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The Two-Capacity Phenomenon: 
Some Theoretical Issues 

JAMES H. BANKS 

Theoretical issues related to two phenomena observed in a study 
of four freeway bottlenecks in San Diego are addressed. It was 
observed that flow immediately downstream of the bottlenecks 
decreased by a small amount when it broke down and that flow 
breakdown appeared to be triggered by speed instability. Most 
of the flow decrease could be attributed to the increase in vehicle 
passage time that occurs when speeds decrease, and most of the 
San Diego data are compatible with the linear car-following model 
of Chandler et al. as extended by Bexelius, although a number 
of questions about the validity and applicability of this model 
remain. 

A previous paper reported on a study of flow processes in 
the vicinity of a high-volume freeway bottleneck in San Diego, 
in which detailed detector data were analyzed and compared 
with videotapes of traffic flow (1). Evidence was found that 
supported the hypothesis that capacities at this bottleneck 
decrease when queues form. In addition, it was found that 
queues form upstream of the merge point, despite extremely 
high merge rates and volumes downstream of the bottleneck. 
Subsequently, three additional bottlenecks on San Diego free
ways were studied as a part of the same research project. 
These additional case studies are described in detail in the 
project final report (2) ; the results and their implications for 
ramp metering are discussed in this paper. 

The two-capacity hypothesis was confirmed at all four lo
cations. The test of the two-capacity hypothesis that was de
veloped by Banks (1) was an extension of work by Hurdle 
and Datta (3) and Persaud ( 4). It was assumed that individual 
lanes might have separate capacities, and concluded that if 
even one lane is found in which the mean flow rate is less 
after the queue forms, or in which the highest short-term 
volume counts are less frequent after queue formation, this 
would confirm the hypothesis. This does not necessarily imply 
that flows across all lanes will decrease if the hypothesis as 
stated here is true, because the distribution of traffic across 
the lanes may shift. 

Of the four sites, one was on a slight downgrade, and the 
other three were on upgrades ranging from 2 to 6 percent. 
Also, in two cases, there were apparently critical horizontal 
curves. Roadway widths ranged from two to five lanes in one 
direction ; in all cases, lane and shoulder widths were standard. 
In three cases, the maximum volume per lane occurred just 
downstream of an on-ramp; in the other it was just upstream 
of a heavily used off-ramp. All sites were in the vicinity of 
metered on-ramps; the extensiveness and effectiveness of up-
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stream metering varied considerably, however . Further de
tails concerning site conditions were provided by Banks (1,2, 
and in the companion paper in this Record) . 

The study methodology involved comparison of videotapes 
of traffic flow with detailed analyses of 30-sec detector data. 
The most important analyses included comparison of flows 
averageJ over 12-min periods before and after queue for
mation , comparisons of distributions of 30-sec counts for sim
ilar periods aggregated over all days studied, and linear 
regressions of counts versus time, which were used to deter
mine whether flows were increasing significantly just before 
breakdown . Videotapes were used for supplemental counts 
and to confirm that queues were not backing up into the 
sections from downstream. 

At all four sites, the left lane was the most heavily used, 
both before and after queue formation. On a majority of the 
days studied at each site, flows in this lane decreased when 
queues formed; when evaluated by the sign test, the number 
of decreases was statistically significant in three of the four 
cases. Flows across all lanes decreased significantly in one 
case; in the other three cases, there was no significant change. 
In two cases, this appeared to be because flows were increas
ing significantly just prior to queue formation , so that the 
prequeue average flow understated the flow at the time of 
queue formation; in the other case, the decrease in flow in 
the left lane was not statistically significant, and the most 
likely explanation is that the flow process itself was different 
from that at the other sites. In addition, when counts for 12-
min periods before and after queue formation were aggre
gated over all days studied, the highest counts were less fre
quent after queue formation. This was true at all sites both 
for left lane counts and for counts averaged across all lanes. 
The decreases in flow did vary considerably from site to site, 
however. 

