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Development of a Self-Organizing Traffic 
Control System Using Neural Network 
Models 

TAKASHI NAKATSUJI AND TERUTOSHI KAKU 

A multilayer neural network model is introduced in order to 
realize a self-organizing traffic control system. The neural model 
inputs split lengths of signal phases and outputs measures of ef­
fectiveness such as queue lengths or performance indexes. The 
operation is separated into two processes, a training process and 
an optimization process. In the training process, iterations of the 
training operation by the backpropagation method were effective 
in forming a steady input-output relationship between splits and 
measures of effectiveness. In the optimization process, a stepwise 
method combining the Cauchy machine with a feedback method 
was proposed. The Cauchy machine is a sort of Monte Carlo 
method and gives the adjustments in a statistical way. This ma­
chine was introduced to urge the convergence and avoid the en­
trapment into local minimums. The feedback method is based on 
the steepest descent method and gives the adjustments in a de­
terministic way. This method has a self-organization ability be­
cause it can make adjustments that are closely related to traffic 
situations. The neural model was applied to a road network con­
sisting of three intersections, and split lengths were optimized in 
order to minimize the squared sum of queue lengths on inflow 
links. The neural network model was able to give approximated 
splits and queue lengths that were in good accordance with 
analytical ones. 

Today, most large cities in industrialized countries are con­
fronted with chronic traffic congestion. With regard to this 
problem, the Organization for Economic Cooperation and 
Development (OECD) (J) issued a report on traffic manage­
ment systems in urban areas. It states that future traffic sys­
tems should be operated on the self-organizing principle, in 
which the system would alter the basic form of the control 
law to respond not only to variations in traffic conditions but 
also to changes in transportation policies. Moreover, it says 
that applications of artificial intelligence techniques such as 
knowledge-based expert systems and fuzzy logic would be 
effective tools for realizing such intelligent traffic manage­
ment systems. Because neural network models are also char­
acterized by the ability of self-organization, they would serve 
to develop future traffic control systems. 

Although neural computers have not yet been put into prac­
tice, neural network models, which are fundamental concepts 
of neural computers, have the potential of being able to com­
pute in parallel and being able to learn from past experience. 
In particular, the self-organization ability is expected to have 
great effect on future traffic management systems because 
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neural models are able to learn without any knowledge of the 
system and any logic such as if-then operations in expert sys­
tems. In other words, they are able to establish a characteristic 
input-output relationship without any preliminary informa­
tion of the system. Therefore, they seem to be applicable 
even to nonlinear, nonstationary, or nonlogical problems. We 
are developing a macroscopic traffic simulation program using 
these characteristics of neural network models. So far , we 
have applied them to traffic control problems such as short­
term prediction of traffic variables, traffic-responsive selec­
tion of prestored timing plans, traffic assignment, and split 
optimization for an isolated intersection under a criterion of 
the minimum queue length (2 ,3). 

With regard to optimization of signal parameters, entrap­
ment into local minimums is a serious and inevitable difficulty. 
In the hill-climbing method adopted in TRANSYT (4,5), a 
traffic optimization program used throughout the world, es­
cape from local minimums is the major problem. Because 
some neural network models have the ability to escape from 
local minimums by introducing some stochastic techniques, 
they are expected to be effective in overcoming this difficulty . 
Furthermore, in optimal traffic control, application to a large­
scale network is another difficulty because it takes great com­
putation time. A hierarchical technique, first proposed by 
Singh and Tamura (6), is a superseding approach to overcome 
this difficulty. This method, however, is difficult to under­
stand because it requires some mathematical knowledge. Be­
cause neural computers, if they are to be realized in the near 
future, have the ability of parallel processing, they are po­
tentially applicable to large-scale networks. 

