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Procedure for Validation of Microscopic 
Traffic Flow Simulation Models 

RAHIM F. BENEKOHAL 

Model verification and validation are two important tasks in de­
veloping a traffic simulation model. Traffic simulation models 
ha.ve unique. characteristics because of the interaction among the 
dnvers, vehicles, and roadway. The effects of the interaction on 
traffic flow should be considered in verification and validation of 
the models. If these two tasks are not properly performed a 
traffic simulati?? m?del may not provide accurate results. A p~o­
cedure for venf1catJon and validation of microscopic traffic sim­
u.lation .models is developed, ~nd its application to a car-following 
s1mulat1on model, CARSIM, 1s demonstrated. The validation part 
of the procedure is emphasized. The validation efforts are per­
formed at the microscopic and macroscopic levels. For validation 
at the mic~oscopic lev~l , the .speed change patterns and trajectory 
plots obtamcd from s1mulat10n models ore compared with those 
from a field data. For validation at the macroscopic level , the 
average speed, density, and volume for simulated platoons are 
compared with those of field data. Also, variation of these pa­
rameters when the platoons go through a disturbance and inter­
relationships between these variables computed from the simu­
lation models and the field data are examined. Regression analysis 
and analysis of variance of the simulation results versus the field 
data are discussed. The procedure may be considered as a step 
to'"'.a~d ~evelopmen.t of .a comprehensive systematic approach for 
venf1cahon and validation of traffic simulation models. 

Two important tasks in developing a traffic simulation model 
are verification and validation of the model. Verification is 
to check if the model behaves as the experimenter assumes 
it does, and validation is to test whether the simulation model 
reasonably approximates a real system (1). Traffic simulation 
models have unique characteristics because of the interaction 
among the drivers, vehicles, and roadway environment. The 
effects of the interaction on traffic flow should be considered 
in verification and validation of the models. A traffic simu­
lation model may not provide accurate results if these two 
tasks are not properly performed. 

Often the users of traffic simulation models do not examine 
how well the verification and validation steps are carried out, 
or do not have access to such information. Consequently, the 
users rely on the model performance assuming that enough 
verification and validation have been done. Even when the 
information is available, it is difficult for most users to com­
pare validation of one model to another model because they 
are validated differently. Thus, there is a need for developing 
a systematic approach for verification and validation of traffic 
simulation models to provide some degree of consistency and 
to increase the reliability of the models . 

A procedure for verification and validation of traffic flow 
simulation models is suggested. The procedure is discussed 
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and its application for verification and validation of a car­
following simulation model, CARSIM (2), is demonstrated . 
Following this approach in validation of a model most likely 
will increase the reliability of the simulation results. However, 
using the suggested approach does not guarantee that this 
model will simulate the real-world conditions better than an­
other model. The procedure may be considered as a step 
toward development of a comprehensive systematic approach 
for verification and validation of traffic simulation models. 

BACKGROUND 

Validation 

A model should be validated under different experimental 
conditions to obtain a high model confidence. Validation is 
to see whether there is an adequate agreement between the 
model and the system being modeled. Annino and Russell 
(3) stated that using unverified models and lack of under­
standing the system were among most frequent causes of sim­
ulation failure. Sargent ( 4) suggested that model validation 
should consist of conceptual validation, computerized vali­
dation, operational validation, and use of adequate and cor­
rect data. 

For the conceptual validation, the theories , the assump­
tions, and the relationships used are checked to ensure they 
are correct and proper for each submode! and for the overall 
model. Sargent ( 4) suggested using the tracing and face val­
idation techniques. In tracing, the behavior of different en­
tities (e.g., vehicles) is traced through each submode! and 
overall model to determine if the model's logic is correct and 
whether the necessary accuracy is obtained . In face validation, 
the experts in the subjects are asked to evaluate the logic 
of the submode! and the model and the input-output 
relationships. 