In addition, it was found that in every case in which the 
typical point of flow breakdown could be seen, it was some
where other than at the merge or diverge point that would 
have been identified as critical by Chapter 5 of the Highway 
Capacity Manual (5); this was in spite of the fact that the 
merge or diverge rates in question were far in excess of the 
supposed capacities of merge or diverge points. 

In the course of the study , it was possible to observe the 
flow breakdown process on many occasions. These observa
tions, coupled with the major findings cited above, raise sev
eral theoretical issues. Among these are the interrelated ques
tions of what caused flow to break down and why flow decreased 
when it broke down. The flow breakdown process as observed 
at these sites is described, and these issues are discussed. 
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OBSERVED PROCESS OF FLOW BREAKDOWN 

The empirical literature describing phenomena related to flow 
breakdown at freeway bottlenecks is not very extensive. The 
flow breakdown process is also described by Persaud (4) , who 
described the initiation of queueing at a lane drop in Toronto; 
Newman (6), who described flow breakdown at a merge lo
cation in Los Angeles; and Edie and Foote (7,8), who de
scribed flow processes in a New York tunnel. In addition, 
Forbes and Simpson (9) described driver and vehicle re
sponses in freeway deceleration waves (including the initiation 
of such waves) on the basis of trajectories derived from aerial 
photographs; similar work has also been carried out by Trie
terer and Myers (10) . Of this work, that which is most relevant 
to the present study is Edie and Foote (8). Although the 
bottleneck they described was different in many ways from 
those considered here, the process of flow breakdown was 
similar. 

When it was possible to see what happened, the process of 
flow breakdown appeared to be similar at all the San Diego 
sites. This was in spite of considerable differences in site char
acteristics. Three of the four bottlenecks involved wide free
ways (four to five lanes in one direction) of modern design; 
of these, two were on extended upgrades (of 2 and 3 percent, 
respectively) and the third was on a downgrade, but featured 
a possibly critical horizontal curve (with a 2,000-foot radius). 
The fourth bottleneck involved two lanes in one direction and 
featured much more restrictive geometry, including an ex
tended upgrade, portions of which were as steep as 6 percent, 
and a 600-ft horizontal curve. In all cases, percentages of 
heavy vehicles were low (around 2.0 to 4.5 percent). Because 
the point of flow breakdown was difficult to see in the case 
involving a downgrade, most of the description here was de
rived from the upgrades; however, when it was visible, the 
sequence of events on the downgrade was similar. 

This sequence normally began with the arrival of a vehicle 
traveling somewhat slower than the average speed of vehicles 
in the lane in question. Because flows and densities were great 
enough to impede passing, dense platoons of vehicles col
lected behind these slow-moving vehicles. Eventually, speeds 
in the platoon became unstable , with speeds of vehicles at 
the upstream end dropping below that of the leader; once the 
speed at the upstream end of the platoon dropped below a 
certain value, the instability appeared to escalate, and the 
usual outcome was that several vehicles would stop. Mean
while, vehicles in adjacent lanes also reacted to the decrease 
in speed, so that eventually speeds in all lanes approached 
zero. 

Once this happened, a shock wave would form and move 
upstream. These waves consisted of a small core of closely 
spaced vehicles that were stopped or nearly stopped, a zone 
of deceleration immediately upstream, and a zone of accel
eration immediately downstream. Deceleration and acceler
ation, from zero to about 30 mph, took place rapidly; but 
acceleration above 30 mph occurred somewhat more gradu
ally. 

In many cases, secondary waves were observed to form 
repeatedly in the accelerating flow downstream from the pri
mary wave. This process resulted in a flow pattern upstream 
of the bottleneck consisting of brief periods in which there 
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was rapid deceleration followed by rapid acceleration as shock 
waves passed upstream, followed by rather longer periods in 
which speeds were nearly constant (but below the speed be
fore flow breakdown) or gradually increasing. At two of the 
sites , multiple waves were common, so that the nearest wave 
never got far enough upstream for speeds in the vicinity of 
the bottleneck to recover completely. At the other two sites, 
on the other hand, isolated waves sometimes did occur, and 
speeds did recover. 

