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Highway Accidents: A Spatial and

Temporal Analysis

WirLriaMm R. BrLack

A temporal, spatial, and spatial-temporal autocorrelation analysis
of highway accidents on the Indiana Toll Road from 1983 to 1987
is presented. Applications of von Neumann’s ratio, Moran’s I,
nearest-neighbor analysis, and a spatial-temporal autocorrelation
coefficient to a transportation network situation are illustrated.
Applications of these methods to transport network attributes,
such as accidents, have not appeared previously. The main ob-
jectives are to determine whether these techniques are sensitive
enough to distinguish different patterns in the accident distribu-
tions and whether these patterns are explainable. The analysis
involved 10 sets of accident data, categorized by date of occur-
rence and location on an east-west roadway. Only 2 of the 10
revealed positive temporal autocorrelation (clustering in time),
5 revealed positive spatial autocorrelation (clustering in space),
and between 6 and 9, depending on the method used, revealed
positive spatial-temporal autocorrelation (clustering in time and
space). These results suggest that observed autocorrelations in
accidents are a function of weather conditions or traffic volumes,
or a combination of the two.

The spatial, temporal, and spatial-temporal distribution of
motor vehicle accidents along a major highway is examined.
Although temporal analyses have been undertaken for several
years as analysts have sought to predict the number of acci-
dents or fatalities on highways, methods for rigorously ana-
lyzing the spatial distribution of events along a highway are
not common. Methods for analyzing the spatial and temporal
distributions simultaneously on a linear network have not
been presented before. Two approaches to this latter problem
arc examined here. One of these is drawn from the plant
ecology and geographical analysis literature and the other has
its origin in epidemiology.

CLUSTERING IN TIME AND SPACE

Motor vehicle accidents should occur as a random series in
time or space. However, these incidents often cluster tem-
porally and spatially. The existence of temporal clustering is
evident during holiday weekends, when the number of acci-
dents and fatalities increases in response to heavier-than-usual
traffic volumes. Whether spatial clustering exists is not as
obvious.

Temporal Clustering

To determine whether clustering is occurring in a temporal
sense, it is necessary to have some notion of an appropriate
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time interval for data analysis. If temporal distribution is ex-
amined at intervals of less than 1 min, the only events to
cluster might be those reflecting the same vehicle-to-vehicle
collisions and other single-vehicle random events. This infor-
mation is not without interest, but it does not suggest much
to the analyst or policy maker. Therefore, a different temporal
scale of analysis is necessary.

The time interval used here is the day. Its use is based on
the belief that the number of highway accidents today is, in
part, related to the number of accidents that occurred yes-
terday. Cause is not implicit in such a statement, but rather
the recognition that daily accidents are often related to traffic
flow volumes or weather conditions, which vary daily, weekly,
and seasonally. As a result, temporal autocorrelation exists
in these data with variable levels for 1 day not differing a
great deal from the level of that variable the following day;
that is, similar values tend to cluster in time. Use of a day
for the time interval should pick up the influence both of flow
volumes and of weather conditions.

Of course, if the major factors influencing temporal auto-
correlation are absent, there should not be any clustering of
the events in time. For flow volumes and weather conditions,
it is possible that increased patrolling by state police and
increased maintenance (such as snow removal) could offset
some of the expected temporal clustering. Nevertheless, a
tendency toward temporal clustering is expected.

Spatial Clustering

Spatial autocorrelation is the tendency for the level of a vari-
able at one location to influence the level of that variable at
sites in proximity to the first location. If positive spatial au-
tocorrelation is present, it results in a spatial clustering of
similar variable values. This clustering may be caused by many
factors. Among these factors are higher traffic volumes in
different regions of the transport line, natural or anthropo-
genic environmental factors (such as fogs) that restrict or
interfere with vehicle operation, points of access or egress at
which vehicle speeds change, or areas of poor highway design
in an engineering sense. A clustering of similar accident values
in space would be expected if one or more of these factors
are present.

The proper spatial interval for the analysis of spatial au-
tocorrelation in this context is debatable. As explained
previously, setting a small interval will result in the clustering
only of vehicles in the same incident (automobile-to-
automobile collisions), but these data are not of interest here.
The use of 0.5-km or similar intervals would be desirable for
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certain environmental events, but this level of detail is un-
common and, as a result, not available. Because of data re-
porting standards, this analysis uses the 1-mi segment. Most
major regional phenomena should be perceptible at this scale,
and minor clustering at a lower scale should also be identi-
fiable at the larger scale.