In computerized model validation, it is checked to ensure 
that the conceptual model is implemented, and the computer 
program runs properly (error free). Each submode! is tested 
to see if it works properly and the overall model is executed 
under different conditions to investigate input and output 
relations. Operational validity is ensuring that the simulation 
model is a reasonable and accurate representation of the real 
system with certain levels of confidence. Here the validation 
can be done subjectively, such as graphical representation and 
examination of it, or can be done objectively such as using 
statistical techniques. 

Various statistical techniques have been used for validation 
of simulation models. Torres et al. (5) developed a statistical 
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guideline based on differences between the real world and 
traffic simulation results. Gafarian and Walsh (6) used travel 
time and velocity of vehicles as the measure of effectiveness 
of simulation model, and compared the simulation results with 
observed values using the Wilcoxon signed-rank test. Mihram 
(7) discussed the five stages in model building and the pro­
cedures for comparison of the results from several indepen­
dent replications of a simulation model with that of one or 
more observed data. 

Kleijnen (8) discussed techniques for validation of simu­
lation models using chi squared, factor analysis, spectral anal­
ysis, and regression analysis between the actual and the sim­
ulation outputs. Naylor et al. (9) provided three alternative 
forms of analysis of variance for analysis of output from com­
puter simulation experiments and for making a decision about 
their differences and ranking. Kleijnen (JO) discussed how 
regression analysis is used to obtain a metamodel (a model 
explaining the simulation model) and how the effect of qual­
itative or quantitative factors can be investigated by using the 
weighted least squares technique. The four steps suggested 
by Sargent ( 4) were used to develop a procedure that will be 
discussed after review of the truncation and replication policies. 

Truncation and Replication 

The results of simulation studies should be collected after the 
system reaches a steady state condition. The data before the 
steady state conditions (initial transient state) may be elimi­
nated to minimize the bias on the mean value of the response 
variable. There is not a definite rule on how the bias should 
be eliminated and how much of the simulation run should be 
truncated for this purpose. One way of finding out how much 
of the data should be truncated is by plotting the response 
variable versus time and locating the beginning of the region 
of steady state condition. 

Start-up policies in simulation and reducing the effect of 
initial transient state were surveyed by Wilson and Pritsker 
(11,12). They found that deleting data from the beginning of 
the simulation output to reduce initial transient effect (bias 
reduction) causes loss of information and an increase in the 
variance. The net effect of deleting the initial observations 
was to increase the mean square error of the sample mean. 
Starting from empty and idle condition (no truncation of initial 
condition) provided a lower estimate of mean square error. 
Considering bias, variance reduction, and mean square error , 
they suggested starting as close to the steady state mode as 
possible and keeping all data . Furthermore, they stated, "The 
judicious selection of an initial condition appears to be more 
effective than truncation in improving the performance of the 
sample mean as an estimator of the steady-state mean." Also, 
the research has indicated that for small and well-behaved 
models truncation should not be performed, but for large 
models this may not be the case (13). Even after truncating 
the transient state, the simulation results will continue to fluc­
tuate because of the stochastic variable used in the model. 

Kleijnen (14) discussed that replication of simulation runs 
is the only alternative for gathering statistics about terminat­
ing systems . In a terminating system, the simulation run ends 
if a specific event occurs. In order to obtain independent 
replications, different random number seeds ought to be used . 
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Initialization for replicated runs is performed by throwing 
away some observations from the beginning of each run. The 
rule-of-thumb is that the observations may be discarded as 
long as the response variable continues to increase or de­
crease. From several replications, the response can be ob­
tained for each run and then the mean and the variance of 
the responses can be found. For independent results, a t-test 
can be run and the confidence level for the mean of obser­
vations can be found. However, in simulation the results do 
not always meet the requirements of a traditional t- or f-test. 
Kleijnen (15) provided techniques to compare means and 
variances of two simulations in which the outcomes from rep­
lications are pairwise correlated. To compare the means of 
autocorrelated observations of two simulation experiments, 
Fishman (16) suggested that the difference of the sample means 
be treated as a normal variate for a sufficiently long sample 
record. This procedure is not as good as comparing autocor­
relation structure of the two experiments , but it suffices as 
an initial step for comparison (15,16) . 