THEORETICAL BACKGROUND 

Two main features of the flow processes are explained. The 
first feature is the decrease in flow that occurs at flow break
down; a related phenomenon is the structure of the shock 
waves (i.e., the dense core with deceleration and acceleration 
zones up- and downstream). Both of these features are pri
marily related to what might be called the "mechanics" of 
speed and flow relationships. The second major feature is the 
speed instability that seems to trigger flow breakdown; as
sociated with this is the tendency observed at some of the 
sites for secondary shock waves to form in the accelerating 
flow downstream of the primary wave. These appear to be 
related to driver behavior; specifically, to car-following be
havior. 

One of these issues has a considerable history in flow theory 
literature; the other does not. The two-capacity hypothesis 
itself has a fairly long history, but most of the literature dis
cussing it never goes into the question of why the phenomenon 
should occur. One reason for this is that most of the early 
discussions of it related it to so-called "two-regime" or "dual
mode" traffic flow theories (11-14) . In these cases, it was 
noted that there appeared to be discontinuities in macroscopic 
data relating flows to speeds or concentrations, and it was 
assumed that these might indicate different capacities for con
gested and uncongested flow. One of the points of departure 
for this work was an awareness that these gaps in the data 
might not have any such implications. In particular, if the data 
were taken upstream of the bottleneck, a drop in flow is to 
be expected when the shock wave at the upstream end of the 
queue moves past the observer (15-17). The only previous 
study in which evidence that the phenomenon occurs is com
bined with an attempt to explain it appears to be Edie and 
Foote (8). The explanation they give is sketchy, but it serves 
as an important point of departure for that proposed here. 

Meanwhile, the structure of the shock waves and the fact 
that distinct waves form repeatedly in flow upstream of fixed 
bottlenecks have long been known, although these facts have 
often been ignored in discussions of shock wave movement. 
Technically, a shock wave is a discontinuity between flow 
regions with dissimilar flows and densities. In much of the 
literature related to shock waves, there is a tendency to sup
pose that in queues upstream of fixed bottlenecks, there is a 
single shock wave between two relatively homogeneous flow 
regions : the high-density flow of the queue itself and the low
density flow approaching the queue from upstream. In con
trast to this, qualitative descriptions of congested flow have 
long emphasized its instability and the pattern of repeated 
shock waves (sometimes referred to as the "accordion ef-
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feet"). There have even been attempts to quantify the phe
nomenon (18,19) and to explain it (20). 

On the other hand, there is an extensive literature related 
to the relationship between driver behavior and flow stability. 
The most important work along these lines is a series of studies 
of car-following processes published by researchers at General 
Motors Research Laboratory in the late 1950s and early 1960s. 
This work involved mathematical models relating the accel
eration of a particular vehicle to the speed difference and 
distance spacing between it ;md the preceding vehicle. The 
most important work in this series was conducted by Chandler 
et al. (21) and Herman et al. (22), who propose the so-called 
"linear" model and explored its stability characteristics; Gazis 
et al. (23), who proposed the reciprocal-spacing model and 
established a link between the microscopic car-following models 
and macroscopic flow models; and Gazis ct al. (24), who 
generalized the earlier particular models into <1 family. Other 
important early work in this area was conducted by Newell 
(25) and Edie (14). A somewhat later effort by Bexelius (26) 
extended this work to consider cases in which drivers respond 
to the speeds and spacings of more than one vehicle ahead 
of them. 

THE FLOW DECREASE 

A key feature of the flow breakdown process, as observed at 
the San Diego bottlenecks, was that it appeared to be trig
gered by unstable speeds. This speed instability resulted in a 
brief but drastic reduction of speed at the point the shock 
wave began, in which a few vehicles either stopped or came 
near to stopping. There are at least two ways in which such 
a speed disturbance could affect flow, as measured immedi
ately downstream. 

