
TRANSPORTATION RESEARCH RECORD 1324 137

Development of a Self-Organizing Traffic
Control System Using Neural Network
Models

TAKASHI NAKATSUJI AND TERUTOSHI KAKU

A multilayer neural network model is introduced in order to
realize a self-organizing traffic control system. The neural model
inputs split lengths of signal phases and outputs measures of ef­
fectiveness such as queue lengths or performance indexes. The
operation is separated into two processes, a training process and
an optimization process. In the training process, iterations of the
training operation by the backpropagation method were effective
in forming a steady input-output relationship between splits and
measures of effectiveness. In the optimization process, a stepwise
method combining the Cauchy machine with a feedback method
was proposed. The Cauchy machine is a sort of Monte Carlo
method and gives the adjustments in a statistical way. This ma­
chine was introduced to urge the convergence and avoid the en­
trapment into local minimums. The feedback method is based on
the steepest descent method and gives the adjustments in a de­
terministic way. This method has a self-organization ability be­
cause it can make adjustments that are closely related to traffic
situations. The neural model was applied to a road network con­
sisting of three intersections, and split lengths were optimized in
order to minimize the squared sum of queue lengths on inflow
links. The neural network model was able to give approximated
splits and queue lengths that were in good accordance with
analytical ones.

Today, most large cities in industrialized countries are con­
fronted with chronic traffic congestion. With regard to this
problem, the Organization for Economic Cooperation and
Development (OECD) (J) issued a report on traffic manage­
ment systems in urban areas. It states that future traffic sys­
tems should be operated on the self-organizing principle, in
which the system would alter the basic form of the control
law to respond not only to variations in traffic conditions but
also to changes in transportation policies. Moreover, it says
that applications of artificial intelligence techniques such as
knowledge-based expert systems and fuzzy logic would be
effective tools for realizing such intelligent traffic manage­
ment systems. Because neural network models are also char­
acterized by the ability of self-organization, they would serve
to develop future traffic control systems.

Although neural computers have not yet been put into prac­
tice, neural network models, which are fundamental concepts
of neural computers, have the potential of being able to com­
pute in parallel and being able to learn from past experience.
In particular, the self-organization ability is expected to have
great effect on future traffic management systems because

Civil Engineering Department, Hokkaido University, Kita 13, Nisha
8, Kita-ku, Sapporo, 060, Japan.

neural models are able to learn without any knowledge of the
system and any logic such as if-then operations in expert sys­
tems. In other words, they are able to establish a characteristic
input-output relationship without any preliminary informa­
tion of the system. Therefore, they seem to be applicable
even to nonlinear, nonstationary, or nonlogical problems. We
are developing a macroscopic traffic simulation program using
these characteristics of neural network models. So far , we
have applied them to traffic control problems such as short­
term prediction of traffic variables, traffic-responsive selec­
tion of prestored timing plans, traffic assignment, and split
optimization for an isolated intersection under a criterion of
the minimum queue length (2 ,3).

With regard to optimization of signal parameters, entrap­
ment into local minimums is a serious and inevitable difficulty.
In the hill-climbing method adopted in TRANSYT (4,5), a
traffic optimization program used throughout the world, es­
cape from local minimums is the major problem. Because
some neural network models have the ability to escape from
local minimums by introducing some stochastic techniques,
they are expected to be effective in overcoming this difficulty .
Furthermore, in optimal traffic control, application to a large­
scale network is another difficulty because it takes great com­
putation time. A hierarchical technique, first proposed by
Singh and Tamura (6), is a superseding approach to overcome
this difficulty. This method, however, is difficult to under­
stand because it requires some mathematical knowledge. Be­
cause neural computers, if they are to be realized in the near
future, have the ability of parallel processing, they are po­
tentially applicable to large-scale networks.

This paper is mainly concerned with applications of a neural
network model to optimize splits of signal phases. First , we
briefly introduce the fundamental ideas of a multilayer neural
model and the corresponding training algorithm, the back­
propagation method. Second, we formulate optimal traffic
control problems using the neural network model. In this
formulation, we adopted two kinds of optimization criteria:
the minimum queue length and the minimum performance
index, which is a weighted sum of delays and stops. To avoid
entrapment into a local minimum and urge the convergence
to a global minimum, we proposed a stepwise method that
combined the Cauchy machine with a feedback method in
sequence. Finally, based on numerical analyses , we conclude
that the neural network model has a good possibility for the
development of future traffic control systems.