When two operating conditions are to be compared, one 
can introduce a negative correlation between replications of 
runs under one operating condition to reduce the variance for 
within runs ; and then introduce a positive correlation between 
runs under different operating conditions to reduce the var­
iance for the difference between runs . This procedure is sug­
gested as an efficient experiment design if there is not an 
initial transient phase (17). This variance reduction method 
uses antithetic variate and common random numbers jointly. 
Kleijnen (18) discusses possible undesirable effects of such a 
combination and indicates that, because of cross correlations, 
the results may even be worse than using each method alone. 
He compared the three methods for different conditions but 
could not determine which method was best for all systems. 

SUGGESTED APPROACH 

The suggested approach has two major tasks: verification and 
validation. Each task is performed at microscopic and mac­
roscopic levels. At each level, several steps are suggested and 
application of some of them is discussed. The verification task 
includes efforts similar to those suggested by Sargent ( 4) for 
the conceptual and computerized validation, and the valida­
tion task is comparable to the operational validation discussed 
by Sargent ( 4). 

Some forms of the steps suggested have been used in val­
idation of other traffic simulation models. The author has 
greatly benefited from numerous studies in developing this 
approach . For instance, trajectory comparison and speed fluc­
tuation were used in validation of INTRAS (19,20). In vali­
dation of other simulation models, comparable efforts have 
been made to ensure validity of the simulation results . The 
steps suggested here should be considered as the starting point 
for the efforts needed for verification and validation of a 
microscopic traffic simulation model, in general. For a par­
ticular simulation model, the developer should decide how 
suitable the suggested approach is, and take additional ap­
propriate steps needed to obtain reliable results. 

In the following sections, the verification task will be out­
lined, because of space limitation, and the validation task will 
be discussed in detail. Benekohal (2,21) provided further in-
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formation on the verification and validation steps. The field 
data needed and the data used in validation of CARSIM are 
briefly de~cribed in the following sections. 

Field Data 

The data used for verification and validation should be ac­
curate and appropriate for the model. A data set different 
than the one used for verification should be used for validation 
of the model. The data sets used for validation of CARSIM 
are the Ohio State University trajectory data collected using 
aerial photogrammetric techniques (22). The aerial photo­
graphs were taken in 1-sec time intervals from an elevation 
of about 3,000 ft. The location of a vehicle was determined 
with an accuracy of ± 0.50 ft and the speed was determined 
with an accuracy of ± 1.0 mph. 

The field data provided a complete record of spacings, 
headways, longitudinal positions, and velocities for individual 
vehicles. The data were from median lane of 1-71, near Co­
lumbus, Ohio, with normal traffic. Four platoons were used 
in validation of CARSIM. The platoon selected for presen­
tation was Platoon 123, which went through a severe distur­
bance. The platoon had 15 vehicles with no vehicle entering 
or leaving the platoon. 

Model Verification 

Verification ensures that the model behaves as intended . The 
program should be debugged first to eliminate any coding 
errors and programming problems. Then, the logic of differ­
ent components of the model, such as car following, lane 
changing, merging, or diverging, should be carefully re­
viewed. Also , the acceleration and deceleration patterns, ve­
locity change patterns, trajectory plots, and headways ob­
tained from the simulation model should be examined . 
Sensitivity of these parameters to changes in the input vari­
ables should be studied. Model calibration, if needed, should 
be performed using field data for fine tuning of some of the 
variables in the model. 

For verification of CARSIM, the following parameters were 
systematically varied and the sensitivity of the model outputs 
to the changes were carefully examined: maximum deceler­
ation rate of a vehicle , compliance level of drivers, start-up 
delay of stopped vehicles , reaction time of drivers , buffer 
space between vehicles, and traffic mix. Then, different dis­
turbances in traffic flow were induced to a platoon of 15 
vehicles and their effects at microscopic and macroscopic lev­
els were examined. A disturbance is induced when the leader 
of a platoon is required to decelerate, stop, and accelerate to 
a specified speed. 