First, whenever two vehicles are traveling at different speeds, 
both their time and distance separations must be changing. 
Because the flow rate is the reciprocal of the average time 
headway, any drastic change in speed such as that described 
earlier should result in a change in flow. Specifically , at the 
beginning of such a speed disturbance there should be a de
crease in flow just downstream as the last vehicles not involved 
in the speed decrease pull away from the first vehicles involved 
in it . 

Second, the time headway consists of the time it takes a 
vehicle to pass a point (which is referred to as the "passage 
time") and the time gap between the vehicle's front bumper 
and the rear bumper of the preceding vehicle. Passage time 
is a function of vehicle length and speed only and must in
crease as speed decreases . Unless time gaps decrease without 
limit (which is implausible) , speed decreases must eventually 
increase the average time headway and thus decrease the flow 
rate . 

Note that these two mechanisms are essentially different . 
The first affects flow in front of the first vehicles to slow down, 
and tends to increase the time gaps ahead of them. The second 
affects flow behind the vehicles slowing Jown but may not 
involve increases in time gaps. The second of these mecha
nisms is the one identified by Edie and Foote (8) as crucial 
to the development of shock waves in the tunnel they studied. 
This mechanism will also be shown to be the more important 
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of the two phenomena in explaining the flow decreases at the 
San Diego bottlenecks. 

SPEED DIFFERENCES BETWEEN VEHICLES 

First consider the way flow is affected by speed differences 
between vehicles at different points in the traffic stream. Fig
ure 1 shows the trajectories of four hypothetical vehicles as 
they pass two fixed points (Stations A and B) that are assumed 
to be entirely up- and downstream of a shock wave. These 
points are separated by a distance t:i.x. It is assumed that there 
are no on- or off-ramps in the vicinity and that each pair of 
trajectories is separated by a fixed number 11N of vehicles at 
each point in the traffic stream. The diagram can be applied 
to situations in which passing occurs by adopting the device 
suggested by Makigami et al. (27): whenever passing occurs , 
the vehicles are renumbered and the trajectories rebound. 
The wave is assumed to begin after the passage of the first 
vehicle and to dissipate after the passage of the last um: . The 
dashed lines indicate the average speeds between A and B 
for trajectories 2 and 3. 

Now consider the relationship between changes in speed 
between different vehicles in the traffic stream and changes 
in flow over time and space. Because it simplifies the algebra, 
the relationship is actually defined in terms of the reciprocals 
of speed and flow. The reciprocal of flow is the average time 
headway; let hA = l!qA and ha = llqa be the headways at 
A and B, respectively, where qA and qa are the flows. Fol
lowing the convention of Vaughan et al. (28), the reciprocal 
of speed is referred to as "tardity" and is designated by A; 
A1 refers to the reciprocal of the average speed of Vehicle 1 
between points A and B. 

From the definition of headway, hA = tA/11N and ha = 
ta111N, where tA and ta are the times separating some pair of 
trajectories (say 1 and 2) at A and B, respectively. From the 
diagram, 
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FIGURE 1 Hypothetical vehicle trajectories. 
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from which 

(2) 

or 

l:J.h/ Ax. = 111\/ 11N (3) 

Equation 3 may appear in a more familiar light if an alter
native derivation is considered. Figure 2 shows the cumulative 
number of vehicles passing points A and B as a function of 
time, beginning with the arrival of some particular vehicle in 
each case. The horizontal dimension of the graph is the time 
it takes a given vehicle to travel from A to B, and the vertical 
difference between the cumulative arrival curves is the num
ber of vehicles stored between A and B at any time. The 
average slopes of the cumulative arrival curves are the average 
flow rates qA and q8. As Makigami et al. (27) point out, 
Figures 1 and 2 are actually equivalent representations of the 
traffic stream. 

