
42 TRANSPORTATION RESEARCH RECORD 1327 

Conditional Analysis of Accidents at 
Four-Approach Traffic Circles 

A. AL-BAKRI, MARK R. CONAWAY, AND JAMES STONER 

A conditional analysis for relating the number of accidents at 
four-approach traffic circles to the geometric and flow charac­
teristics of the circles is presented. The conditional analysis takes 
into account the association among the observations taken at the 
four approaches within a traffic circle. It also allows for the in­
herent differences in safety among different circles. The main 
advantage of the conditional approach is one can use it to estimate 
the effects of geometric and flow variables without having to 
specify a distribution to represent the variability between circles. 
The conditional method is applied to a study of traffic circles in 
Amman, Jordan. 

The relationship between the number of accidents occurring 
at a traffic circle and the geometric characteristics and traffic 
flows of the circle is examined in this paper. The data were 
collected at seven traffic circles in Amman, Jordan. Each had 
four approaches approximately at right angles, relatively large 
circular central islands, parallel entries, and yield-sign traffic 
control. The data were collected by two teams of 30 police 
officers and 6 graduate students in transportation engineering 
at the Jordan University of Science and Technology. The 
teams collected information on the geometric characteristics 
and traffic flows in each approach in each traffic circle and 
counts of several types of accidents. The data collection in­
volved designing special forms and training the teams to en­
sure the accuracy of the data collection. Details of the pro­
cedure are given by Al-Bakri (1) . 

The method of analysis is similar to that of Maycock and 
Hall (2) in that it is based on the assumption that the accident 
counts have Poisson distributions, the mean of the Poisson 
distribution depending on the geometric and flow variables. 
The geometric and flow variables to be used in this study, 
given here, are described in Figure 1. A more comprehensive 
definition of these variables is contained in the Jordanian 
Department of Transport's departmental standards. 

• CE-Entry-path curvature in meters - 1 is the shortest 
straight-ahead vehicle path. 

•CA-Approach curvature in meters- 1 is the reciprocal 
of the minimum radius of the bend nearest to the traffic circle. 

•!CD-Inscribed circle diameter in meters; diameter of 
the largest circle that can be inscribed in the outline of the 
traffic circle. 

•CID-Central island diameter in meters. 
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•QC-Average daily traffic volume in vehicles per day 
circulating the circle. 

•OE-Average daily traffic volume in vehicles per day 
entering the circle. 

• E-Entry width in meters, measured at a point in the 
upstream approach. 

• V-Approach half-width in meters. 
• 0-Angle in degrees between the approach leg and next 

approach leg clockwise. 
•PED-Pedestrian volume per day. 
• Entering Accidents-Collisions between an entering ve­

hicle and a vehicle within the right-of-way. 
• Approaching Accidents-Collisions between vehicles on 

the approach to the circle , such as rear-end impacts and lane­
changing accidents . 

• Single-Vehicle Accidents-Collisions involving a vehicle 
and the circle layout, signs, lighting columns, and such. 

•Other Accidents-Collisions between circulating vehi­
cles, circulating vehicles and vehicles exiting the circle, and 
exiting vehicles and entering or exiting vehicles. 

• Pedestrian Accidents-Collisions involving pedestrians. 

It is also assumed that a random effect is associated with 
each traffic circle, which affects the variability of the accident 
counts within the circle. Similar assumptions were made by 
Maycock and Hall (2), who also assumed that the random 
effects have a gamma distribution. They estimated the effects 
of the geometric and flow variables and the parameters of the 
assumed gamma distribution. A conditional likelihood ap­
proach to the problem is taken, so the effects of the geometric 
and flow variables can be estimated without a distribution for 
the random effects being specified. This is an important dis­
tinction, because the effect of misspecifying the distribution 
for the random effects is not known. 

METHODS 
-~ 

In the method used to analyze the data, Y;i denotes the num­
ber of accidents in approach j of traffic circle i, and µii is the 
mean of Y;jfor j = l, ... , 4 and i = 1, ... , 7. The geometric 
and flow variables associated with the jth approach in circle 
i will be denoted by Xij· A regression approach to the problem 
would use the model Y,i = x!YI}. + E1i, and the following 
assumptions: (a) the Y;is are normally distributed with mean 
µ 1i = X:i~• and (b) the Y1is are independent of one another. 
Because the number of accidents at an approach is a count 
variable, with possible values 0, 1, 2, 3, ... , the normal 
assumption does not seem valid. An alternative analysis, pro-



Al-Bakri et al. 