For the microscopic level verification, the effects of a reg­
ular disturbance, an emergency stop, and a stop-and-go op­
eration on individual vehicle's trajectory, speed, and accel­
eration or deceleration were analyzed at high- and low-volume 
levels. For the macroscopic level verification , the effects of 
the regular disturbance and an emergency deceleration on 
average speed, density , volume, and average headway were 
examined at high- and low-volume levels. For example , the 
acceleration and deceleration patterns for a 15-car platoon in 
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a stop-and-go condition are shown in Figure 1. The patterns 
are shown for the 1st, 4th , 10th, and last car in the platoon. 
Benekohal (21) provided further information on verification. 

Model Validation 

Two levels are proposed for validation of a microscopic traffic 
simulation model: (a) microscopic level, and (b) macroscopic 
level. At the microscopic level, the attributes of individual 
vehicles such as location , time, headway, and speed computed 
from the simulation model are compared with those obtained 
from the field data. At the macroscopic level , the aggregate 
parameters such as the average speed, density, and volume 
of a platoon of vehicles computed from the simulation model 
are compared with the results from field data. The steps for 
validation of CARSIM are shown in Figure 2. 

For validation of CARSIM, four platoons covering a wide 
range of traffic conditions were used. The results for one of 
the platoons (Platoon 123) are presented here. The results 
for the other platoons are given elsewhere (2,21) . Five in­
dependent replications were made for each traffic condition 
using different random number seeds. In each one of these 
runs , the attributes of all vehicles were generated randomly 
from the respective distributions . However, the location and 
speed of the leader of the simulated platoon were set equal 
to that of the leader of the field data. Thus, the leaders of 
the platoons had the same location and speed, but the fol­
lowers may or may not. 

It is recommended to use different platoons and for each 
platoon to make independent replications. The number of 
platoons and replications would depend on the system to be 
simulated and the range of variation of the response variable . 
The platoons should represent the real-world traffic condi­
tions that the model is likely to simulate. When the range of 
the responses from different replications is narrow, a few runs 
might be enough. However, when a large variation is ob­
served, more replications are needed. This topic will be dis­
cussed more in the macroscopic validation section. 

Validation at Microscopic Level 

The microscopic level validation is, perhaps, the most difficult 
task in validating a traffic simulation model. For microscopic 
validation, the variation of some or all of the following pa­
rameters should be examined: speed profile of an individual 
vehicle, location of the vehicle on the road, time headways 
between vehicles, and spacing between successive vehicles. 
For microscopic level validation of CARSIM, the speed change 
patterns and trajectory plots generated by CARSIM were 
compared with those obtained from the field data. The speed 
and location of every vehicle were determined at 1-sec time 
intervals in the simulation and field data. In the following 
sections, the changes on these variables will be examined. 

Speed Profile Comparison 

The speed of an individual vehicle was computed at 1-sec time 
intervals and a speed profile for each vehicle was generated 
by plotting speed versus time. The average speed of a vehicle 
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FIGURE 1 Acceleration-deceleration patterns for a platoon of vehicles in a stop-and-go 
condition. The leader of the platoon decelerates at 16 ft/sec2 , stops for 9 sec, and 
accelerates to a desired speed. 

at a given time interval was computed as the mean of five 
speeds from the replications. Then, the average speed of an 
individual vehicle at a given time was compared to the ob­
served speed from field data. Comparison of the speeds from 
simulation and field data are shown in Figure 3, which shows 
the speeds for the lead car, the 4th car, and the last (15th) 
car of Platoon 123. The other cars could not be shown because 
the plot became cluttered. 

The simulation model generated speed change patterns sim­
ilar to those from the field data. All vehicles came to a com­
plete stop and then accelerated to reach their desired speed. 
The similarity of the speed change patterns indicates that the 
simulation model replicates the real-world traffic disturbance 
with an acceptable accuracy. An acceptable level of accuracy 
would depend on the model and the purpose the model is 
used for. Here, the similarities of speed change patterns were 
considered the important criteria in accepting accuracy of the 
model. Speed difference at each time interval may also be 

considered as the criteria; however, the difference may exhibit 
a large fluctuation because the speeds are updated at short 
time intervals (e.g., 1 sec). In the simulated platoon, the 
vehicles exhibited less speed fluctuation than the vehicles in 
the field data, because of the fact that the model was pro­
grammed to mimic only limited characteristics of real drivers . 