This paper is mainly concerned with applications of a neural 
network model to optimize splits of signal phases. First , we 
briefly introduce the fundamental ideas of a multilayer neural 
model and the corresponding training algorithm, the back­
propagation method. Second, we formulate optimal traffic 
control problems using the neural network model. In this 
formulation, we adopted two kinds of optimization criteria: 
the minimum queue length and the minimum performance 
index, which is a weighted sum of delays and stops. To avoid 
entrapment into a local minimum and urge the convergence 
to a global minimum, we proposed a stepwise method that 
combined the Cauchy machine with a feedback method in 
sequence. Finally, based on numerical analyses , we conclude 
that the neural network model has a good possibility for the 
development of future traffic control systems. 
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NEURAL NETWORK MODEL 

Artificial Neurons 

Artificial neurons are designed to emulate the basic mecha­
nism of biological neurons. Figure 1 (left) shows a model that 
implements this function. A set of outputs (y11 , y12 , ••• , Y;N) 
from other neurons and a bias input(/;) from itself are applied 
to a neuron (i). Each output is multiplied by synaptic weights 
(W11 , W,;, ... , WiN) and summed up algebraically: 

N 

x; = 2: wiiYi + I; 
i~I 

(1) 

The signal x1 is activated by a function, which is called an 
activation function or a response function, as shown in Figure 
1 (right): 

(2) 

We adopted here a sigmoid function, F(x) = 1/(1 + 
exp(-x)], as the activation function. This nonlinear function 
prescribes the fundamental capability, as well as synaptic 
weights, of neural network models. Details of artificial neu­
rons can be found in Wasserman (7). 

Multilayer Neural Network 

A multilayer neural network model was used in this analysis, 
as shown in Figure 2. The neural system consists of several 
layers: an input layer, some hidden layers, and an output 
layer. Assume that the neurons in the input layer serve only 
as distributors. The original input signals are normalized there 
and transmitted to the next layer. Therefore the first hidden 
layer, Layer B, has the same number of neurons as the input 
layer. Neural operations take place at the hidden layers and 
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FIGURE 1 Neural network model: 
left, artificial neuron; right, activation 
function. 
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FIGURE 2 Multilayer neural 
network. 
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the output layer. The output layer produces the objective 
signals. 

To obtain precise output signals, the synaptic weights must 
be adjusted. This adjustment is called the training. The back­
propagation method (8) is used for training of multilayer net­
works. The method is based on the steepest descent method, 
in other words, the delta rule: Synaptic weights are adjusted 
so as to minimize the error between the output signals and 
the target signals, which are desired results determined ex­
ternally. Letting yk be the output signal and zk be the target 
signal at the kth neuron in the output layer, and letting W;i 
and Wik be the synaptic weights between the layers shown in 
Figure 2, the error function is defined: 

(3) 

Differentiating this error function with respect to Wik and 
W1i in sequence, we obtain the following expressions for ad­
justing synaptic weights: 

Bwik = TJ(Zk - Yk)YiYk(l - Yk) 

awij = TJ 2: awikwikYiYi(l - y) 
k 

(4) 

(5) 

where Tl is the training rate coefficient in the range of 0 to l. 
In actual computations, some constants are introduced to 
smooth the adjustments and urge the convergence. Noting 
that the error IBWikWik in Equation 5 corresponds to zk -
yk in Equation 4, we can derive the adjustments for the upper 
layers in sequence. 

OPTIMAL TRAFFIC CONTROL PROBLEM 

Neural Network Model for Estimating Optimal Splits 

Figure 3 shows a neural network model for estimating optimal 
splits. It consists of four layers of neurons, Layers A to D. 
This neural network model describes the relationship between 
control variables (splits of signal phases) and objective vari­
ables (traffic variables such as queue lengths or performance 
indexes). That is, it inputs splits into Layer A and outputs 

Opt imi zat ion i5 u 

FIGURE 3 Multilayer neural network 
model for estimating optimal splits. 
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traffic variables on inflow links from Layer D. Although it is 
not shown in Figure 3, the traffic volumes on inflow links are 
also given to the neural system externally . As mentioned, 
because neurons in Layer A serve only as distributors to Layer 
B, the number of neurons in Layer Bis equal to that of Layer 
A. The number of neurons in Layer D is the same as the 
number of inflow links. However, the number of neurons in 
Layer C used to be determined from numerical manipulation. 
In this case, we found that equal numbers of neurons in Layers 
C and D produced acceptable results. Furthermore, it should 
be noted that by using the time sequence of splits and traffic 
variables , it is possible to optimize the splits varying with time . 
For example , suppose an isolated intersection with four arms 
that is operated by two signal phases. By estimating the splits 
that vary every cycle, the number of neurons of the input 
layer is 2 x N and that of the output layer is 4 x N, where 
N is the number of cycle periods. 