Spatial-Temporal Clustering

Because a scale is available for locating every incident in time
and another scale is available for measuring every incident in
space, the question is whether there is some method of com-
bining these scales to determine if certain incidents are clus-
tering in time and space. If such a method were available, it
might enable researchers to evaluate whether the temporal
clustering and spatial clustering were due to the same or dif-
ferent major events. For example, assume that the temporal
clustering found in a series of automobile accidents was at-
tributable to holiday travel on weekends during the winter.
The presence of spatial clustering might suggest a concentra-
tion of this same series of accidents in a given region. The
presence of spatial-temporal clustering would reveal that ac-
cidents were occurring on the same weekends and sections of
the highway and that the two separate distributions are ac-
tually a single, interrelated, spatial-temporal distribution. The
objective is to identify a method for analyzing this latter type
of distribution.

If 1-day time intervals are acceptable for the measurement
of temporal autocorrelation and 1-mi spatial intervals are equally
acceptable for measuring spatial autocorrelation, then it is
reasonable to use these two dimensions to define an area
called time-space. In time-space, all events are identifiable as
occurring within a certain time period and within a bounded
space. If the initial metrics for time and space are unreason-
able, the analysis of a time-space with dimensions defined by
these metrics will be of little value.

METHODOLOGY
Temporal Autocorrelation Analysis

Statistics for assessing temporal autocorrelation in a data se-
ries include the Durbin-Watson statistic and the von Neumann
ratio (I, pp. 305-307). The von Neumann ratio (Q) was cho-
sen because it was easier to evaluate. For a set of n obser-
vations on some variable x arranged in a successive series,
the statistic is calculated as follows:

[Wn = D] 3, (5 = %0
W) >, (x — 37

Q M

For a large number of observations (n > 60), the expected
value of Q follows a normal distribution with mean 2n/(n —
1) and variance 4/n. Evaluation of the ratio is accomplished
in the traditional manner using standard normal deviates on
the basis of these values and the calculated Q.
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Spatial Autocorrelation Analysis

Analysis of spatial autocorrelation for a linear system, such
as a highway, involves the adaptation of conventional auto-
correlation techniques used in the analysis of point and areal
distributions to linear situations. The statistic of choice in such
cases is most often Moran’s I (2—4). The statistic is calculated
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Although accident data of the type used here are not usually
normally distributed, the presence of a large number of ob-
servations in the series analyzed makes this assumption ten-
able. The difference between the expected value of I (from
Equation 3) and the calculated value of I (from Equation 2)
may be divided by the square root of the variance (see Equa-
tion 4) to yield a standard normal deviate, often called a z
score, for hypothesis testing.

Spatial-Temporal Autocorrelation Analysis

Given that it is possible to assess the autocorrelation of the
accident data in time and one-dimensional space, the influ-
ence of these factors is examined simultaneously. There are
two ways that the data could vary. First, the pattern of cases
in an area defined by the space and time dimensions can be
examined. This method is known as pattern analysis, and the
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finding of a clustered pattern would infer some type of depen-
dence in the distribution. Second, the extent to which the
pattern created by values (in this case, the number of acci-
dents) displays some evidence of organization can be studied.
This method is spatial autocorrelation analysis, and a finding
of positive spatial autocorrelation would also suggest some
type of dependence in the distribution.

A common method for measuring whether clustering exists
in a two-dimensional spatial pattern of cases is known as
nearest-neighbor analysis. Such a technique could also be used
to examine the pattern of cases in time-space. Nearest-
neighbor analysis was developed primarily by the plant ecol-
ogists Clark and Evans (5), although geographers have done
a considerable amount of work on this subject since that early
research (6—10). The measure compares the actual distance
of each point to its nearest neighbor in two-dimensional space,
with the expected distance to the nearest neighbor being based
on a random distribution of points in that space. Division of
the former by the latter yields an index for which unity in-
dicates a random distribution, zero represents complete clus-
tering, and a completely dispersed pattern yields a value of
approximately 2.15.