138

NEURAL NETWORK MODEL

Artificial Neurons

Artificial neurons are designed to emulate the basic mecha­
nism of biological neurons. Figure 1 (left) shows a model that
implements this function. A set of outputs (y11 , y12 , ••• , Y;N)
from other neurons and a bias input(/;) from itself are applied
to a neuron (i). Each output is multiplied by synaptic weights
(W11 , W,;, ... , WiN) and summed up algebraically:

N

x; = 2: wiiYi + I;
i~I

(1)

The signal x1 is activated by a function, which is called an
activation function or a response function, as shown in Figure
1 (right):

(2)

We adopted here a sigmoid function, F(x) = 1/(1 +
exp(-x)], as the activation function. This nonlinear function
prescribes the fundamental capability, as well as synaptic
weights, of neural network models. Details of artificial neu­
rons can be found in Wasserman (7).

Multilayer Neural Network

A multilayer neural network model was used in this analysis,
as shown in Figure 2. The neural system consists of several
layers: an input layer, some hidden layers, and an output
layer. Assume that the neurons in the input layer serve only
as distributors. The original input signals are normalized there
and transmitted to the next layer. Therefore the first hidden
layer, Layer B, has the same number of neurons as the input
layer. Neural operations take place at the hidden layers and

X1- LWu Y;+ I ,
Y=F X)

::~,
YN

FIGURE 1 Neural network model:
left, artificial neuron; right, activation
function.

SIGNAL

INPUT HIDDEN OUTPUT

WJk ~ SIGNAL

A 8 C D =1J z k

ERROR TARGET
SIGNAL

FIGURE 2 Multilayer neural
network.

TRANSPORTATION RESEARCH RECORD 1324

the output layer. The output layer produces the objective
signals.

To obtain precise output signals, the synaptic weights must
be adjusted. This adjustment is called the training. The back­
propagation method (8) is used for training of multilayer net­
works. The method is based on the steepest descent method,
in other words, the delta rule: Synaptic weights are adjusted
so as to minimize the error between the output signals and
the target signals, which are desired results determined ex­
ternally. Letting yk be the output signal and zk be the target
signal at the kth neuron in the output layer, and letting W;i
and Wik be the synaptic weights between the layers shown in
Figure 2, the error function is defined:

(3)

Differentiating this error function with respect to Wik and
W1i in sequence, we obtain the following expressions for ad­
justing synaptic weights:

Bwik = TJ(Zk - Yk)YiYk(l - Yk)

awij = TJ 2: awikwikYiYi(l - y)
k

(4)

(5)

where Tl is the training rate coefficient in the range of 0 to l.
In actual computations, some constants are introduced to
smooth the adjustments and urge the convergence. Noting
that the error IBWikWik in Equation 5 corresponds to zk -
yk in Equation 4, we can derive the adjustments for the upper
layers in sequence.

OPTIMAL TRAFFIC CONTROL PROBLEM

Neural Network Model for Estimating Optimal Splits

Figure 3 shows a neural network model for estimating optimal
splits. It consists of four layers of neurons, Layers A to D.
This neural network model describes the relationship between
control variables (splits of signal phases) and objective vari­
ables (traffic variables such as queue lengths or performance
indexes). That is, it inputs splits into Layer A and outputs

Opt imi zat ion i5 u

FIGURE 3 Multilayer neural network
model for estimating optimal splits.

Nakatsuji and Kaku

traffic variables on inflow links from Layer D. Although it is
not shown in Figure 3, the traffic volumes on inflow links are
also given to the neural system externally . As mentioned,
because neurons in Layer A serve only as distributors to Layer
B, the number of neurons in Layer Bis equal to that of Layer
A. The number of neurons in Layer D is the same as the
number of inflow links. However, the number of neurons in
Layer C used to be determined from numerical manipulation.
In this case, we found that equal numbers of neurons in Layers
C and D produced acceptable results. Furthermore, it should
be noted that by using the time sequence of splits and traffic
variables , it is possible to optimize the splits varying with time .
For example , suppose an isolated intersection with four arms
that is operated by two signal phases. By estimating the splits
that vary every cycle, the number of neurons of the input
layer is 2 x N and that of the output layer is 4 x N, where
N is the number of cycle periods.