Consider Vehicles 1and2, separated by 11N vehicles, where 
points A and B are once again separated by a distance Ax.. 
The two vehicles travel from A to B in times Ax.J\1 and Ax.J\2 , 

respectively, so from the diagram 

(4) 

or 

(5) 

Equation 3 follows from replacing hB hA by 11h and re-
arranging . 

Equation 3 relates a change in flow over distance to a dif
ference in average speed between two trajectories. In and of 
itself, it does not necessarily predict a decrease in flow at the 
downstream location when the speed drops; it only predicts 
a decrease in flow at B relative to that at A. As such (as is 
clear from the derivation from Figure 2), it might represent 
no more than the decrease in average speed across the section 

TIME 

FIGURE 2 Hypothetical cumulative arrival 
curves. 
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between A and B that occurs as a queue builds up in the 
section because flow at A exceeds the capacity of some point 
downstream. 

On the other hand, consider the case in which there is an 
isolated speed disturbance of the sort described earlier (that 
is, no secondary shock waves form in the accelerating flow) 
and suppose that flow was steady state, so that in the absence 
of the disturbance, there would be only random variations in 
speeds and flows between points A and B. In that case, if a 
nonrandom difference in flow (caused by the speed distur
bance) should occur between A and B, it should result in a 
nonrandom change in flow over time at B. Moreover, in this 
case the queue is only the core of the speed disturbance, and 
quickly reaches a stable length. However, at the beginning of 
the disturbance there is a decrease in speed, which creates a 
decrease in flow. If flow immediately downstream from the 
point of the disturbance is measured over a short enough time 
interval, it should be possible to detect this decrease. 

However, given the data available in this study, it is almost 
impossible to detect any such effect. The minimum-count in
terval is 30 sec; the flows in question are on the order of 18 
to 20 vehicles per lane per 30 sec; and the decreases in speed 
do not take place instantly: usually they take 1 min or more. 
The consequence is that 111\/ 11N is a rather small number , and 
the change in flow that would result from it gets lost in the 
random variation in the 30-sec counts. 

INCREASE IN PASSAGE TIME 

The theory outlined presents a second problem. As can be 
seen from Equation 3 and Figure 1, the decrease in flow 
should persist only so long as there is a change in average 
speed over the section. In the case of an isolated wave in 
steady-state flow, this change in speed should occur fairly 
rapidly; once it is accomplished, 11J\/11N = 0, there is no 
change in flow between A and B, and the flow rate should 
recover. In fact , the decrease in flow tended to persist until 
speeds recovered at the location in question. This suggests 
that most of the flow decrease was the result of a direct re
lationship between speed and flow, such as would result from 
increased passage times. 

Figure 3 shows the effect of speed changes on passage times 
and, hence, time headways . Two successive vehicle trajec
tories are indicated. Front and rear trajectories are shown for 
each vehicle, with the shaded area representing the space 
occupied by the vehicle itself. Dashed lines are used, as in 
Figure 1, to show the average speeds of the fronts of the two 
vehicles between different points. In the diagram, it is as
sumed that time gaps do not vary with speed; given this as
sumption, although flow must decrease as speeds decrease, a 
subsequent increase in speed leads to an increase in flow. 

The alternative, of course, is that the time gaps also increase 
as speed decreases. In this case, it turns out to be fairly easy 
to use the data available to distinguish between these two 
possibilities. Data include flows and occupancies. The average 
time headway is the reciprocal of the flow; meanwhile, be
cause occupancy represents the aggregate time during which 
vehicles are over the detector, one minus occupancy repre
sents the aggregate time during which vehicles are not present, 
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FIGURE 3 Effect of passage time on time headway. 

and if this is divided by the flow, the result is the average 
time gap. 