Hypothesis testing proceeds by finding the difference be-
tween the observed and expected nearest neighbor distances
and dividing this value by the expected standard error for a
random distribution to yield an index, which is also a standard
normal deviate. Symbolically, the observed average distance
to the nearest neighbor (d) is

d = 2 dmin @)

where d,, is the distance of i to its nearest jth neighbor, and
n is the number of points in the distribution. The expected
average distance for a random distribution (d,,,) is

d,. = 1[2(n/A)°9) )

where A is the area of surface occupied by the point distribu-
tion. The standard error of the mean nearest-neighbor dis-
tances is

SEz = 0.26136/[n(n/A)]** 9)

and the standard normal deviate in this case is

2= 7SE3 (10)

Methods for evaluating the pattern of values in space and
time fall within the domain of spatial autocorrelation analysis.
The methods are not that well developed for time and two-
dimensional space. However, for one-dimensional time and
one-dimensional space (such as the toll road of interest here),
it is possible to use a cross-product statistic attributed to Knox
(11) and Mantel (12).

The technique is described in some detail by Cliff and Ord
(8) and Upton and Fingleton (10). It involves in this case the
construction of two event matrices. If there are n events, then
the matrices are n X n. For the first matrix (the time matrix),
a 1 is included in some Cell ¢; if Event i occurred within one
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time unit of Event j, and 0 otherwise. The second, or space,
matrix includes a 1 in Cell s; if the events occurred within
one unit of each other in space, and 0 otherwise. For both
matrices, if i = j, then the entry is 0. The general cross-product
statistic is obtained from the following equation:

" n

R=2>> 1Sy (11)

i=1j=1

If the events are completely independent, then R = 0. The
expected value of R is

n "

BR) = 3 3 6,3 S syin(n — 1) (12)
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Upton and Fingleton (10, p.157) provide details on the
calculation of variance. The obtained R value can be evaluated
with the test statistic, as follows:

z = {[R - E(R)] — 1}/[var(R)]** (13)

ILLUSTRATIONS

Table 1 presents an illustration of these methods. The first
three variables represent three different distributions of 17
events across 40 time periods. The concern goes to the nature
of these three distributions. As presented in Table 2, use of
the von Neumann ratio reveals that the first variable repre-
sents significant positive temporal autocorrelation, the second
represents significant negative temporal autocorrelation or
dispersion, and the third does not display a significant level
of temporal autocorrelation.

The second three variables of Table 1 represent the loca-
tions of 17 events along a single dimension, such as a highway,
with a length of 40 units. Spatial autocorrelation analyses of
these variables also suggest three different types of distribu-
tions (see Table 2). The first has a high level of positive spatial
autocorrelation (i.e., a clustering of similar values), the sec-
ond has a high level of dispersion or a uniformity in the
distribution of events, and the third is neither clustered nor
dispersed but tends toward a random distribution.

Figure 1 shows several possible mappings of the temporal
and spatial variables in time-space. In each case the mappings
are only two of the possible arrangements that could result
when an event’s temporal location is linked with its corre-
sponding spatial location. By referring to the marks on the
horizontal and vertical axes of the figures, the nature of the
one-dimensional temporal and spatial autocorrelation (anal-
ogous to the pattern) is revealed. The figure shows that the
presence of positive spatial autocorrelation in the location
variable and positive autocorrelation in the temporal variable
may lead to a clustered distribution (1a) or a dispersed distri-
bution (1b). Furthermore, a dispersed or uniform distribution
for these two axes may also lead to a clustered pattern (2a)
or a dispersed pattern (2b). Finally, a nearly random distribu-
tion of these two axes may result in a clustered pattern (3a)
or a dispersed pattern (3b) of incidents in time-space.

Table 3 presents the results of a nearest-neighbor analysis
of each of these six mappings in time-space. The nearest-
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TABLE 1 SIX EXAMPLES OF SPATIAL AND TEMPORAL LOCATION