Dynamic Equation 

As mentioned, the neural network model in this analysis re­
quires iterative trainings to adjust synaptic weights. Training 
signals are given by dynamic equations that are defined by 
objective variables and control variables. The internal dy­
namic model in Figure 3 produces those training signals. We 
formulate two kinds of dynamic equations for a simple road 
network system: one for queue length and the other for per­
formance index (PI), which is used in the TRANS YT program 
(4,5). In this analysis, we assume for simplicity that the cycle 
length is common over the network and does not vary with 
time. Furthermore, we assume that there are no offsets be­
tween adjacent intersections. 

First, we present the dynamic equation with respect to queue 
length . Assume a road network that consists of several in­
tersections . Each intersection has inflow links of n; and signal 
phases of P;· We denote the split and the queue length at 
cycle time k by y(k) and u(k), which are column vectors of 
N = 1- n; and P = 1- p;, respectively. The dynamic equation 
is given by 

y(k + 1) = y(k) + B0u(k) + B 1u(k - 1) + 

+ BMu(k - M) + q(k) 

(k = 0, 1, . .. , K - 1) (6) 

where q(k) is the input flow vector of N, and Bm is the control 
weighing matrix of N x P, which is defined by saturation 
flow rates on inflow links. In this analysis, we adopted an 
optimization criterion that minimizes the squared sum of queue 
length: 

K N 

J = L L Y;(k) 2 (7) 
k=1 i = J 

As an example, we suppose a simple road network con­
sisting of two intersections as shown in Figure 4. Each inter­
section has two phases, one for the eastbound traffic move­
ment and one for the southbound movement. Moreover, we 
denote the inflow rate at the stop line on link i by q;(k) and 

FIGURE 4 Entrance link and internal 
link. 
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the saturation flow rate bys;. For entrance links, such as Links 
1, 2, and 4, the dynamic equation is given by 

Y;(k + 1) = Y;(k) + q;(k) - S;U;(k) (i = 1, 2, 4) (8) 

For internal links, in this case Link 3 alone, the inflow at 
stop line depends on outflows from the upstream links and 
splits. Denoting the inflow at entrance by p 3(k), we can derive 
the dynamic equation as follows: 

M 

y3(k + 1) = y3(k) + L 'YJ .mP3(k - m) - s3uik) (9) 
m=O 

where 'YJ.m is the dispersion coefficient. The value of M is 
determined from a correlation analysis between the upstream 
flows and the downstream flows. Assembling these equations, 
we obtain a dynamic equation that is identical to Equation 6. 
For details, refer to Singh and Tamura (6). 

Next we present the dynamic equation with respect to the 
performance index. In this case, we have to divide each cycle 
period into steps of equal duration and formulate the dynamic 
equation, which is identical to Equation 6, for each time step 
t. By integrating all of those traffic profiles for each step, we 
can define some measures of effectiveness, such as delay and 
stops, for each cycle time. As defined in TRANSYT, the 
performance index on inflow Link i for Cycle Time k is cal­
culated as follows: 

PI;(k) = DL Y;(k) + K;STP;(k) (11) 

where 

DL Y;(k) = total delay on Link i for Cycle k, 
STP;(k) = number of stops on Link i for Cycle k, and 

K; = stop penalty coefficient. 

We took this performance index as the objective variable, 
Y;(k). Also in this case, the same optimization criterion as 
Equation 7 was used. The TRANSYT users manuals (4,5) 
provide details of the definition of the delay and stops. 

Both the objective and the control variables are subject to 
constraints for every Cycle Time k: 

0 s y(k) s Ymax 

Umin s u(k) s Umax 

U;, 1(k) + u;,i(k) + ... + u;,p;(k) + ls; = 1 

(12) 

(13) 

(14) 
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where u1)k) is the rth split at intersection i, and ls1 is the ratio 
of loss time to cycle length. 

Computational Procedures 

Referring to Maeda (9), we separated the operation of this 
neural model into two processes, the training process and the 
optimization process. In the training process, synaptic weights 
are adjusted so that the output signals from the output layer 
coincide with those from the internal model as much as pos­
sible. This adjustment can be done by the direct use of the 
backpropagation method . On the other hand, the optimiza­
tion process performs iterative adjustments of splits to min­
imize the objective function under given constraints. 