If occupancy were literally measured at a point, this would 
be strictly true; in fact, the detector length is significant rel
ative to the average vehicle length. In San Diego, the physical 
length of the detectors is 10 ft; however, their effective length 
is somewhat less (because of differences in physical and elec
trical lengths, scanning rates, sensitivities, and the like) . Based 
on the effective lengths that make speed calculations come 
out right (Caltrans uses 24.75 ft for the effective length of the 
vehicle plus the detector in San Diego) and a guess as to the 
actual mean vehicle length (somewhere between 17 and 20 
ft), the average effective length of the detector is on the order 
of 5 to 8 ft. 

The actual calculation of the average gap then is 

g = (1 - H)/q + dlu 

where 

g = time gap, 
H = occupancy, 
d = effective length of the detector, and 
u = average speed. 

But because 

u = [q(L + d)]IH 

(6) 

(7) 

where L is the average vehicle length, Equation 6 can be 
simplified to 

g = {l - [HLl(L + d)]}lq (8) 

This implies a correction to H, which varies only with the 
average vehicle length, and not with speed. Even if the ratio 
of Ll(L + d) assumed is incorrect, Equation 8 correctly dis-
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tinguishes increases or decreases in gaps when two time in
tervals are compared, unless there are significant changes in 
the average vehicle length. 

Time headways and time gaps were calculated for the left 
lane for 12-min periods before and after flow breakdown at 
each of the bottlenecks studied. At three of the four, there 
appeared to be no significant change in the time gap when 
periods before and after flow breakdown were compared. 
When data for individual days were compared, sometimes the 
average gap increased and sometimes it decreased, but the 
total number of increases and decreases was roughly equal , 
and the average difference for all days considered was near 
zero (between -0.03 sec and +0.03 sec). At the fourth site, 
gaps decreased in 15 out of 17 cases and the average decrease 
was 0.13 sec, or about 10 percent. 

From this, it may be concluded that the tendency for time 
headways to decrease when flow hroke down at these sites 
resulted from the increase in passage time rather than in
creased time gaps. It may also be concluded that drivers were 
at or near their minimum acceptable time gaps before flow 
broke down at three of the four sites. Thus it appears that 
the reduced flow downstream from these bottlenecks is largely 
the result of the increase in passage time that occurs when 
speeds decrease. 

SHOCK WAVE STRUCTURE 

In the preceding section, it was pointed out that when time 
gaps are insensitive to speed , changes in speed imply changes 
in flow because time headways are merely a function of the 
passage time. Also, it was found that the relationship is valid 
for both acceleration and deceleration. It can be further dem
onstrated that shock waves of the sort observed at the San 
Diego bottlenecks imply a similar relationship between flow 
and speed. 

Recall that these waves consisted of a small dense core, in 
which vehicles were stopped or nearly stopped, with a zone 
of deceleration upstream and a zone of acceleration down
stream. All features of the wave move upstream over time. 
The equation for shock wave speed, originally introduced by 
Lighthill and Withem (29) , is based on the conservation of 
vehicles. In its discrete form, it is 

where 

uw = speed of the wave, 
Aq = change in flow across the wave, and 
Ak = change in density across the wave. 

(9) 

In order for the wave to move upstream, the signs of Aq and 
Ak must be opposite. 

In the case being considered, there are actually two shock 
waves: one between the low-density traffic upstream of the 
disturbance and the higher-density core, anu another between 
the core and the lower-density traffic downstream. In order 
for the wave to move upstream, there must be a decrease in 
flow between the traffic upstream and the core and an increase 
in flow between the core and the traffic downstream. From 
the argument in the preceding section, the wave motion might 
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represent no more than the effect of the acceleration and 
deceleration, although in some cases time gaps might also 
vary across the wave. 

SPEED INSTABILITY AND CAR-FOLLOWING 

Flow breakdown at the San Diego bottlenecks appears to have 
resulted from instability in speeds. Car-following models pre
dict that this sort of instability in speed will develop under 
certain circumstances and inay be useful in explaining why it 
occurs. Models of the type described by Payne (14) and others 
(21-26) possess two key features that can be verified by means 
of average time gap data, such as that calculated for the San 
Diego bottlenecks. 