From the comparison of speed change patterns, one may 
conclude how well the model duplicates the real-world speed 
change patterns in various traffic conditions. The criteria for 
the operational validation may be comparison of the shape 
of the speed profile for a vehicle generated by the model and 
the field data . The shift between the two profiles for a vehicle 
is not as important as the similarity of the shape of the profiles, 
because the shift would depend on the drivers' characteristics, 
but the profile would reflect the model's capability to simulate 
actual speed profiles. A driver with a longer reaction time 
would cause a larger shift than a driver with a shorter reaction 
time, but the profile for both drivers may look similar. 
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STEPS IN VALlDATION OF A CAR FOLLOWING SIMUI.ATION MODELS (CARSIM) 
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FIGURE 2 Steps in validation of the car-following simulation model (CARSIM). 
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FIGURE 3 Comparison of speed change patterns from the 
simulation model versus field data for the first, fourth, and last 
cars in Platoon 123. 

Trajectory Comparison 

A vehicle trajectory was obtained by plotting the position of 
the vehicle versus the time in 1-sec time intervals. The average 
of five numbers obtained from the replications was used as 
the location of the vehicle at a given time. For Platoon 123, 
the trajectory plots for every third vehicle including the last 
vehicle are shown in Figure 4. 

When there is a severe disturbance in the traffic flow, it is 
challenging for a simulation model to generate trajectories 
that are close enough to the actual trajectories. However, in 
normal traffic conditions it is not difficult to obtain trajectory 
plots that are close to the trajectory plots from field data. 

Thus, models validated only in free flow traffic conditions 
may not accurately simulate high-density traffic conditions. 
Also, models validated using data only either from the ac­
celeration or from the deceleration phase of a traffic distur­
bance may not accurately simulate traffic flow in stop-and-go 
conditions. 

The criteria for evaluating the similarity between the model 
and field data may include vehicle location, difference in lo­
cation between the model and real platoon, shape of the plot 
for individual vehicles, general shift up or down, shift either 
before or after the disturbance, and location where a vehicle 
slows down, stops, starts, and recovers. It is important to use 
short time intervals (a few seconds) in generating trajectory 
plots, if the model will be used for detailed studies. Otherwise, 
the model may not accurately show the behavior of traffic 
within that interval. For instance, Figure 4 shows that the 
vehicles in the platoon stopped and moved in less than 20 sec. 
If the data had been collected every 30 sec, the stop-and-go 
behavior of the platoon would have been missed. 

The microscopic validation may be conducted subjectively 
or objectively, as suggested by Sargent (4). The graphical 
comparison of (subjective validation) the speed change pat­
terns and trajectory plots was found to be sufficient at this 
level. The objective validation (statistical technique) was not 
used because of a strong correlation between successive points 
on the speed profile or the trajectory plots for a vehicle. Once 
satisfactory results were obtained from the microscopic level 
validation, the macroscopic validation was started. 

Validation at Macroscopic Level 

For macroscopic validation, the overall performance of a pla­
toon of vehicles should be evaluated rather than the perfor-
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FIGURE 4 Comparison of trajectories of vehicles from the simulation model versus field data for 
Platoon 123. The trajectories are shown for every third car in a platoon of 15 cars. 

mance of an individual vehicle. The macroscopic level vali­
dation may not reveal as much detailed information about the 
model capabilities as the microscopic level, because the var­
iables are the average values for all vehicles in the platoon. 
For instance, the average speeds for a simulated and an actual 
platoon might be close, but the speed of individual vehicles 
may still be different. Likewise, the density of a simulated 
platoon might be close to that of a field platoon, but spacing 
between successive vehicles may be considerably different. 

For the macroscopic level validation, the following com­
parisons are suggested: 

1. Comparison of profile of traffic flow variables , 
2. Comparison of fundamental relations of traffic flow, and 
3. Comparison of simulation results versus field data. 