E -Oe --
~ Ca-1/Ra 

FIGURE 1 Geometric characteristics of traffic circles. 

posed by Hauer (3), is based on the assumption that the 
number of accidents at each approach has a Poisson distribu­
tion with mean µ,;1, with ln(µ,if) = x' ;1ji. Hauer fit generalized 
linear models to estimate Jt the effects of the geometric and 
flow variables. This is based on a more realistic assumption 
about the distribution of the accident counts than is the regres­
sion method, but it ignores the fact that the observations from 
the same circle are likely to be dependent, even after adjusting 
for geometric and flow variables. In addition, as noted by 
Maycock and Hall, one would expect that some traffic circles 
are inherently more dangerous than others, in the sense that 
they have more accidents than others with similar geometric 
and flow characteristics. 

Maycock and Hall account for the inherent differences among 
traffic circles by assuming that the number of accidents has a 
Poisson distribution with mean q, where q has a gamma distri­
bution with parameters µ, and S. The parameter µ,depends 
on the geometric and flow variables through the model In(µ,) 
= x' ft. Averaging over the assumed gamma distribution, this 
model states that the number of accidents has a negative 
binomial distribution with mean µ, and variance µ,(µ, + S)!S. 
Maycock and Hall outline a procedure for estimating S then 
use generalized linear modeling to estimate 6_. 

Several features make the Maycock and Hall method in­
appropriate for this data. If the differences among traffic cir­
cles are assumed to be random, then averaging over the distri­
bution of the random effects induces a dependence among 
the four observations within a circle. The generalized linear 
model approach of Maycock and Hall would not take this 
into account; it would treat all the observations as if they were 
independent. A second problem that arises in this study, though 
not in the Maycock and Hall study, is that there are only 
seven traffic circles to be used in estimating the parameters 
of the assumed gamma distribution. With such a small sample, 
it is difficult to check the assumption of a gamma distribution; 
even if the assumption were correct, it would be difficult to 
obtain reliable estimates of the parameters of the gamma 
distribution. In this study, these problems will be solved with 
a conditional analysis, which will allow inferences to be drawn 
about the effect of the approach-specific geometric and flow 
characteristics without requiring the specification of a distri­
bution to represent the inherent differences among traffic 
circles. This conditional analysis yields valid inferences about 
the effects of the geometric and flow variables under a wide 
variety of possible distributions, including common distribu-
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tions such as the gamma or log-normal distributions. Being 
able to obtain valid inferences under a variety of distributions 
may be important, because the effect of misspecifying the 
distribution-that is, assuming a gamma distribution when 
the true distribution is not gamma-is not yet known. 

The theoretical justification of the conditional approach will 
be given in the next section. In this section, the basic model 
underlying the conditional approach will be outlined and the 
interpretation of the parameters in the model will be dis­
cussed. Following the earlier notation, Y;1 represents the ac­
cident count in approach j of circle i, j = 1, ... , 4 and 
i = 1, ... , 7, and °&J represents the geometric and flow 
variables associated with this approach. To represent the in­
herent differences among traffic circles, a random quantity 
(0;) is associated with the ith circle. The model is that, given 
0;, the accident counts in the four approaches (Yi!, Y,2 , Y;3, 

Y;4) are independent Poisson variables, with mean 0;µ,;1• The 
parameter µ;1 depends on the geometric and flow variables 
through In(µ;) = x,'1ji. With this model it is assumed that the 
effect of the ith circle is to multiply the mean number of 
accidents in the four approaches by the same factor (0;). 

Figure 2 illustrates the model for a traffic circle with the 
associated effect 0;. If 0; were averaged over some assumed 
distribution, the common factor of 0; in each of the four ap­
proaches would induce an association among the accident 
counts within the same circle, even after adjustments for the 
geometric and flow variables. 