The first of these features is that each microscopic car
following model implies a macroscopic model relating speed 
to flow or density (22-24). These relationships, in turn, can 
be expressed in terms of the relationship between speeds and 
time gaps. 

At three of the four San Diego bottlenecks, time gaps ap
pear to have been unaffected by flow breakdown. Macro
scopic flow and concentration data from one of these sites 
were previously found to imply constant average time gaps 
throughout the range of congested flow (including incident 
queues that were considerably denser than anything included 
in the present study) (17); unpublished data at other San 
Diego bottlenecks appear to be similar. Such constant average 
time gaps in congested flow are consistent with the linear 
model of Chandler et al. (21). 

This model states that the acceleration of the trailing vehicle 
at time t + A (where A is the reaction time) is a linear function 
of the difference in speed between the lead vehicle and the 
trailing vehicle. Mathematically, 

(10) 

where a2 is the acceleration of the trailing vehicle , u 1 and u2 

are the speeds of the leading and trailing vehicle, and A. is a 
constant sensitivity factor. The equivalent macroscopic model 
for equilibrium flow conditions may be obtained by ignoring 
the reaction time, integrating, and substituting the appropri
ate boundary conditions (22). Integration results in 

(11) 

where u is average speed and x 1 and x2 are the positions of 
the two vehicles; that is, speed is a linear function of the 
average distance separation. Setting u = 0 for x 1 - x2 = x 0 , 

where x0 is some minimum distance separation, 

(12) 

If x0 is assumed equal to the average vehicle length, solving 
for A. and taking the reciprocal implies 

(13) 

whereg, as before, is the time gap. Even if drivers are assumed 
to allow some constant distance buffer, so x0 = L + c, it is 
still true that 
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u = (llg)(x 1 - X2 - L) (14) 

so that the linear car-following model implies constant time 
gaps for the range of flow conditions to which it applies. 

Clearly, this model only applies to congested flow ; if dis
tance separations are allowed to increase without limit, it 
predicts infinite speed. It was the original assumption of Chan
dler et al. (21) that it only applied once distance separations 
declined to a certain critical value; if flow is to break down, 
this value must place the model at or beyond its stability limit 
at the point at which interaction begins. 

The stability criterion itself is the second point at which the 
model can be compared with the data . In the case of the linear 
model, it is 

1 
A.<-A 

2 
(15) 

Given the interpretation of A. developed earlier, this relation 
implies that drivers must maintain time gaps that are at least 
twice their reaction times. 

In the case of the San Diego bottlenecks, speed instability 
did develop, but it was fairly rare, compared with the total 
number of vehicle platoons observed in high-volume uncon
gested flow. However, at some of the locations, the proba
bility of speed instability appeared to be somewhat higher in 
the accelerating flow downstream of the first wave. From this , 
one might conclude that the actual flow was relatively stable 
(at least before initial breakdown). The probability of insta
bility for any given vehicle pair or even any large platoon was 
small but cumulatively significant; meanwhile, the probability 
of a collision (the sort of instability most often discussed in 
the car-following literature) was almost infinitesimal com
pared with the total number of vehicle interactions. 

When the average time gaps computed for the San Diego 
bottlenecks are compared with reaction times commonly re
ported, the linear model in its unmodified form is not nearly 
stable enough. When an average vehicle length of 17 ft was 
assumed, average time gaps in the left lane for individual 12-
min intervals ranged from 1.00 to 1. 73 sec. Averages over all 
days for different bottlenecks ranged from 1.1 to 1.4 sec. 
When an average vehicle length of 20 ft was assumed, the 
corresponding estimates decreased by about 0.04 sec. 