OF EVENTS
Day or Temporal Spatial
Mile 1 2 3 1 2 3
1 0 0 0 0 0 0
2 0 0 1 1 1 1
3 0 0 0 1 0 0
4 0 1 0 1 1 0
5 0 0 0 1 0 0
6 1 1 0 0 1 0
7 1 0 1 0 0 1
8 1 1 0 0 d o
9 1 0 0 0 0 0
10 0 1 1 0 1 1
11 0 0 1 0 0 1
12 0 1 1 0 1 1
13 0 0 o 0 0 0
14 1 1 1 1 1 1
15 1 0 0 1 0 0
16 1 1 0 1 1 0
17 1 0 1 1 0 1
18 0 1 1 0 1 1
19 0 0 0 0 0 0
20 1 1 0 0 1 0
21 1 0 0 0 0 0
22 1 1 1 0 1 1
23 1 0 0 0 0 0
24 0 1 0 1 1 0
25 0 0 1 1 0 1
26 0 1 0 1 1 0
27 0 0 1 1 0 1
28 0 1 1 1 1 1
29 0 0 0 0 0 0
30 0 1 0 0 1 0
31 o] 0 1 0 0 1
32 0 1 0 0 1 0
33 0 0 0 0 0 0
34 0 1 1 1 1 1
35 0 0 o 1 0 0
36 1 1 0 1 1 0
37 1 0 0 1 0 0
g 1 0 1 0 0 1
39 1 0 1 0 0 1
40 1 0 1 0 0 1
neighbor analysis confirms what is visually apparent from Fig- Table 3 also presents the results of a Knox R analysis of
ure 1. Distributions 1a, 2a, and 3a are clustered, and distribu- these six situations. In so doing, it identifies what might be
tions 1b, are dispersed in the time-space. In other words, the the major shortcoming of this technique. Although the Knox
patterns of Mappings 1a, 2a, and 3a reveal the presence of R indicates that Distributions 1a and 3a have positive spatial
positive spatial autocorrelation, and the patterns of Mappings autocorrelation, the test completely fails for Distribution 2a.
1b, 2b, and 3b indicate its absence. Although clustering is apparent in this distribution, each case

TABLE 2 ILLUSTRATIVE TEMPORAL AND SPATIAL CASES

Temporal Data Sets von Neumann Q z
Distribution 1 .7345 -4.16*%
Distribution 2 3.5674 4.79%
Distribution 3 2.2034 .48

Spatial Data Sets Moran's I z
Distribution 1 .5870 3.92*%
Distribution 2 -.8601 -5.35%
Distribution 3 =-.1029 - .50

* significant at .01 (z > | 2.58})
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FIGURE 1 Possible two-dimensional mappings of
spatial and temporal events.

is more than one unit away from each other case in time and
space. This finding demonstrates how critical the definition
of nearness is in using this test. The other distributions (1b,
2b, and 3b) reveal an absence of positive spatial-temporal
autocorrelation, as expected.

Of the various distributions, the ones that are of primary
interest for analysis or policy reasons are those that display
positive spatial autocorrelation in one dimension, positive
temporal autocorrelation, and positive spatial-temporal au-
tocorrelation, or a clustering in time-space, as assessed by
nearest neighbor analysis. Random distributions would imply
no major regional or temporal influences. A dispersed or
nearly uniform pattern is an unlikely, though not impossible,
distribution for most transport-related phenomena.
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STUDY AREA AND DATA

The empirical situation of interest here is the spatial and
temporal distribution of motor vehicle accidents along the
Indiana Toll Road from 1983 through 1987. This toll road is
a limited-access trafficway in the northern part of Indiana
extending 156 mi between Illinois and Ohio (see Figure 2).
The trafficway consists of an eastbound roadway and a west-
bound roadway.

The motor vehicle accident data are perhaps best thought
of as traffic incidents. The incidents recorded may be minor
and involve suspected personal injury or damage to a single
item (e.g., a vehicle, a sign, or a guardrail) in excess of $500.
The data also record incidents involving fatalities, but these
reports are a small minority of those in this data base. The
data used are recorded by day of the year and toll road
milepost. The former allows an analysis of temporal auto-
correlation over 365 days (366 days in 1984), whereas the
latter permits a spatial autocorrelation analysis across the 156
days.

For the spatial-temporal analysis, the two scales above de-
fined a two-dimensional time-space surface. On this surface
an accident receives a space coordinate and a time coordinate
corresponding to the milepost and day on which the accident
occurred. Events that occurred near each other in time and
space will appear close to each other on the time-space sur-
face. If the analysis suggests a clustering of events, it is rea-
sonable to infer the existence of a certain amount of spatial-
temporal autocorrelation.

