and control train traffic, allowing railroads to im­
prove service while reducing costs through more precise man­
agement of resources (i.e., people, capital equipment, and 
fuel). During the last decade, the ATCS program has evolved 
from the determination of requirements through the identi­
fication of required components and the writing of perfor­
mance specifications, to the development of procedures for 
testing components and complete systems. 

The A TCS data communications system structure is based 
on the International Standards Organization's Open Systems 
Interconnect (OSI) Reference Model (1). This seven-layer 
protocol model was selected to define the points of intercon­
nection between systems . Figure 1 shows the relationship be­
tween the OSI model and the ATCS communications archi­
tecture for communications between a dispatch center and a 
locomotive computer. 

ARINC Research Corporation, 2551 Riva Road, Annapolis , Md. 
21401. 

The ATCS seven-layer architecture can be divided into two 
subsystems: the lower layer protocols (LLP) and the upper 
layer protocols (ULP). The LLP provide for the switching 
and routing of information, media access control, synchro­
nization, framing, error detection and recovery, and the actual 
movement of the bits across a transmission medium. The ULP 
provide data formatting and identification, interaction be­
tween applications, and end-to-end data integrity and quality 
of service. 

TESTING THE ATCS DATA COMMUNICATIONS 
SYSTEM 

The communications components of A TCS provide function­
ality within the lower three layers of the data communications 
system protocol. These are the mobile communications pack­
age, base communications package, front-end processor, and 
cluster controller. All seven layers of the protocol are imple­
mented within the end-user computer system. 

To test the functionalities of the lower layer communica­
tions components , a communications interoperability tester 
(CIT) was developed. This test system, written in the ADA 
programming language, allows for a stimulus-response, script­
based-type testing of the four A TCS communications com­
ponents in a simulation environment. 

According to ATCS Specification 210, "A central objective 
of A TCS is to ensure safe train movements and track occu­
pancies which avoid physical conflict, and other operational 
hazards of similar magnitude." To ensure that the imple­
mented ATCS will meet this objective, development of a 
simulation model of an ATCS is imperative. As a subset of 
simulating an entire ATCS, a working prototype of the com­
munications protocols is being developed. 

SELECTION OF A PROTOTYPE MODEL 

Some of the advantages of building a prototype are discov­
ering design problems early, spotting system interface prob­
lems from the start , and using the prototype to experiment 
with how proposed enhancements and modifications will af­
fect the system (2) . 

Fundamental to the success of a prototype is the ability to 
develop a good model of the system. As Hoover and Perry 
have pointed out, "Models are not true or false, but rather 
they are useful and appropriate for the analysis at hand" (3). 
The type of model required for the simulation of the ULP 
must have the following characteristics : descriptive , discrete, 
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FIGURE 1 ATCS data network by OSI layer. 

probabilistic, dynamic, and open-loop. The purpose of this 
prototype is to describe the system behavior rather than to 
optimize the system; therefore, a descriptive model of the 
system is required. Data packets, and messages, arrive at 
discrete points in time; hence, the system model must be 
discrete. The arrival times of these packets and messages 
cannot be predicted, requiring that the model be probabilistic. 
All communications networks are dynamic, with the number 
of messages/packets in queue at any given time being variable . 
Finally, a communications network is an open loop; the sys­
tem output is not fed back into the network to modify sub­
sequent outputs, but is consumed by the environment with 
which it interacts. 

With the required model classified as a discrete event model, 
and the objective to simulate the model, the next step is to 
select a technique for developing and simulating the system 
model. The major tasks in model construction have been 
defined as (a) develop a computer program flow chart for the 
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model; (b) select a programming language; (c) provide for 
generation of random numbers and collection of performance 
measure values in the program; and (d) write and debug the 
program code (3). 

Two approaches for developing model charts of the system 
were identified: the physical flow and the state transition flow. 
The pJ1ysical flow approach identifies and diagrams the phys­
ical entities of the system. For the communications network, 
this would be the receive and transmit queues, processing 
queues, and any internal queues between layers of the pro­
tocol (see Figure 2). The state transition approach uses state 
transition diagrams ( 4) to represent a system. This is an event­
driven approach that u e state variable to describe the sys­
tem (see Figure 3). Both of these approaches are helpful in 
understanding and diagramming the intricacies of a system. 

The ATCS communications protocols are described in ATCS 
Specification 200 as finite tate machines (FSMs) (see Figure 
4) using CCITI' Recommendation Z.101 notation (5) . 
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Statecharts, extensions to FSMs, have been developed and 
implemented in ST ATEMATE, a set of tools intended for 
the specification , analysis, and design of reactive systems. 
ST A TEMA TE was selected for the development of the pro­
totype model for the simulation of the ULP. 

ST A TEMA TE allows for the development of the model 
from three separate, but related, points of view: structural, 
functional, and behavioral (6) . Figure 5 illustrates how these 
views are linked together to create a logical model of the 
system. The structural view of the model is decomposed into 
modules. These modules may describe the actual hardware 
components of the system, or they may define the software 
components of a system: the subroutines, packages, or tasks. 
This view of the system is modeled using module-charts (see 
Figure 6). 

The conceptual view of the model is decomposed into its 
functions and controls. The functional view of the system is 
described using activity charts. The system's functions are 
described as activities (see Figure 7). An activity typically 
accepts inputs and produces outputs. Activities that reside at 
the lowest level of the system may also be described as code 
in a high-level programming language. Activity charts may 
also contain data stores and control activities. Data stores 
portray a temporary or permanent storage area for data . Con-
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FIGURE 4 Specification 200 finite state machine example. 
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trol activities, the behavioral view of the system, are described 
as statecharts (see Figure 8). 