Dynamic Equation

As mentioned, the neural network model in this analysis re­
quires iterative trainings to adjust synaptic weights. Training
signals are given by dynamic equations that are defined by
objective variables and control variables. The internal dy­
namic model in Figure 3 produces those training signals. We
formulate two kinds of dynamic equations for a simple road
network system: one for queue length and the other for per­
formance index (PI), which is used in the TRANS YT program
(4,5). In this analysis, we assume for simplicity that the cycle
length is common over the network and does not vary with
time. Furthermore, we assume that there are no offsets be­
tween adjacent intersections.

First, we present the dynamic equation with respect to queue
length . Assume a road network that consists of several in­
tersections . Each intersection has inflow links of n; and signal
phases of P;· We denote the split and the queue length at
cycle time k by y(k) and u(k), which are column vectors of
N = 1- n; and P = 1- p;, respectively. The dynamic equation
is given by

y(k + 1) = y(k) + B0u(k) + B 1u(k - 1) +

+ BMu(k - M) + q(k)

(k = 0, 1, . .. , K - 1) (6)

where q(k) is the input flow vector of N, and Bm is the control
weighing matrix of N x P, which is defined by saturation
flow rates on inflow links. In this analysis, we adopted an
optimization criterion that minimizes the squared sum of queue
length:

K N

J = L L Y;(k) 2 (7)
k=1 i = J

As an example, we suppose a simple road network con­
sisting of two intersections as shown in Figure 4. Each inter­
section has two phases, one for the eastbound traffic move­
ment and one for the southbound movement. Moreover, we
denote the inflow rate at the stop line on link i by q;(k) and

FIGURE 4 Entrance link and internal
link.

139

the saturation flow rate bys;. For entrance links, such as Links
1, 2, and 4, the dynamic equation is given by

Y;(k + 1) = Y;(k) + q;(k) - S;U;(k) (i = 1, 2, 4) (8)

For internal links, in this case Link 3 alone, the inflow at
stop line depends on outflows from the upstream links and
splits. Denoting the inflow at entrance by p 3(k), we can derive
the dynamic equation as follows:

M

y3(k + 1) = y3(k) + L 'YJ .mP3(k - m) - s3uik) (9)
m=O

where 'YJ.m is the dispersion coefficient. The value of M is
determined from a correlation analysis between the upstream
flows and the downstream flows. Assembling these equations,
we obtain a dynamic equation that is identical to Equation 6.
For details, refer to Singh and Tamura (6).

Next we present the dynamic equation with respect to the
performance index. In this case, we have to divide each cycle
period into steps of equal duration and formulate the dynamic
equation, which is identical to Equation 6, for each time step
t. By integrating all of those traffic profiles for each step, we
can define some measures of effectiveness, such as delay and
stops, for each cycle time. As defined in TRANSYT, the
performance index on inflow Link i for Cycle Time k is cal­
culated as follows:

PI;(k) = DL Y;(k) + K;STP;(k) (11)

where

DL Y;(k) = total delay on Link i for Cycle k,
STP;(k) = number of stops on Link i for Cycle k, and

K; = stop penalty coefficient.

We took this performance index as the objective variable,
Y;(k). Also in this case, the same optimization criterion as
Equation 7 was used. The TRANSYT users manuals (4,5)
provide details of the definition of the delay and stops.

Both the objective and the control variables are subject to
constraints for every Cycle Time k:

0 s y(k) s Ymax

Umin s u(k) s Umax

U;, 1(k) + u;,i(k) + ... + u;,p;(k) + ls; = 1

(12)

(13)

(14)

140

where u1)k) is the rth split at intersection i, and ls1 is the ratio
of loss time to cycle length.