Figure 5 shows the block diagram for estimating optimal 
split lengths. First we have to perform initial training. After 
preparing a set of traffic volumes that arrive at entry links 
and scores of split patterns that are randomly generated, we 
adjust synaptic weights of the neural network model. We 
repeat the backpropagation operations until the squared sum 
of the deviations between the output signals and the target 
signals becomes sufficiently small. We iterate initial training 
until the neural models satisfy the convergence condition for 
all split patterns. 

Next, we predict traffic volumes on entry links for several 
cycle periods. There are many prediction methods; however, 
because the discussion on the methods is beyond the scope 
of this paper, we assume that precise traffic volumes are al­
ready being predicted. Because those traffic volumes are dif­
ferent from those in the initial training process, we have to 
adjust synaptic weights again. However, traffic volumes do 
not change drastically, so we can adjust them through several 
iterations of the backpropagation method. 

Establishment of a steady relationship between splits and 
objective variables makes it possible to estimate optimal splits 
properly. To do this, we proposed a combined, stepwise 
method. Theoretically, by repeating the procedures from pre­
diction to optimization in sequence, it might be possible to 
estimate optimal splits in real time. However, under the pres­
ent circumstances, the neural approach takes more compu­
tation time compared to the conventional analytical methods. 

<Initial Training) 
Esti • ate Approxl~ate 

Synaptic teights 

<Prediction> 
Predict 

inflow Volumes 

<Training > 
Re-adjust 

Synaptic Weights 

<opti111i2ation> 
Optimize 

Split Lengths 

FIGURE 5 
Computational procedures 
for estimating optimal 
splits. 
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In addition, because the modeling of offsets is being left un­
resolved, we analyze the splits for a set of traffic volumes. 

Stepwise Method 

To optimize split lengths, it is necessary to adjust them it­
eratively in order to minimize the objective criterion under 
given constraints. Referring to Wasserman's technique (7), 
we proposed another combined method consisting of a two­
step process. First, we adjust splits based on the Cauchy ma­
chine to avoid entrapment into a local minimum and urge the 
convergence. Next, we adjust the splits using a deterministic 
technique similar to the backpropagation method. This com­
bined algorithm is called the stepwise method. Entrapment 
into a local minimum is a serious and inevitable difficulty in 
some minimum-seeking problems. To overcome this diffi­
culty, some stochastic methods, such as the Boltzman ma­
chine, the Gaussian machine and so on, have been proposed 
in neural network analyses. Szu [Wasserman (7)] developed 
a stochastic method, called the Cauchy machine, for steady 
convergence to a global minimum. It is a sort of Monte Carlo 
method; by adding small changes, which follow the Cauchy 
distribution, into the present split values, we accept those 
changes if they improve the objective function, and abandon 
them otherwise. The probability density function of the Cau­
chy distribution is given by 

p(x) = T(t)![T(t) 2 + x 2] (15) 

T(t) = T0 /(l + t) (16) 

where T(t) is the artificial temperature, and T0 is the initial 
temperature. Integrating the density function, we obtain the 
following distribution function: 

P(x) = arctan[x/T(t)] (17) 

Then, resolving for x yields 

x = pT(t)tan[P(x)] (18) 

where p is a coefficient in the range of 0 to 1. Regarding x in 
the above equations as split change Bu, we can find the change 
as follows: 

1. Select a random value from a uniform distribution over 
the interval ( - 7T/2, 7T/2). 

2. Substitute it into P(x) in Equation 18 and calculate the 
change. 

3. Retain it if the adjustment improves the objective func­
tion, and return it to the previous value if otherwise. 

4. Decrease the deviation of the Cauchy distribution and 
go back to Step 1 and repeat again. 

This algorithm can drastically reduce the computation time 
because it adopts an annealing scheme in which the temper­
ature is decreased inversely linearly, rather than inversely 
logarithmically as in the Boltzman machine. 