The multiplicative model yields E(Y;) = E[E(Y;1'0;)] = µ;1 
£(0;), and if an intercept term is included in the model for 
the ln(µ;1), then the model can be reparametrized so that £(0;) 
= 1. With this reparametrization, E(Y;) = µ;1. The uncon­
ditional variance of Yif is given by Var(Y;1) = µif + µi Var(0;). 
The covariance between two accident counts within the same 
circle is Cov(Y;1, Y;k) = µ;1 µ;k Var(0;). The multiplicative 
model is the simplest model that allows for additional variabil­
ity in the Y;1 because of inherent differences in the circle, and 
it allows observations within the same circle to be associated. 

The fundamental idea behind the conditional analysis is to 
consider the conditional distribution of the four accident counts 
(Yi!, Ya, Y;3 , Y;4), given the total number of accidents at that 
traffic circle (Y;+ = Yi! + Y;2 + Yi3 + Y;4). Analyzing Poisson 
variables by conditioning on their sum is a standard statistical 
technique used in a number of applications [compare Mc­
Cullagh and Nelder ( 4)]. One of the attractive features of the 
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FIGURE 2 Expected number of accidents in each 
approach. 
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conditional analysis is that the resulting distribution is mul­
tinomial, with parameters Y;+ and (p11 , pi2, p;3 , p;4), where 

- exp(&ia) 
P11 - L exp(!fJ!) 

k 

(1) 

This has the form of a multinomial logit model [Agresti (5)], 
which facilitates the interpretation of the parameters and al­
lows for the computation of the conditional estimate of ft in 
a standard statistical package such as GLIM (6). To illustrate 
the interpretation of the parameters in the conditional anal­
ysis, consider Approaches 1 and 2 in a particular traffic circle 
and suppose that the approaches are identical in all the geo­
metric and flow characteristics except the one measured by 
the predictor X;im· In the conditional distribution, pillp;2 

= exp[l3m(xilm - x,"2m)], so that the expected number of ac­
cidents in Approach 1 would be exp[l3m(x;1m - X;2m)] more 
than expected in Approach 2. 

The conditional estimate of ft can be computed in GLIM 
by specifying that the Y;i have Poisson distributions and using 
the model ln(µ;i) = &i13. + I; S;l;, where I; is an indicator 
variable for the ith circle. Note that the model for the mean, 
µ;i, has the form of a parallel regressions model. This illus­
trates one of the drawbacks of the conditional analysis. The 
effect on accidents of changing the geometric and flow vari­
ables can be estimated, but the actual value for the mean 
number of accidents that would occur at a traffic circle with 
given geometric and flow characteristics cannot be predicted. 

DETAILS OF CONDITIONAL ANALYSIS 

The theoretical justification for using the conditional esti­
mates will be outlined. As before, let Y;i be the number of 
accidents in approach j, j = 1, ... , 4, of circle i, and let Yi+ 
be the total number of accidents at circle i, i = 1, ... , 7. 
The random quantity 0; is associated with the ith circle, and 
the conditional distributions of the accident counts (Yit, Y,,, 
Y;3 , Y;4), given 0;, are assumed to be independent Poisson 
random variables with means 0;µii• j = l, ... , 4. In addition, 
assume that 0; is sampled from a population with density g. 

As in Maycock and Hall (2), the distribution of the accident 
counts in the ith circle is considered averaging over the distri­
bution of the random effect 0;. Let L;(yn, yi2, yi3, y;4 ; ft) 
= P(Yn = yil, Y,, = y,,, Y;3 = Y;3 , Y;4 = y;4 I 13.) be the 
likelihood from circle i, averaging over the distribution of the 
0;. The likelihood is 

L;(::J.;; ft) = I P(Y;1 = Y11, yi2 = Yi2• yi3 = Yi3• 

Y;4 = Y;4 I 0;)g(0;)d01 (2) 

= f L P(Y;1 = Yn, · · · , 
YI+ 

Y;4 = Yi4 I Y;+' 0;)h(Y;+ I 0;)g(0;)d0; (3) 

Because Y;+ is a sufficient statistic for 0;, the conditional 
distribution of (Yn, Y;2, Y;3, Y;4) given Y;+ is free from 0;. 
This conditional distribution is given by 
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= n [ exp(!;1ro J yq 

1 ~exp(!;&) 
k 

= 0 (4) 

Although Equation 3 is written in terms of a sum over the 
values of Y1+, Equation 4 indicates that only one term in the 
sum is nonzero. From this expression for the conditional dis­
tribution of (Y11 , Yi2, Y13 , Y14) given Y1+, the following expres­
sion can be written: 