In addition to the comparisons, the range of variation of the 
response variables should also be examined. Application of 
these concepts in validation of CARSIM is discussed in the 
following sections. 

Comparison of Profile of Traffic Flow Variables 

Traffic flow variables used for the comparison were the speed, 
density, and volume. These variables were computed at 1-sec 
time intervals and their variations over time (profile) were 
compared to the field data. The plot of the average speed 
from the simulation runs versus the speed from the field data 
for Platoon 123 is shown in Figure 5. The platoon suffered 
from a severe kinematic disturbance and recovered immedi­
ately. The platoon traveling at a speed of more than 80 ft/sec 
reached a speed of near zero in less than 1 min. The simulation 
results are close to the actual traffic speeds. The simulation 
curve exhibits less local fluctuation than the curve for the field 
data, as expected. 

The plots of density versus time for Platoon 123 and the 
simulation counterparts are shown in Figure 6. The graphs 
show the same patterns and fluctuations for both simulated 
and actual platoons. The time a simulated platoon reaches 
the jam density is close to that of the actual platoon. The 
density of a platoon is computed from the distance between 
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FIGURE 5 Comparison of the average speed from the simulation model versus field data for 
Platoon 123. 

the first and the last car in the platoon. The distance is de­
pendent on the spacing between these two cars. Therefore , 
one should be careful in using the density of a platoon for 
comparison of actual and simulated results. 

Comparison of volume profile for the simulated and actual 
platoon is shown in Figure 7. The volume is computed as 
product of speed and density. The difference between the 
simulated and actual volume may be large because of the 
multiplication. Another reason for the large difference might 
be that the volume may not be equal to the product of speed 
and density when traffic flow breaks down (critical density). 
Thus, the volume comparison is not recommended when traffic 
density reaches its critical range. 

Fundamental Relations of Traffic Flow 

At this level, the fundamental relationships between traffic 
flow parameters (speed, density , and volume) obtained from 
the actual and simulated platoons should be examined. The 
speed-density, speed-volume, and density-volume relation­
ships from the field data should be compared with those from 
the simulation model. The speed-density relationships for sim­
ulated and actual platoons are shown in Figure 8. The actual 
data exhibited a nonlinear relationship between speed and 
density, and a loop representing the hysteresis phenomenon 
(19) when the traffic flow breakdown occurs. The simulation 
results exhibit a similar relationship and the same phenom-
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FIGURE 6 Comparison of density from the simulation model versus field data for Platoon 123. 

enon. The loop from the simulation model is less distinct than 
that of the field data because the simulation results are the 
average of five replications. 

Similar comparisons should be made for speed-volume and 
volume-density relationships. In addition to the graphical 
presentation of the results, the statistical analysis of the sim­
ulation results versus the actual data is also carried out. The 
statistical analyses will be discussed in the following section. 

Comparison of Simulation Results Versus Field Data 

Traffic parameters computed from the simulation model should 
also objectively (e.g., statistical analysis) be compared to the 
values from field data. Statistical techniques such as regression 

analysis, analysis of variance, or time series analysis may be 
used for comparison of the results. The appropriate method 
should be selected on the basis of factors such as type of data 
available, relationship with the other parameters, dependency 
to the other variables, etc. Application of regression analysis 
and analysis of variance (ANOV A) for model performance 
evaluation are discussed here. For comparison of the model 
performance, regression analysis of speed, density, and vol­
ume computed from the simulation model versus those from 
the field data is carried out. For each time interval, the av­
erage speed, density, and volume were computed from sim­
ulation and field data. The general form of the regression 
lines is 

p model = bQ + bl * (Pfield) 
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FIGURE 7 Comparison of volume from the simulation model versus field data for Platoon 123. 

where 

P model Speed (density or volume) from simulation model, 
Pfield = Speed (density or volume) from field data, 

bO = ¥-intercept of the regression line, and 
bl = Slope of the regression line. 