Given that flow appeared to be at least marginally stable, 
this would imply average reaction times of 0.5 to 0.9 sec. The 
experimental work reported by Chandler et al. (21), which 
was used in the calibration of the various models developed 
at General Motors, suggested an average value for the re
action time as high as 1.5 sec. Hurlbert (30) indicated that 
the median of experimentally measured reaction times was 
0.66 sec when the stimulus was expected and 0.9 sec when it 
was not . In either case, it is hard 'to reconcile the relatively 
high level of stability observed with the stability characteristics 
of the model. 

It turns out that difficulty in reconciling stability criteria 
with observed time headways at maximum volumes is a prob
lem with most car-following models. It has previously been 
considered by Bexelius (26), who extended the linear model 
to allow for sensitivity to more than the first vehicle ahead. 
Bexelius (26) derived the stability criterion for a linear model 
in which the driver of the trailing vehicle reacts to the speeds 
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of the two preceding vehicles. It can be shown that by this 
device, the form of the model is not affected (so that it still 
predicts constant time gaps in congested flow), but the sta
bility is increased, allowing stability to be maintained with 
smaller gaps. 

It appears, then, that the linear car-following model in its 
extended form is consistent with the time gap evidence at 
three of the San Diego sites. There remain, of course, several 
problems with it. First, all the car-following models in the 
literature appear to be oversimplified when considered as 
models of human behavior. This fact is particularly true of 
the linear model, and is one of the reasons the group that 
developed it moved on eventually to other models. Unfor
tunately, the mathematics involved in stability analysis of ex
isting car-following models is already quite complicated, and 
there is little prospect that more realistic models would prove 
tractable. 

Second, Trieterer and Myers (10) found a definite pattern 
in speeds and vehicle spacings when platoons of vehicles pass 
through shock waves. This pattern is somewhat more com
plicated than what should result from the linear model. They 
also proposed separate models for the acceleration and de
celeration process and fit them to speed and density data. In 
neither case was the best-fit model the linear one. 

Third, the model is deterministic, but the behavior in ques
tion is clearly stochastic, with wide ranges of random variation 
being typical of such variahles as vehicle spacing. It remains 
to be shown that a stochastic version of the linear model would 
predict the same average behavior, particularly with regards 
to stability. 

Fourth, observation of flow at the San Diego sites left the 
distinct impression that instability was more likely in accel
erating flow downstream of the initial wave than in the high
volume flow immediately before breakdown. There is nothing 
in the linear model as developed so far that would predict 
this. It is possible that a stochastic model would shed some 
light on this point, because it appeared that although the mean 
of the distribution of time gaps was not affected significantly 
by flow breakdown, the variance may well have been (in 
particular, the large gaps in front of vehicles leading platoons 
tend to disappear). 

Finally, at one site, time gaps did decrease when flow broke 
down. This might imply that a different model would be ap
propriate at this site. On the other hand, the key characteristic 
of the linear model is that time gaps not vary with speed in 
congested flow. At the first three sites, it also appears that 
time gaps were already at the minimum that drivers would 
tolerate before flow breakdown. It may be that under some 
circumstances, gaps in free flow do not reach the minimum 
drivers will tolerate before speed stability sets in and that in 
other cases they do. A similar suggestion was made by Was
ielewski (31) in a study of time headway distributions. 

CONCLUSION 

Theoretical issues related to two phenomena observed in a 
study of four freeway bottlenecks in San Diego have been 
addressed. These issues were that flow immediately down
stream of the bottlenecks tended to decrease by a small amount 
when it broke down, and that the breakdown process seemed 

TRANSPORTATION RESEARCH RECORD 1320 

to be triggered by speed instability. Most of the flow decrease 
appeared to be caused by the increase in vehicle passage time 
that occurred when speed decreased, and the increase in pas
sage time was related to the structure of the shock waves that 
were observed. Most of the San Diego data were compatible 
with the linear car following model of Chandler et al. (21) as 
extended by Bexelius (26), although a number of questions 
about the validity and applicability of this model remain. 
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