RESULTS OF ANALYSIS

The results of the temporal autocorrelation analysis are pre-
sented in Table 4 as von Neumann Q statistics and standard
normal deviates. Of the 10 data sets analyzed, only 2 dem-
onstrated a significant amount of temporal autocorrelation.
The implications of this finding are numerous and range from
very successful patrolling practices to uniqueness in the type
of data used. Itis common practice for the Indiana State Police
to increase the level of patrolling during holiday periods in
an attempt to decrease motor vehicle accidents. The toll road
is not a typical highway in that it receives heavier use during

TABLE 3 ILLUSTRATIVE SPATIAL-TEMPORAL CASES

Time-Space Nearest Knox

Data Sets Neighbor Index z Statistic z
Mapping 1la .386 .85% 10 3.09%
Mapping 1b 1.374 .95% 0 .71
Mapping 2a .725 J1T7H%k 0 0.00
Mapping 2b 1.375 .96%* 0 0.00
Mapping 3a .602 <1l4%* 12 10.56*
Mapping 3b 1.466 3.68% 0 - .47

* significant at

** significant at

.01 (z > 2.58)

.05 (z > 1.96)
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FIGURE 2 Location of Indiana Toll Road (I-80 and I-90) in northern Indiana.

weekdays with commuters and truckers, and relatively light
weekend traffic. Nevertheless, a temporal clustering during
weekdays is also not apparent.

The spatial autocorrelation analysis did reveal a significant
amount of positive spatial autocorrelation (at the .05 signif-
icance level) for 5 of the 10 data sets analyzed. This result
may reflect an underlying influence of heavier traffic volumes
in the western part of the state due to the Chicago metro-
politan area. It may also represent a greater number of ac-
cidents due to the mixing of traffic moving at different speeds,
because the western part of this highway has a greater number

of entrances and exits from the toll road than does the eastern
end.

The spatial-temporal analysis consisted of a nearest-neigh-
bor analysis of the motor vehicle accidents on a time-space
surface and a spatial temporal autocorrelation analysis using
Knox’s statistic. The results of the nearest-neighbor analysis
are presented in Table 5, which reveals a significant amount
of clustering in 6 of the 10 data sets analyzed. Assuming
comparability of the z scores between the one-dimensional
spatial and temporal autocorrelation and the two-dimensional
nearest-neighbor analysis, six of the two-dimensional cases

TABLE 4 VON NEUMANN'’S Q STATISTIC, MORAN’S I STATISTIC,
AND CORRESPONDING z SCORES

Year Indices Eastbound Westbound
1983 Q (z) 1.80 (-2.01)** 1.84 (-1.57)

I (2) .1270 ( 1.67) L1573 ( 2.05)*#*
1984 Q (z) 1.76 (-2.33)#* 1.87 (-1.29)

I (z) .2098 ( 2.71)* .1219 ( 1.60)
1985 Q (z) 1.95 (- .49) 1.85 (~1.47)

I (z) L1638 ( 3.13) %% L2177 ( 2.81)+
1986 Q (z) 1.84 (-1.62) 2.01 ( .01)

I (z) .0862 ( 1.16) L1133 ( 1.50)
1987 Q (2) 2.02 ( .17) 1.90 (-1.02)

I (2) L1505 ( 1.97)#* L0789 ( 1.07)

* significant at .01 (z > 2.58)

** gignificant at .05 (z > 1.96)
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TABLE 5 SPATIAL-TEMPORAL NEAREST-NEIGHBOR AND KNOX
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R ANALYSIS
Year Roadway n NN Index z Knox-R z
1983 East 337 .915 -2.99% 66 S5.11%*
1983 West 290 .877 -4.00% 46 3.57%
1984 East 323 .884 -4.00%* 64 4.62%
1984 West 311 964 -1.22 56 4.91%*
1985 East 368 .938 ~2.26%%* 68 4.15*
1985 West 353 .891 =-3.92%* 76 4.98%
1986 East 335 .007 .26 24 .03
1986 West 340 .910 =3.17%* 64 5.55%
1987 East 394 .973 -1.03 52 2.77*
1987 West 335 .976 - .83 52 3.71x*
* A significant z for a two-tailed test at the .01 level is

> l2.58]
*% A significant z for a two-tailed test at the .05 level is

are stronger than their one-dimensional counterparts. This
finding is to some extent consistent with the combining of the
low-level temporal autocorrelation with the low one-
dimensional positive spatial autocorrelation.