(5) 

Because the observations at different traffic circles are as­
sumed to be independent, the likelihood from the sample is 
the product of the likelihoods from each circle and can be 
written as 

*DI h(Y;+ I 0,)g(0;)d0; 
' 

(6) 

The distribution of the random effect enters only through the 
second factor of the likelihood, and an estimate of ft can be 
computed without a distribution for g being specified, by max­
imizing the first factor only. The resulting estimates of ft are 
known as conditional maximum likelihood estimates and pos­
sess a number of desirable statistical properties [Andersen 
(7)). These properties depend on the size of the Y;+, not on 
the number of circles in the sample. This makes the condi­
tional approach particularly well suited for these data. There 
are few traffic circles in the sample, but a fairly large number 
of accidents were observed at each one. 

It should be noted that there is some loss of information 
about {i in doing the conditional procedure. Because the dis­
tribution of Y1+ depends on ft, ignoring the second factor of 
the likelihood ignores some of the information about ft. Com­
puting the distribution of Y; + , however, reveals that it de­
pends on ft only through the quantity µ + = Ii exp(Kij{i). In 
trying to estimate "within circle" effects, this should contain 
little information about the amount of information about ft 
in the conditional distribution, so that the loss of information 
from ignoring the second factor should not be large. Precisely 
how much is lost in the conditioning is difficult to answer, 
because the amount of information lost depends on the true 
distribution of the 0;. A more important feature to note is 
that, with the conditional procedure, the effects of factors 
common to all the approaches of a traffic circle cannot be 
estimated. These disadvantages of the conditional proce­
dure must be balanced against the gains made in estimating 
the effects of approach-specific factors and in guarding against 
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biases that can result from misspecifying the distribution 
for the 0;. 

RES UL TS OF ANALYSIS 

Before the results of the conditional analysis are presented, 
a brief description of how one can select a model using gen­
eralized linear models will be given. A comprehensive treat­
ment of this topic is found in McCullagh and Nelder (4). A 
description of fitting generalized linear models for analyzing 
traffic data is given in Maycock and Hall (2). 

Besides providing estimates for the coefficients of the pre­
dictors in the model, GLIM also provides a way of checking 
the fit of the model and of checking whether or not a predictor 
is a significant addition to a model. These measures are based 
on a quantity known as the deviance, which, for the Poisson 
models , equals 

where m;i is an estimate, based on the model being fit, of the 
expected number of accidents in approach j of circle i. As­
sociated with the deviance is the number of degrees of free­
dom, which equals the number of observations minus the 
number of parameters being estimated. A model that de­
scribes the data should have a deviance approximately equal 
to the number of degrees of freedom . 

To check if a predictor is a significant addition to a model, 
compare the deviances from two models: one without the 
predictor and one after the predictor has been added to the 
model. For example, suppose a model includes only the log­
arithm of the entering volume (LNQE) as a predictor. Let d1 

represent the deviance found by fitting this model. To see if 
another predictor-say, CA-significantly improves the model, 
obtain the deviance (d2 ) that results from using both LNQE 
and CA as predictors. If the difference (d 1 - d2 ) is large, 
compared with a chi-squared distribution with 1 degree of 
freedom, then it would be concluded that CA is a significant 
addition to the model. This procedure can be thought of as 
the generalized linear model version of doing an F-test to 
determine whether a predictor is a significant addition to a 
regression model. 

One of the analyses was performed with total accidents as 
the dependent variable , where total accidents include enter­
ing, approaching, single-vehicle, pedestrian, and other acci­
dents. The most parsimonious model that fit the data included 
terms for LNQE, CA, and CE. None of the other available 
predictors significantly improves the model. Deleting the flow 
or either of the curvature variables results in a model that fits 
significantly worse than the chosen model. The conditional 
estimates from the model that includes the predictors CA , 
CE, and LNQE are given in Table 1. The estimates were 
computed with and without an outlying observation. 