Computational Procedures

Referring to Maeda (9), we separated the operation of this
neural model into two processes, the training process and the
optimization process. In the training process, synaptic weights
are adjusted so that the output signals from the output layer
coincide with those from the internal model as much as pos­
sible. This adjustment can be done by the direct use of the
backpropagation method . On the other hand, the optimiza­
tion process performs iterative adjustments of splits to min­
imize the objective function under given constraints.

Figure 5 shows the block diagram for estimating optimal
split lengths. First we have to perform initial training. After
preparing a set of traffic volumes that arrive at entry links
and scores of split patterns that are randomly generated, we
adjust synaptic weights of the neural network model. We
repeat the backpropagation operations until the squared sum
of the deviations between the output signals and the target
signals becomes sufficiently small. We iterate initial training
until the neural models satisfy the convergence condition for
all split patterns.

Next, we predict traffic volumes on entry links for several
cycle periods. There are many prediction methods; however,
because the discussion on the methods is beyond the scope
of this paper, we assume that precise traffic volumes are al­
ready being predicted. Because those traffic volumes are dif­
ferent from those in the initial training process, we have to
adjust synaptic weights again. However, traffic volumes do
not change drastically, so we can adjust them through several
iterations of the backpropagation method.

Establishment of a steady relationship between splits and
objective variables makes it possible to estimate optimal splits
properly. To do this, we proposed a combined, stepwise
method. Theoretically, by repeating the procedures from pre­
diction to optimization in sequence, it might be possible to
estimate optimal splits in real time. However, under the pres­
ent circumstances, the neural approach takes more compu­
tation time compared to the conventional analytical methods.

<Initial Training)
Esti • ate Approxl~ate

Synaptic teights

<Prediction>
Predict

inflow Volumes

<Training >
Re-adjust

Synaptic Weights

<opti111i2ation>
Optimize

Split Lengths

FIGURE 5
Computational procedures
for estimating optimal
splits.

TRANSPORTATION RESEARCH RECORD 1324

In addition, because the modeling of offsets is being left un­
resolved, we analyze the splits for a set of traffic volumes.

Stepwise Method

To optimize split lengths, it is necessary to adjust them it­
eratively in order to minimize the objective criterion under
given constraints. Referring to Wasserman's technique (7),
we proposed another combined method consisting of a two­
step process. First, we adjust splits based on the Cauchy ma­
chine to avoid entrapment into a local minimum and urge the
convergence. Next, we adjust the splits using a deterministic
technique similar to the backpropagation method. This com­
bined algorithm is called the stepwise method. Entrapment
into a local minimum is a serious and inevitable difficulty in
some minimum-seeking problems. To overcome this diffi­
culty, some stochastic methods, such as the Boltzman ma­
chine, the Gaussian machine and so on, have been proposed
in neural network analyses. Szu [Wasserman (7)] developed
a stochastic method, called the Cauchy machine, for steady
convergence to a global minimum. It is a sort of Monte Carlo
method; by adding small changes, which follow the Cauchy
distribution, into the present split values, we accept those
changes if they improve the objective function, and abandon
them otherwise. The probability density function of the Cau­
chy distribution is given by

p(x) = T(t)![T(t) 2 + x 2] (15)

T(t) = T0 /(l + t) (16)

where T(t) is the artificial temperature, and T0 is the initial
temperature. Integrating the density function, we obtain the
following distribution function:

P(x) = arctan[x/T(t)] (17)

Then, resolving for x yields

x = pT(t)tan[P(x)] (18)

where p is a coefficient in the range of 0 to 1. Regarding x in
the above equations as split change Bu, we can find the change
as follows:

1. Select a random value from a uniform distribution over
the interval (- 7T/2, 7T/2).

2. Substitute it into P(x) in Equation 18 and calculate the
change.

3. Retain it if the adjustment improves the objective func­
tion, and return it to the previous value if otherwise.

4. Decrease the deviation of the Cauchy distribution and
go back to Step 1 and repeat again.

This algorithm can drastically reduce the computation time
because it adopts an annealing scheme in which the temper­
ature is decreased inversely linearly, rather than inversely
logarithmically as in the Boltzman machine.