The level of temporal autocorrelation was the highest for
roadways East-83, West-83, East-84, West-85, and East-86,
although only two of these were significant. Of these five, the
first four are strong in the two-dimensional analysis. East-
bound traffic in 1985 was having incidents that significantly
clustered in space, but not time, and combining the two in-
creased the level of clustering. Westbound traffic in 1986 that
was not significantly clustered in time or space was signifi-
cantly clustered in time-space. In four cases (West-84, East-
86, East-87, and West-87) the nearest-neighbor analysis
revealed no significant clustering in time-space.

Plots of three of these distributions are shown in Figures
3-5, where each box represents a traffic incident. The east-
bound traffic incidents of 1983 are plotted in Figure 3. Notable
attributes of this figure are (a) the vertical array of symbols
at approximately Day 80 across the entire length of the toll-
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FIGURE 3 Time-space plot of
accidents on Indiana Toll Road:
eastbound roadway, 1983.

way, (b) the clustering of incidents between Mileposts 0 and
25 through the entire year, (c) the vertical array of incidents
between Days 350 and 365, and (d) a clustering of incidents
around Day 150 between Mileposts 90 and 100. Of these four
attributes, the first and third appear to be a function of snow
and ice conditions according to climatological records, and
the second appears to be related to the generally higher traffic
volume near Chicago (which increases the probability of an
incident). The reason for the clustering noted at Day 150 is
not apparent, although its occurrence on Memorial Day sug-
gests a traffic volume situation. The first three patterns are
also evident in the westbound traffic of 1983 (see Figure 4),
which is consistent with the regional weather pattern expla-
nation offered. The fourth pattern does not appear in the
westbound traffic.

As noted previously, regional weather conditions play a
major role in the development of spatial clustering. Snowfall,
snow coverage, ice, and rainfall are evident in the mapped
data. There was also a period of several days in October 1987
when a clustering of incidents occurred near South Bend.
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FIGURE 4 Time-space plot of
accidents on Indiana Toll Road:
westbound roadway, 1983.
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EASTBOUND 1986
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FIGURE 5 Time-space plot of
accidents on Indiana Toll Road:
eastbound roadway, 1986.

Local climate records indicate a record number of fog days
during that month.

Figure 5 shows the eastbound traffic of 1986. It is included
primarily because it represents a random distribution in time-
space. Large areas of this time-space have no incidents, whereas
in other areas there is an occasional overlapping of two or,
on rare occasions, three incidents. Such a pattern is typical
of a random two-dimensional distribution. From a safety
analyst’s perspective, this pattern is a desirable one.

Table 5 also presents the results of the Knox R spatial-
temporal analysis of accident values. These results differ sub-
stantially from those of the nearest neighbor analysis and
suggest a much stronger level of spatial-temporal autocorre-
lation in the pattern of values. The two methods are in perfect
agreement in the nearly random pattern of data for eastbound
traffic of 1986, but otherwise the Knox R analysis indicated
highly significant spatial-temporal autocorrelation in every
case.

The spatial-temporal results should not be viewed as con-
flicting. The nearest-neighbor analysis is examining the pat-
tern of events in time-space. The Knox analysis is examining
the similarity (autocorrelation) in the pattern of events in time
and the pattern of events in space. From a residual analy-
sis perspective, the Knox approach may be more useful;
from an accident analysis perspective, the nearest-neighbor
approach seems to yield more useful results.

POLICY IMPLICATIONS

Each of the situations analyzed implies the need for or the
success of some public salely policy. Whether or not the traffic
on the Indiana Toll Road is typical, the absence of significant
temporal autocorrelation in motor vehicle accidents is a de-
sirable attribute. This success may be attributable to policing,
good road maintenance (snow removal or highway surface
maintenance), or a good traffic use pattern.

The presence of spatial clustering implies that ail is not
perfect with this system. Weather conditions in given regions
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may create the spatial clustering of accidents, but clustering
would then be expected to appear in the temporal analysis
and it does not. The clustering may simply result from in-
creases in accidents because of increases in traffic volume.
One possible policy response might be to use on- and off-
ramps to control traffic volumes. The spatial clustering may
also be caused by poor highway design.

The time-space analyses, as reflected by the nearest-neigh-
bor analyses, suggest only a few instances in which a tendency
toward temporal clustering is combining with spatial cluster-
ing to make insignificant concentrations appear significant.
The implications might be that poor weather conditions over
a few time periods are combining with poorly designed ramps
and resulting in the identification of a stronger level of clus-
tering. The ability to identify such situations suggests that this
approach to time-space analysis deserves further study.
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