Independent replications must be made for any simulation 
model with stochastic parameter to account for variability of 
the parameters. However, replication of simulation runs cre­
ates more than one set of data for a given condition. One 
must be careful in interpreting the differences among the 
replications. The following comparisons may be considered 
among independent replications: 

1. Comparison of an individual replication versus field data, 
2. Comparison of average of replications versus field data, 
3. Comparison of all repli<.:atiuns mmbined versus field data. 

For comparison of individual replication versus field data , 
speed, density, and volume computed from each simulation 
run are regressed over the values from field data. The coef-

ficients of the regression lines, variance of the coefficients, 
and R2 values are presented in Table 1. Note that , s(bO) and 
s(bl) are the variances of bO and bl. The R2 values and the 
coefficients of the regression lines indicate that there is a 
strong agreement between the simulation results and the field 
data . The slope and y-intercept of the regression lines as well 
as the R2 values for a given parameter do not exhibit a large 
variation among the replications. When the variation is large, 
more replications should be made . 

The advantage of using regression of individual runs over 
using the average of the five replications is that, one would 
get additional information about the variation of the response 
variables among the replications . When the average values 
are used, this information is no longer available; however, 
the results are easier to interpret . 

For comparing the average of replications versus field data, 
the speed, density , or volume at a given time is computed as 
the average values from five replications. Then, the average 
of five replications is compared to field data. Table 2 presents 
some of the parameters obtained from the regression analysis. 
The slopes of the regression lines are close to 1 and the y-
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FIGURE 8 Comparison of speed-density relationships from the simulation model versus field 
data for Platoon 123. 

intercepts are close to 0. The R2 values for speed and density 
are 0.98 or higher, and for volume it is 0.80 or higher. The 
results from Table 2 indicate that there is a strong agreement 
between the speeds or densities computed from the simulation 
and the field data. As discussed before, the agreement be­
tween the traffic volumes is not expected to be as strong as 
that of speed or density. 

When the average values of several replications were com­
pared to field data, the parameters indicated less variation 
than the same parameter in the individual runs. Although 
using the average values of the replications makes the com­
parisons less complicated, finding average of several repli­
cations may conceal useful information about the sensitivity 
of a parameter to an input variable. For instance, the regres­
sion lines for speed in Table 1 indicate the range of variation 
of slope and intercept, but the regression line for speed in 

Table 2 does not have any variation. Because there are five 
values from the simulation model for each value from the 
field data, one might treat them as repeated observations at 
a given point. The consequence of this assumption is discussed 
in the following section. 

For comparison of all replications combined versus field 
data, the values obtained from the individual simulation runs 
are combined to create one data set. Regression analysis of 
the combined data set versus field data yielded, as it was 
expected, slopes and y-intercepts equal to that of the average 
of five replications, see Table 2. However, the variance of 
slope and y-intercept decreased almost to one-half of that of 
the average of five replications. There was also a slight de­
crease on the R2 values. 

The assumption about the repeated data was proven to be 
incorrect. In regression analysis when there are repeated ob-
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TABLF. 1 PARAMETERS OF REGRESSION LINES FOR INDIVIDUAL 
SIMULATION REPLICATIONS VERSUS THE VALUES FROM FIELD 
DATA FOR PLATOON 123 

Repli- bO bl R' S(bO) S(bl) 
cations 

SPEED 

1 1. 09696 0.96812 0.98129 0.54144 0. 01344 

2 1. 96750 0.94091 0.98012 0.54266 0.01348 

3 1. 91585 0.93815 0.98287 0.50152 0.01245 

4 ,.441\74 0.91579 0.98478 0.46103 0.01144 

5 1.10296 0. 97226 0.97963 0.56778 0.01409 

DENSITY 

1 1. 90606 0.98211 0.98744 0.95538 0.01113 

2 2.05298 0.95981 0.98826 0.90241 0.01051 

3 1. 40735 0.97494 0.99118 0.79343 0.00924 

4 2.32060 0.94958 0.99130 0.76726 0.00894 

5 -0.49143 1. 05514 0.97827 1. 35641 0.01580 

VOLUME 

1 353.88146 0.79593 0.81033 64.38405 0.03870 

2 277.90502 0.82216 0.82465 63.38825 0.03810 

3 415.23342 0.74210 0.82827 56.49940 0.03396 

4 383.34560 0.74492 0.88891 44.03049 0.02647 

5 316. 72237 0.85828 0.79982 71. 79334 0.04315 

TABLE 2 PARAMETERS OF REGRESSION LINES FOR THE AVERAGE 
OF FIVE REPLICATIONS AND ALL FIVE REPLICATIONS COMBINED 
VERSUS THE VALUES FROM FIELD DATA FOR PLATOON 123 