Next we adjust the splits in a deterministic way similar to
the backpropagation method in the training process. The steep-

Nakatsuji and Kaku

est descent method is used again. By differentiating the ob­
jective function of Equation 7 with respect to u;(k), we can
easily derive the following expression for adjustments of the
splits:

(19)

where 11 is a coefficient ranging 0 to 1. Because those ad­
justments in this optimization process are not backpropagated
as in the training process, we call such a process the feedback
method. The adjustments in Equation 19 are related to syn­
aptic weights, which vary with traffic situations. This means
that we are able to alter the parameters for adjusting splits
automatically corresponding to the change of traffic situa­
tions . This self-organizing ability is a promising feature of
neural network models. Furthermore, although in this anal­
ysis we adopted the optimization criterion given by the form
of Equation 7, we can derive similar expressions to Equation
19 for any criteria only if they are differentiable with respect
to U;(k).

NUMERICAL EXPERIMENTS

Training

The ability of the neural model depends on how precisely the
synaptic weights are adjusted. The initial training process re­
quires scores of training operations for each split pattern.
Using an isolated intersection as an example, we explain how
the synaptic weights were adjusted by the backpropagation
method . As shown in Figure 6, the intersection has eight
inflow links and is operated with three signal phases. We
assume that the cycle length is 120 sec and the simulation
period consists of four cycles. Furthermore, we assume for
simplicity that inflow rates and split lengths are constant over
the simulation period. This assumption is not requisite; a
problem for time-variant splits is also presented. Detailed
information on the inflow links is shown in Table 1.

First, we discuss the problem of the minimum queue length.
W~ build up a neural network model, shown in Figure 3, in
which the neuron in the input layer corresponds to the split
length of each signal phase and the one in the output layer
to total queue length on each inflow link. That is , the number
of neurons in the input layer is three , and that of the output

rl~!b_

~~'~
...JI L
1r I

Phase I Phase2 Phase3
40-8'.Js 25-fils I (}-2\Js

cycle 13Js

FIGURE 6 Isolated
intersection.

TABLE I LINK DATA FOR ISOLATED
INTERSECTION EXAMPLE

Link Saturat i on Inflow In it i a 1
No. Flow Rate Volume Queue

veh. /cycle veh./cycle v eh.

I 0 J 113 26 . 6 7 H
I 0 2 5 3 I. 5 3 Io
103 11 3 3 0. 2 0 100
104 53 3. 5 7 I 0
JO ~ 1).S I 7. 6 7 50
Jo 6 53 I. 6 0 I 0
107 113 I l. 13 50
108 53 2. a 1 JO

141

layer is eight. To perform initial training, we prepared in
advance 20 randomly generated sets of split patterns that
satisfy the constraint conditions. We then calculated the total
queue lengths on inflow links for four cycles and made them
the training signals for each split pattern.

Figure 7 shows how the estimation error of the synaptic
weights would decrease with iterative operations of the back­
propagation method for some split patterns, Patterns 1, 2, 11,
and 20. Here, the error was calculated by the root mean
squared (RMS) value of the deviation between queue lengths
by the neural system and those by the dynamic system. We
truncated the iteration when the error became less than 10.
Roughly speaking, this means an error of 2 percent because
both the output and the target signals were normalized by a
number of 500. Figure 7 shows that once synaptic weights had
been adjusted for the first split pattern, they were easily ad­
justed for the other ones. However, it also shows that the
completion of adjustments for a split pattern brings the de­
terioration of synaptic weights for the other patterns. There­
fore, we have to repeat scores of training operations until the
RMS error becomes less than the threshold for all split pat­
terns. Figure 8 shows the variation of the maximum and the
average RMS error with iterations of training operations. The
average RMS error represents the root mean squared value
of the RMS error for each split pattern. The figure shows that
the synaptic weights are improved gradually but certainly. In
this case, it took 357 iterations to complete the training, and
the final average RMS error was 4.97, nearly half of the
truncation threshold.

300

250

200

R
M15o

5
100

jBackpropagatiolJ

{Queue Length>

- Split Pattern 1 ---Jf- 2 11 20

5 9 13 17 21 25 3 3

Number of Iterations

FIGURE 7 Backpropagation operations in the initial
training process for some randomly generated split
patterns (output variable is queue length).