The deviance associated with this model is 26.2 on 18 de­
grees of freedom (p = .1) . The fit of this model is adequate, 
but not particularly good , primarily because of one large re­
sidual, corresponding to Arm 3 in the traffic circle R6. This 
arm has one of the smaller values of flow in the data set, and 
one would expect fewer accidents here than the 15 that were 
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TABLE 1 ESTIMATES FOR FINAL MODEL 

With cue 12 Without cue 12 

Ea ti mate Std. Error Predictor Eetimate Std. Error Predictor 

-3.67 1.26 intercept -6.261 .46 intercept 

0.73 0.15 LNQE .89 .16 LNQE 

45.04 17.4 CA 55.86 18.2 CA 

159.8 36.9 CE 150.0 37.9 CE 

observed . This arm has six single-vehicle accidents, an unu­
sually large number that contributes to the large total number 
of accidents. No other arm has more than two single-vehicle 
accidents. Deleting this observation and refitting the model 
yields a deviance of 17.5 on 17 degrees of freedom. 

One way to see how to interpret these estimates is to con­
sider two approaches in the same traffic circle and suppose 
that Approach 1 has a log of entering flow of LNQEt> an 
entry curvature of CE1 , and an approach curvature of CA1. 

Similarly, Approach 2 has values of LNQE2 , CE2 , and CA2 

for these characteristics. Using the estimates from the final 
model (without Case 12) , we have {J/{J2 = exp[.89 * (LNQE1 

- LNQE2 ) + 150.0 * (CE1 - CE2) + 55.86 * (CA1 - CA2)]. 

To interpret the estimated coefficient (.89) for LNQE, sup­
pose that the two approaches have the same approach curva­
ture and entry curvature, but Approach 1 has an entering flow 
of u (u ~ 1) times the entering flow of the Approach 2. In 
other words, LNQE1 = ln(u) + LNQE2 , CE1 = CE2 , and 
CA1 = CA2 • For these approaches , 

{J 1/{J2 = exp[.89 * ln(u)] = u·89 (7) 

so that the estimate of accidents in Approach 1 would be u·89 

times the number of accidents in Approach 2. Note that the 
standard error of the estimate for the coefficient of LNQE is 
.16, so that the estimate of .89 is not inconsistent with the 
hypothesis that the parameter equals 1. A value of 1 for the 
parameter is intuitively appealing, because this means that on 
average the number of accidents, adjusting for the other fac­
tors, changes in direct proportion to the traffic volume. 

Similar calculations can be done to interpret the coefficients 
of the other predictors in the model. CE is measured in units 
of .001 and has an estimated coefficient of 150.0. This indi­
cates that for two arms with identical flows and approach 
curvatures, 1.16 times the number of accidents would be ex­
pected in an arm with entry curvature CE + .001 as would 
be expected in an arm with entry curvature CE. CA is also 
measured in units of .001; its estimated coefficient is 55.86. 
From this, 1.06 times the number of accidents would be ex­
pected in an arm with approach curvature CA + .001 as would 
be expected in an arm in the same circle with approach cur­
vature CA, if the flow and entry curvature were held constant. 

The outlier primarily affects the estimate of the coefficient 
of LNQE. This might be expected given that Case 12 has a 
relatively small flow but an unusually large number of acci­
dents. From the estimates that include Case 12, 1.17 times 
the number of accidents would be expected for an arm with 
entry curvature CE + .001 as would be expected for an arm 
with curvature CE. Similarly, 1.05 times the number of ac-
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cidents would be expected in an arm with approach curvature 
of CA + .001 as for CA. These estimates are close to those 
based on deleting Case 12. 

These findings are consistent with those of Maycock and 
Hall (2), who also found that CA, CE, and LNQE were 
important predictors of total accidents. 

CONCLUSIONS 

In this paper, a conditional analysis was used to relate the 
number of traffic accidents at traffic circles to the geometric 
and flow characteristics of the circles. The conditional analysis 
is based on a Poisson distribution for the accident counts and 
is particularly suited for these data. It can give valid estimates 
of the effects without a large number of traffic circles in the 
sample and without a specified particular distribution for the 
variability among the circles. This can protect against biases 
that might result from misspecifying this distribution. All the 
computations can be done with readily available statistical 
software, which also provides methods for checking the ade­
quacy of the model and the effect of adding predictors to the 
model. Applying the method to data collected in Amman, 
Jordan, it was found that, besides traffic volume, the entry 
and approach curvatures were important factors in determin­
ing the number of accidents. 
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