Next we adjust the splits in a deterministic way similar to 
the backpropagation method in the training process. The steep-
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est descent method is used again. By differentiating the ob­
jective function of Equation 7 with respect to u;(k), we can 
easily derive the following expression for adjustments of the 
splits: 

(19) 

where 11 is a coefficient ranging 0 to 1. Because those ad­
justments in this optimization process are not backpropagated 
as in the training process, we call such a process the feedback 
method. The adjustments in Equation 19 are related to syn­
aptic weights, which vary with traffic situations. This means 
that we are able to alter the parameters for adjusting splits 
automatically corresponding to the change of traffic situa­
tions . This self-organizing ability is a promising feature of 
neural network models. Furthermore, although in this anal­
ysis we adopted the optimization criterion given by the form 
of Equation 7, we can derive similar expressions to Equation 
19 for any criteria only if they are differentiable with respect 
to U;(k). 

NUMERICAL EXPERIMENTS 

Training 

The ability of the neural model depends on how precisely the 
synaptic weights are adjusted. The initial training process re­
quires scores of training operations for each split pattern. 
Using an isolated intersection as an example, we explain how 
the synaptic weights were adjusted by the backpropagation 
method . As shown in Figure 6, the intersection has eight 
inflow links and is operated with three signal phases. We 
assume that the cycle length is 120 sec and the simulation 
period consists of four cycles. Furthermore, we assume for 
simplicity that inflow rates and split lengths are constant over 
the simulation period. This assumption is not requisite; a 
problem for time-variant splits is also presented. Detailed 
information on the inflow links is shown in Table 1. 

First, we discuss the problem of the minimum queue length. 
W~ build up a neural network model, shown in Figure 3, in 
which the neuron in the input layer corresponds to the split 
length of each signal phase and the one in the output layer 
to total queue length on each inflow link. That is , the number 
of neurons in the input layer is three , and that of the output 
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cycle 13Js 

FIGURE 6 Isolated 
intersection. 

TABLE I LINK DATA FOR ISOLATED 
INTERSECTION EXAMPLE 

Link Saturat i on Inflow In it i a 1 
No. Flow Rate Volume Queue 

veh. /cycle veh./cycle v eh. 

I 0 J 113 26 . 6 7 H 
I 0 2 5 3 I. 5 3 Io 
103 11 3 3 0. 2 0 100 
104 53 3. 5 7 I 0 
JO ~ 1 ).S I 7. 6 7 50 
Jo 6 53 I. 6 0 I 0 
107 113 I l. 13 50 
108 53 2. a 1 JO 
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layer is eight. To perform initial training, we prepared in 
advance 20 randomly generated sets of split patterns that 
satisfy the constraint conditions. We then calculated the total 
queue lengths on inflow links for four cycles and made them 
the training signals for each split pattern. 

Figure 7 shows how the estimation error of the synaptic 
weights would decrease with iterative operations of the back­
propagation method for some split patterns, Patterns 1, 2, 11, 
and 20. Here, the error was calculated by the root mean 
squared (RMS) value of the deviation between queue lengths 
by the neural system and those by the dynamic system. We 
truncated the iteration when the error became less than 10. 
Roughly speaking, this means an error of 2 percent because 
both the output and the target signals were normalized by a 
number of 500. Figure 7 shows that once synaptic weights had 
been adjusted for the first split pattern, they were easily ad­
justed for the other ones. However, it also shows that the 
completion of adjustments for a split pattern brings the de­
terioration of synaptic weights for the other patterns. There­
fore, we have to repeat scores of training operations until the 
RMS error becomes less than the threshold for all split pat­
terns. Figure 8 shows the variation of the maximum and the 
average RMS error with iterations of training operations. The 
average RMS error represents the root mean squared value 
of the RMS error for each split pattern. The figure shows that 
the synaptic weights are improved gradually but certainly. In 
this case, it took 357 iterations to complete the training, and 
the final average RMS error was 4.97, nearly half of the 
truncation threshold. 
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R 
M15o 

5 
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jBackpropagatiolJ 

{Queue Length> 

- Split Pattern 1 ---Jf- 2 11 20 

5 9 13 17 21 25 3 3 

Number of Iterations 

FIGURE 7 Backpropagation operations in the initial 
training process for some randomly generated split 
patterns (output variable is queue length). 
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FIGURE 8 Adjustment of synaptic weights by 
iterations of the training. A training consists of 
iterative operations of backpropagation method for all 
split patterns (output variable is queue length). 