.·

142

R
M
5

300

200

100

llnltial Traininj

(Queue Length>

- Maximum

. Average

Number of Trainings

FIGURE 8 Adjustment of synaptic weights by
iterations of the training. A training consists of
iterative operations of backpropagation method for all
split patterns (output variable is queue length).

To examine the ability of the neural system that completed
the adjustment of synaptic weights, we prepared other split
patterns. We then calculated the total queue lengths on the
lin~s using the neural system and compared them with ana­
lytical ones, which were given by the dynamic model. Figure
9 is the histogram of the RMS error for 100 sets of split
patterns. It shows that the RMS error was less than 5.0 for
more than 60 split patterns. For only three patterns, it ex­
ceeded the threshold of 10.0. The maximum RMS error was
10.66. This means that the initial training by 20 split patterns
was sufficient.

Similarly, for the problem of the minimum performance
index, we can build up another neural system that has a steady
input-output relationship between split lengths and the cor­
responding performance indexes on inflow links. The differ­
ence lies only in the dynamic model for estimating target
signals. We performed the initial training for the same inter­
section, shown in Figure 6, with the same split patterns as in
the previous problem. In this analysis, we divided a cycle
length of 120 sec into 60 steps of 2 sec. Parameters to calculate
the delay time were the same as those in TRANSYT-7F. The
stop penalty of five was used for all links. The output and

30

25
F

20 e
q
u
e

15

n 10
c
I
e
s

[Estimation Erro1

<Queue Length>

0- 1- 2- 3- 4- 5- 6- 7- 6- 9- 10-

RMS
FIGURE 9 Distribution of RMS errors
for 100 sets of split patterns (output
variable is queue length).

TRANSPORTATION RESEARCH RECORD 1324

target signals were normalized by a value of 600. It took 206
iterations of training operations to adjust synaptic weights
completely. Figure 10 shows the distribution of the RMS er­
rors for 100 sets of untrained split patterns. Although results
in Figure 10 are not as good as in Figure 9, 36 split patterns
had RMS errors less than 5.0, and only 6 patterns exceeded
10.0. The average and the maximum RMS errors were 5.06
and 13.42, respectively.

Optimization

Figure 11 shows how the stepwise method worked in the
optimization process. We took the same problem in Figure
6. Figure lla is for the minimum queue length, and Figure
llb is for the minimum performance index. We compared the
stepwise method with the feedback method, in which no Cau­
chy operations were applied. The x-axis represents the num­
ber of iterations and the y-axis represents the values of the
objective function, the squared sum of queue lengths for Fig­
ure lla and that of performance indexes for Figure llb. Fig­
ure 11 shows that there is little difference between the two
methods. The feedback method also reaches the global min­
imum without being entrapped into a local minimum because
the intersection is isolated and operated with simple signal
phasing. However, the stepwise method was effective to urge
the convergence, particularly for the performance index. Next,
we present another example in which the stepwise method
was effective to avoid local minimums.

Practical Simulation

As a practical example for real intersections of complicated
geometry and phasing, we chose a road network that consists
of three intersections, which was analyzed by Singh and
Tamura (6). The configuration of those intersections and in­
flow links is given in Figure 12. Every intersection is operated
with two phases. That is, the road network has 12 inflow links
and six phases in total. The simulation period is three cycles.
Detailed information on saturation flow rates and inflow vol­
umes are given along with the initial values in Table 2. In this
problem, split lengths are optimized every cycle period so as
to minimize the squared sum of queue lengths on the inflow

30

25
F

20 e

~ 15
e
n 10
c
i
e
s

[Estimation Erro1

<Performance Index>

o- 1- 2- 3- 4- 5- 6- 7- 6- 9- 10-

RMS
FIGURE 10 Distribution of RMS
errors for 100 sets of split patterns
(output variable is performance index).

Nakatsuji and Kaku 143

2:QL 2 2:P I
2

150000
Stepwise Method

260000 Stoewlso Method
(Queue Length> <Performance Index>

120000 24 0000

- Cauchy+ - Cauchy+
Feedback Feedback

- Feedback - Feedback

2 00000
3 6 9 12 15 0 3 6 9 12 15

Number of Iterations Number of Iterations

(a) Queue Length (b) Performance Index

FIGURE 11 Optimization process for an isolated intersection.

l nt=t~ ~
~,~

In= lOL
~llr

165m

Phs 5 Phs 6

_J t
12 10 -11

Phs 3 Phs 4

1r g;:!,
5 7 8 d67~

Ir ~ ~ Phs I

~t~3 ll
Phs 2

t;:::: ~
~ 1 1 2 1 r 3

FIGURE 12 Road network for
practical simulation (6).