The ST A TEMATE simuiation tool can be used to simulate 
the dynamic behavior of the system at any stage during and 
after its development. The simulation tool may also be used 
to debug and verify that the system works as expected. It can 
also be used to demonstrate the behavior of the system or to 
run it through various scenarios and observe the system's 
interactions. 
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PROGRAMMING THE MODEL 

After a model has been developed and analyzed, STATE­
MA TE can then translate the developed system into code in 
one of two available high-level programming languages, ADA 
or C. This prototype code represents the executable concep­
tual model of the system. This code may be compiled and 
linked as is, or it may be enhanced to call other code devel­
oped by programmers. 

For implementing the ULP, ADA was selected as the pro­
gramming language for code development. One of the main 
reasons for the selection of ADA is that the CIT, which was 
built to test the lower three layers of the protocol, was de­
veloped in ADA. Should the ULP model and any of the CIT 
software need to interface, the process would be expedited 
because they were both developed in the same language. 

Although there are arguments that the overhead associated 
with the use of ADA in OSI-style communications systems is 
significant (7), the intent is not to develop an efficient model 
of the system as much as it is to develop an accurate model 
of the system. Therefore, any overhead introduced by the 
language would be moot. 

There are also arguments that code generated by CASE 
tools is cumbersome, poorly structured, and inefficient. The 
ST ATEMATE developers admit that the code may be inef­
ficient (7) . However, the advantages of having the CASE tool 
generate the code outweigh the disadvantages. Having the 
system generate the code that can then be compiled and linked 
to form the executable program ensures that the final program 
accurately and precisely correlates to the diagrammed model. 
The only potential areas of deviation from the communica­
tions specification are (a) incorrectly entered diagrams or 
(b) incorrect implementation of the manually produced 
primitive event code. 
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FIGURE 6 ULP module chart example. 
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Using the code-generation tool also reduces the number of 
hours required to develop the simulation model. For example , 
the STATEMATE-generated code handles the ADA tasking 
development and synchronization, a function that can take a 
programmer weeks to refine . 

Because the purpose of this project is to develop a fully 
functional model uf the system, the prototype code produced 
by ST A TEMA TE is edited to call modules written by the 
programmer-referred to as primitive events. These primi­
tive events are called to perform such things as storing a 
message header in a queue or retrieving a message header 
from a queue. 

MODEL IMPLEMENTATION 

At the current writing, Layers 5 and 6 of the ULP have been 
diagrammed in ST ATEMATE, verified using the testing tools 
of STATEMATE, and the ADA code generated for these 
two layers . The code has been edited to call the programmer­
developed primitive events. After being compiled and linked 
together, the code was debugged by stepping through the logic 
of the model. 

Many uses of the final product of this model have been 
suggested. One plan calls for further development of a limited 
version of the entire ATCS. This would require a simulation 
model that could simulate ATCS behavior in the command 
and control of trains. To pass messages from the ULP model 
to the planned models of ATCS components , a "software 
bus" has been developed. This software will pass simulated 
ATCS communications between the ULP model and the com­
ponent models during simulation of the system. 

Plans have also been made to use the model to test a ULP 
stack developed by other organizations. In this manner, the 
peer-to-peer relationships of the ULP under test could be 
verified. 

MODEL VERIFICATION AND VALIDATION 

The ULP model is being developed using modularity and 
stepwise refinement. The first segment of the model devel­
oped was Layer 6 of the protocol. This module was then 
interfaced with the software bus and a stub of Layer 5, de­
bugged, and tested. Layer 5 was then developed, debugged, 
and tested in the same manner. Layers 3 and 4 will follow 
this same development method. 

At completion of the entire model, the model will be val­
idated. Verification and validation of a model is at best an 
inexact science , yet the credibility of the model must be es­
tablished. Many formalized methods for model validation have 
been developed , such as the Delphi Method, the Turing Test, 
and the Structured Walk-Through. Although all of these 
methods have something to offer, and the exercise of any of 
them will , no doubt, turn up errors in the model's logic, each 
has its own drawbacks . 

Plans are to test the ULP model by first stepping through 
it with the debugging tools available in the VAX implemen­
tation of ADA and the debugging tool in STATEMATE. 
This process will validate the layer-to-layer services of the 
model. The next test will be to perform communications be-
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tween two executing copies of the model to validate peer-to­
peer functionalities of the model. A third validation of the 
model will be its execution with the software bus at the upper 
end of the ULP stack and an A TCS network emulator at 
the lower end of the ULP stack. This process will validate 
the end-to-end functionality of the protocol model between 
the user application and the network emulator. 

At each of these validation stages, the model should be 
tested not only to ensure that it functions properly under 
normal conditions but also to observe its behavior under ex­
tremes. 

CONCLUSION 

Prototyping is based on building a model of the system under 
development and then simulating the system's behavior using 
the model. The use of ST A TEMA TE to visually formalize 
and then generate code to develop the ULP simulation model 
takes advantage of the benefits of prototyping. The use of 
ADA as the programming language exploits the tasking ca­
pabilities of the language and provides for future interfaces 
to the CIT. This approach maximizes the capabilities of the 
available technologies and the computer system. The result 
should be the development of a model that accurately repre­
sents the real system, its functionalities, and its behavior. 
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