To examine the ability of the neural system that completed 
the adjustment of synaptic weights, we prepared other split 
patterns. We then calculated the total queue lengths on the 
lin~s using the neural system and compared them with ana­
lytical ones, which were given by the dynamic model. Figure 
9 is the histogram of the RMS error for 100 sets of split 
patterns. It shows that the RMS error was less than 5.0 for 
more than 60 split patterns. For only three patterns, it ex­
ceeded the threshold of 10.0. The maximum RMS error was 
10.66. This means that the initial training by 20 split patterns 
was sufficient. 

Similarly, for the problem of the minimum performance 
index, we can build up another neural system that has a steady 
input-output relationship between split lengths and the cor­
responding performance indexes on inflow links. The differ­
ence lies only in the dynamic model for estimating target 
signals. We performed the initial training for the same inter­
section, shown in Figure 6, with the same split patterns as in 
the previous problem. In this analysis, we divided a cycle 
length of 120 sec into 60 steps of 2 sec. Parameters to calculate 
the delay time were the same as those in TRANSYT-7F. The 
stop penalty of five was used for all links. The output and 
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FIGURE 9 Distribution of RMS errors 
for 100 sets of split patterns (output 
variable is queue length). 
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target signals were normalized by a value of 600. It took 206 
iterations of training operations to adjust synaptic weights 
completely. Figure 10 shows the distribution of the RMS er­
rors for 100 sets of untrained split patterns. Although results 
in Figure 10 are not as good as in Figure 9, 36 split patterns 
had RMS errors less than 5.0, and only 6 patterns exceeded 
10.0. The average and the maximum RMS errors were 5.06 
and 13.42, respectively. 

Optimization 

Figure 11 shows how the stepwise method worked in the 
optimization process. We took the same problem in Figure 
6. Figure lla is for the minimum queue length, and Figure 
llb is for the minimum performance index. We compared the 
stepwise method with the feedback method, in which no Cau­
chy operations were applied. The x-axis represents the num­
ber of iterations and the y-axis represents the values of the 
objective function, the squared sum of queue lengths for Fig­
ure lla and that of performance indexes for Figure llb. Fig­
ure 11 shows that there is little difference between the two 
methods. The feedback method also reaches the global min­
imum without being entrapped into a local minimum because 
the intersection is isolated and operated with simple signal 
phasing. However, the stepwise method was effective to urge 
the convergence, particularly for the performance index. Next, 
we present another example in which the stepwise method 
was effective to avoid local minimums. 

Practical Simulation 

As a practical example for real intersections of complicated 
geometry and phasing, we chose a road network that consists 
of three intersections, which was analyzed by Singh and 
Tamura ( 6). The configuration of those intersections and in­
flow links is given in Figure 12. Every intersection is operated 
with two phases. That is, the road network has 12 inflow links 
and six phases in total. The simulation period is three cycles. 
Detailed information on saturation flow rates and inflow vol­
umes are given along with the initial values in Table 2. In this 
problem, split lengths are optimized every cycle period so as 
to minimize the squared sum of queue lengths on the inflow 
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FIGURE 10 Distribution of RMS 
errors for 100 sets of split patterns 
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FIGURE 11 Optimization process for an isolated intersection. 
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FIGURE 12 Road network for 
practical simulation (6). 

TABLE 2 LINK DATA FOR ROAD NETWORK 
EXAMPLE (6) 

Link Link Saturation inflow ! n it! a I 
No. Length Flow Rate Vo l ume Queue 

n veh. /cycle ve h./cyc!e veh . 

1 - 65 7. 6 30 
i - 2 5 3. 0 30 
3 - 34 2 3. 7 10 

' - 31 21. 7 70 
s - 4 2 7. 0 70 
6 I 6 5 64 Int r n I 40 
1 165 2 6 ,, 40 
! - j 3 2 15. 0 30 
g - 34 4. 0 30 

l 0 95 9 6 ! n t rn I 20 
11 - 90 2.4 30 
I? - 25 2. 0 30 

links. Referring to Singh and Tamura (6), the dynamic equa­
tions for this problem reduce to 

Y1(k + 1) = Y1(k) + q1(k) - S1U1(k) 

yi(k + 1) = Yi(k) + qi(k) - S2U1(k) 

y3(k + 1) = y3(k) + q3(k) - S3U2(k) 

y4(k + 1) = y4(k) + q4(k) - S4U2(k) 

Ys(k + 1) = Ys(k) + q5(k) - s5u2(k) 

Y6(k + 1) = Y6(k) + 0.7s1u1(k - 2) 