TABLE 2 LINK DATA FOR ROAD NETWORK
EXAMPLE (6)

Link Link Saturation inflow ! n it! a I
No. Length Flow Rate Vo l ume Queue

n veh. /cycle ve h./cyc!e veh .

1 - 65 7. 6 30
i - 2 5 3. 0 30
3 - 34 2 3. 7 10

' - 31 21. 7 70
s - 4 2 7. 0 70
6 I 6 5 64 Int r n I 40
1 165 2 6 ,, 40
! - j 3 2 15. 0 30
g - 34 4. 0 30

l 0 95 9 6 ! n t rn I 20
11 - 90 2.4 30
I? - 25 2. 0 30

links. Referring to Singh and Tamura (6), the dynamic equa­
tions for this problem reduce to

Y1(k + 1) = Y1(k) + q1(k) - S1U1(k)

yi(k + 1) = Yi(k) + qi(k) - S2U1(k)

y3(k + 1) = y3(k) + q3(k) - S3U2(k)

y4(k + 1) = y4(k) + q4(k) - S4U2(k)

Ys(k + 1) = Ys(k) + q5(k) - s5u2(k)

Y6(k + 1) = Y6(k) + 0.7s1u1(k - 2)

+ 0. 7s2U2(k - 2) - S6U3(k)

ylk + 1) = Y1(k) + 0.3S1U1(k - 2)

+ 0.3S2U2(k - 2) - s7u3(k)

Ys(k + 1) = y8(k) + q8(k) - s8uik)

y9(k + 1) = y9(k) + q9(k) - S9Uik)

Yw(k + 1) = Yrn(k) + s6u3(k - 1)

+ S9U4(k - 1) - SwUs(k)

Yti(k + 1) = .Yn(k) + q11 (k) - s1lu6(k)

Y12(k + 1) = Y12(k) + qn(k) - S 12U5(k)

where

S;

u,(k)

queue length on Link i at cycle k,
inflow rate,
saturation flow rate, and
split length for signal phase r.

(20)

The values of 0. 7 and 0.3 represent the dispersion coeffi­
cients. All splits were constrained to lie between 0.2 and
0.7 and to satisfy the conditions of u1(k) + u2(k) = u3(k) +
u4(k) = u5(k) + u6(k) = 0.9.

We built up a neural network model as shown in Figure 3.
However, distinct from the one in the previous discussion, it
inputs the time sequence of the split lengths and outputs that

70000 IStapwlsa MethoC,

- Feedback

Stepwise

·-· Analytical

10 20 30 40 50
Number of Iterations

FIGURE 13 Optimization process for a road
network.

144

100
split Intact 3 u5

% 50

0
u6

100 lntsct 2
u3

split 5 0 u4
%

01 2 3
100 lntsct 1 u2

split 50 u1
%

01 2 3
cycle

(a) Optimal Splits
(Real:Stepwlse, Dotted:Analy.)

TRANSPORTATION RESEARCH RECORD 1324

lntsct 3 Queue y 10 30~
veh . 1~ ~..__._~.IJ ~~nL...L_.. .• .__~

y6 y7
40

Queue
20 veh.

Queue20
veh.

y7

cycle

(b) Queue Lengths
(Dark: Stepwise, Light:Analy.)

lntsct 2

FIGURE 14 Optimal splits and queue lengths.

of the queue lengths because we have to estimate the splits
that vary with cycle. Therefore, the number of neurons in the
input layer is 6 x 3 and that of the output layer is 12 x 3,
where the value of 3 is the number of cycle periods.