Type of 
Analysis Variable bO bl R' s(bO) s(bl) 

Speed 1. 70554 0.94705 0.98383 0.49177 0.01220 
Average 
of 5 Density 1. 43827 0.98432 0.98922 0.88620 0.01033 
Runs 

Volume 349.433 0.79265 0.84406 56.9654 0.03424 

Speed 1. 70655 0.94705 0.98100 0.23682 0.00588 
All 5 
Runs Density 1. 44075 0.98432 0.98123 0.52091 0.00607 
Combined 

Volume 349.472 0.79267 0.80913 28.5566 0.01717 

servations at a given point, the lack of fit of the regression 
line should be examined (23). The examination of ANOV A 
tables falsely indicated the lack of fit for the linear model. 

points. For instance, the density at the current time interval 
depends on the density at the previous time interval. The false 
detection of lack of fit was not caused by the inadequacy of 
the linear regression model, but by using the lack-of-fit test 
when the data points were strongly correlated. 

The possibility of fitting a higher-order model was explored , 
and the residuals were plotted versus the time and predicted 
values. The plols did not exhibit any definite trend. The re­
siduals were clustered around the line y = 0, and approxi­
mately made a horizontal band. The lack of the trend, pres­
ence of the band, and an R2 value close to 1 indicated the 
adequacy of the model. Thus, there was no lack of fit. 

The lack-of-fit test is not appropriate for this situation be­
cause there is a strong dependency between successive data 

Variation of the Response Variables 

The result obtained from a single simulation run may not be 
reliable when stochastic variables in the model affect the mod­
el's outcome. One method to increase reliability and confi-
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dence on the simulation responses is to make several inde­
pendent replications. Then, the change in the response variable 
among the replications should be examined. Plots indicating 
the range of variation of speed, density, and volume among 
different replications were prepared. The range of variation 
of speed is shown in Figure 9. Figure 9 indicates that there 
was small variation from one simulation run to another. When 
a wider variation is observed, more runs should be made. The 
number of replications depends on the model and the range 
of the output parameter. 

CONCLUSIONS AND RECOMMENDATIONS 

A model verification and validation procedure is suggested 
and its application to CARSIM is presented. The procedure 
divides the tasks into microscopic and macroscopic levels. This 
paper concentrated on the validation part and briefly dis­
cussed the verification efforts. 
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For validation at the microscopic level, the speed change 
patterns and trajectories of vehicles obtained from the sim­
ulation models were compared with those from field data. 
For validation at the macroscopic level, the average speed, 
density, and volume computed from the simulation were com­
pared to the field data. The variation of these parameters 
over time and the relationships between these parameters 
were examined . Furthermore, the regression of the simulation 
results versus the field data was discussed. Comparisons of 
the results indicated that using this procedure enabled CARSIM 
to provide results close to those from field data. 

Some of the steps suggested here have been used in vali­
dation of other traffic simulation models. The steps suggested 
here should be considered as the starting point for the efforts 
needed for verification and validation of a microscopic traffic 
simulation model. For a particular simulation model, the de­
veloper should decide on appropriateness of the suggested 
approach and take additional steps needed to obtain reliable 

Time (sec) 

60 70 80 90 100 

FIGURE 9 Speed variation among five independent replications of a simulation model 
representing Platoon 123. 
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results. Questions about number of replications, truncation 
policy, and traffic conditions to be covered were not discussed. 
The procedure is intended to be used for validation of mi­
croscopic models, although some parts of it may be used for 
validation of macroscopic models, as well. The approach should 
be considered as a step toward the development of a com­
prehensive guideline for validation of traffic simulation models. 
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