+ 0. 7s2U2(k - 2) - S6U3(k) 

ylk + 1) = Y1(k) + 0.3S1U1(k - 2) 

+ 0.3S2U2(k - 2) - s7u3(k) 

Ys(k + 1) = y8(k) + q8(k) - s8uik) 

y9(k + 1) = y9(k) + q9(k) - S9Uik) 

Yw(k + 1) = Yrn(k) + s6u3(k - 1) 

+ S9U4(k - 1) - SwUs(k) 

Yti(k + 1) = .Yn(k) + q11 (k) - s1lu6(k) 

Y12(k + 1) = Y12(k) + qn(k) - S 12U5(k) 

where 

S; 

u,(k) 

queue length on Link i at cycle k, 
inflow rate, 
saturation flow rate, and 
split length for signal phase r. 

(20) 

The values of 0. 7 and 0.3 represent the dispersion coeffi­
cients. All splits were constrained to lie between 0.2 and 
0.7 and to satisfy the conditions of u1(k) + u2(k) = u3(k) + 
u4(k) = u5(k) + u6(k) = 0.9. 

We built up a neural network model as shown in Figure 3. 
However, distinct from the one in the previous discussion, it 
inputs the time sequence of the split lengths and outputs that 

70000 IStapwlsa MethoC, 

- Feedback 

Stepwise 

·-· Analytical 

10 20 30 40 50 
Number of Iterations 

FIGURE 13 Optimization process for a road 
network. 
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FIGURE 14 Optimal splits and queue lengths. 

of the queue lengths because we have to estimate the splits 
that vary with cycle. Therefore, the number of neurons in the 
input layer is 6 x 3 and that of the output layer is 12 x 3, 
where the value of 3 is the number of cycle periods. 

Figure 13 shows how the stepwise method effectively opti­
mizes those split lengths. We compared three methods: an 
analytical method by a hierarchical approach, the feedback 
method without the Cauchy machine, and the stepwise method. 
We directly referred to results by Singh and Tamura (6) for 
the analytical method. The x-axis represents the number of 
iterations and the y-axis represents the squared sum of queue 
lengths. The comparison shows that although the feedback 
method was entrapped into a local minimum and took a large 
number of iteration values, the stepwise method succeeded 
in reaching the global minimum. Figure 14 shows the opti­
mized control sequence and the corresponding queue lengths 
on main inflow links, Links 6, 7, and 10. The real lines are 
for the stepwise method and the dotted ones are for the an­
alytical solutions. They show that solutions by the stepwise 
method were in good agreement with those of the analytical 
method. 

CONCLUSIONS 

Presuming applications to future traffic control systems, we 
introduce a neural network model, which is characterized by 
its self-organizing ability, for split optimization problems. First, 
we built up a multilayer neural network model that inputs 
split lengths of signal phases and outputs objective variables. 
We adopted two kinds of control criteria, the minimum queue 
length and the minimum performance index. Next, we divided 
the problem into two processes, the training process and the 
optimization process. In the training process, the backprop­
agation method was effective to adjust the synaptic weights. 
We established a steady input-output relationship by scores 
of iterations of training operations. In the optimization proc­
ess, we proposed a stepwise method, combining the Cauchy 
machine and the feedback method, to urge the convergence 
and avoid entrapment into local minimums. Through numer­
ical analyses, we showed that this method improved the con-

vergence into a global minimum and that solutions by this 
method were in good accordance with analytical ones. 

This paper is only the first step for realization of a self­
organizing traffic control system. Many problems must be 
solved before a neural network model can be applied to an 
actual road network. One problem is the optimization of off­
sets. Without modeling the parameters, it is impossible to 
realize real self-organizing traffic control. The modeling of 
dispersion phenomena of vehicle platoons is another problem. 
This modeling is requisite for sophisticated traffic flow sim­
ulation. The improvement of computation time is also im­
portant. Because we used a conventional digital computer, 
the neural models presented here required much more com­
putation time than the corresponding analytical method. Some 
emulation machines that have several parallel processors and 
are able to realize particular neural algorithms have already 
been developed . However , the application of a neural net­
work model to an actual road network system would require 
the development of a neural computer with thousands of par­
allel processors. We confirm that such neural computers will 
be realized in the near future. 
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