Figure 13 shows how the stepwise method effectively opti­
mizes those split lengths. We compared three methods: an
analytical method by a hierarchical approach, the feedback
method without the Cauchy machine, and the stepwise method.
We directly referred to results by Singh and Tamura (6) for
the analytical method. The x-axis represents the number of
iterations and the y-axis represents the squared sum of queue
lengths. The comparison shows that although the feedback
method was entrapped into a local minimum and took a large
number of iteration values, the stepwise method succeeded
in reaching the global minimum. Figure 14 shows the opti­
mized control sequence and the corresponding queue lengths
on main inflow links, Links 6, 7, and 10. The real lines are
for the stepwise method and the dotted ones are for the an­
alytical solutions. They show that solutions by the stepwise
method were in good agreement with those of the analytical
method.

CONCLUSIONS

Presuming applications to future traffic control systems, we
introduce a neural network model, which is characterized by
its self-organizing ability, for split optimization problems. First,
we built up a multilayer neural network model that inputs
split lengths of signal phases and outputs objective variables.
We adopted two kinds of control criteria, the minimum queue
length and the minimum performance index. Next, we divided
the problem into two processes, the training process and the
optimization process. In the training process, the backprop­
agation method was effective to adjust the synaptic weights.
We established a steady input-output relationship by scores
of iterations of training operations. In the optimization proc­
ess, we proposed a stepwise method, combining the Cauchy
machine and the feedback method, to urge the convergence
and avoid entrapment into local minimums. Through numer­
ical analyses, we showed that this method improved the con-

vergence into a global minimum and that solutions by this
method were in good accordance with analytical ones.

This paper is only the first step for realization of a self­
organizing traffic control system. Many problems must be
solved before a neural network model can be applied to an
actual road network. One problem is the optimization of off­
sets. Without modeling the parameters, it is impossible to
realize real self-organizing traffic control. The modeling of
dispersion phenomena of vehicle platoons is another problem.
This modeling is requisite for sophisticated traffic flow sim­
ulation. The improvement of computation time is also im­
portant. Because we used a conventional digital computer,
the neural models presented here required much more com­
putation time than the corresponding analytical method. Some
emulation machines that have several parallel processors and
are able to realize particular neural algorithms have already
been developed . However , the application of a neural net­
work model to an actual road network system would require
the development of a neural computer with thousands of par­
allel processors. We confirm that such neural computers will
be realized in the near future.

ACKNOWLEDGMENT

The authors wish to express their thanks to Dr. Tamura of
Osaka University for allowing reference to the examples in
his paper.

REFERENCES

1. Dynamic Traffic Management in Urban and Suburban Road Sys­
tems. Organization for Economic Cooperation and Development ,
Road Transportation Research, 1987.

2. T. Nakatsuji and T. Kaku. Application of Neural Network Models
to Traffic Engineering Problems (in Japanese) . Proc., Infrastruc­
ture Planning, Vol. 12, 1989, pp. 297-304.

3. T. Nakatsuji and T. Kaku . Application of Neural Network Models
to Traffic Engineering Problems, Proc., 11th International Sym­
posium on Transportation Traffic Theory, Yokohama, Japan, July
1990, pp. 291-306.

Nakatsuji and Kaku

4. R. A. Vincent, A. I. Mitchell, and D. I. Robertson . User's Guide
to TRANSYT, Version 8. U.K. Transport and Road Research
Laboratory LR888, 1980.

5. TRANSYT-7F Self-Study Guide . FHWA, U.S. Department of
Transportation, 1986.

6. M. G. Singh and H. Tamura. Modeling and Hierarchical Optimi­
zation for Over-Saturated Urban Road Traffic Networks. Inter­
national Journal of Control, Vol. 20, No. 6, 1974, pp. 913-934.

7. P. D. Wasserman. Neural Computing. Van Nostrand Reinhold,
New York, 1989.

145

8. D. E . Rumelhart et al. Learning Internal Representations by Error
Propagation . In Parallel Distributed Processing , Vol. 1. MIT Press,
Cambridge, Mass., 1986.

9. Y. Maeda, M. Kawato, Y. Uno, and R. Suzuki. Multi-Layer Neural
Network Model Which Learns and Generates Human Multi-Joint
Arm Trajectory. Japan IEICE Technical Report MBE87-133, 1988,
pp. 233-240.

Publication of this paper sponsored by Committee on Traffic Signal
Systems.

