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Stochastic Process Approach to the 
Estimation of Origin-Destination 
Parameters from Time Series of 
Traffic Counts 

GARY A. DAVIS AND NANCY L. NIHAN 

The origin-destination (OD) matrix gives the volume of traffic 
from each of a region's origins to each of its destinations and is 
a fundamental input to transportation planning and network de­
sign activities. Because the traditional methods of estimating the 
OD matrix-surveys and trip generation/distribution modeling­
tend to be expensive, cumbersome, and inaccurate, researchers 
have sought to develop methods for estimating the OD matrix 
from observations of traffic volumes on the region's road net­
work. For simple linear networks, such as single intersections or 
freeway sections, OD estimators with desirable statistical prop­
erties can be developed using least-squares methods, but for gen­
eral networks it has not yet been possible to produce consistent 
estimators of OD parameters using traffic count data alone. It is 
believed that the link counts on a traffic network are generated 
by a stochastic process that is parameterized by the means and 
variances of the separate OD flows. By using a tractable ap­
proximation to the traffic-generating process, it is possible to 
develop both maximum likelihood and method of moments es­
timators of OD parameters, and the estimators have desirable 
ccinsistency and asymptotic normality properties. Simulation studies 
suggest that the maximum likelihood estimator, though efficient 
in its use of data, is computationally demanding, whereas the 
method of moments estimator is not computationally demanding 
but is statistically inefficient. 

In transportation modeling, the origin-destination (OD) ma­
trix is an array whose rows index the locations on a network 
where trips originate and whose columns index the locations 
where trips terminate. The entry at the intersection of a row 
and a column gives, for some predetermined time interval, 
the number of trips between that particular OD pair. The 
OD matrix is the fundamental summary of a region's demand 
for travel, so it is an important input to any transportation 
planning activity. Historically, OD matrices have been esti­
mated using some combination of survey methods and trip 
generation/distribution modeling, but the data collection needed 
for these approaches tends to be time-consuming and expen­
sive, and the result is often ofunreliable accuracy (J). Because 
the OD matrix can be viewed as an input to a traffic assign­
ment process the outputs of which are the traffic volumes on 
the network's links, an alternative approach to OD matrix 
estimation is to start with observed link volumes and somehow 
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"invert" the traffic assignment to obtain the OD matrix. This 
approach appears increasingly attractive as the proliferation 
of automatic traffic surveillance and control systems makes 
automatic traffic count data more readily available. The clear­
est formal statement of this OD estimation problem to date 
has been given by Cascetta and Nguyen (2), although related 
work appears in Maher (3), Bell (4), and Spiess (5). 

Before considering methods of OD estimation based on 
traffic count data, it is useful to review desirable properties 
of parameter estimators. An estimator is said to be consistent 
if the probability of large discrepancies between it and the 
true parameter value approaches zero as the amount of data 
used approaches infinity. Thus for large amounts of data, a 
consistent estimator is likely to be close to the true parameter 
value, and consistency can be regarded as a minimal necessary 
condition for an estimator to be useful. Consistency is a prop­
erty of point estimators, but in addition to generating a point 
estimate of a parameter, it is often desirable to be able to 
compute confidence bounds for the estimate or to test hy­
potheses concerning parameter values. For a large class of 
estimators, including many maximum likelihood (ML) esti­
mators, a useful theory of inference can be developed on the 
basis of the fact that, as the amount of data becomes large, 
the estimator tends to have a normal distribution. This prop­
erty is called asymptotic normality. Because a parameter es­
timator is a random variable, it has a variance, and larger 
variances indicate greater uncertainty concerning the true pa­
rameter value. If the variance of a particular estimator about 
the true parameter value is lower than that of any other es­
timator, that estimator is called efficient. 

PROBLEM FORMULATION 

Imagine indexing the region's OD pairs by the single index 
j = 1, . . . , m, and let dj denote the demand for travel 
between OD Pair j. We can also imagine that counts are 
available from a total of p of the network's links. Define y, 
a p-dimensional vector whose kth element yk denotes the 
traffic count on the kth link containing a traffic counter, and 
qj, a p-dimensional vector whose kth element qjk denotes the 
probability that a trip between OD Pair j uses Link k. The 
link use probabilities qj are assumed to be constant, consistent 
with the assumption that the traffic assignment is in equilib-
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rium. Computation of these probabilities thus requires first 
solving an equilibrium assignment problem. Following Cas­
cetta and Nguyen (2), the relation between the link counts y 
and the OD volumes di can then be given as a linear regression 
of the form 

m 

y 2: (diq) + e (1) 
i~l 

where e denotes an error vector accounting for discrepancies 
between the link counts and their expected values. 

If the rank of the matrix [ q 1 , • • • , q ml is greater than or 
equal to m, the preceding regression problem is well posed 
and least-squares estimates of the OD parameters di can be 
readily computed. For networks of realistic size, however, the 
number of OD elements exceeds the number of links in the 
network, so that Equation 1 leaves the di underdetermined. 
A natural solution to this problem is to expand Equation 1 
by collecting a time series of link counts y(l), y(2), ... made 
at times t = 1, 2, ... and replacing Equation 1 by an extended 
version: 

m 

y(l) 2: diqi + e(l) 
i~I 

m 

y(2) = 2: diqi + e(2) (2) 
i~I 

However, for constant qi, it is easy to verify that the rank of 
the extended regression matrix will always equal the rank of 
[q1, ... , qm], and the identifiability problem encountered 
above cannot be solved, even with an infinite sequence of 
observations. Thus in this formulation of the problem, link 
count data cannot provide a method of consistently estimating 
the OD parameters. This difficulty has been well recognized, 
and the focus of research on OD estimation has been on 
combining link count data with other data (such as from sur­
veys) to provide usable procedures (2- 7). 

The situation for general networks contrasts with that for 
linear networks, such as single intersections, freeway sections, 
and transit routes. Here only one route connects each OD 
pair, and it is possible to obtain counts of the total traffic 
departing each origin (input counts) and arriving at each des­
tination (output counts). Several papers have established that, 
given time-series observations of the input and output counts, 
least-squares-based estimators may be used to estimate the 
proportions of an origin's traffic that terminate at the various 
destinations, even when the number of OD parameters ex­
ceeds the number of count locations. This approach is orig­
inally due to Cremer and Keller (8), whereas a recent paper 
by Nihan and Davis (9) gives conditions and a proof for the 
strong consistency of ordinary least-squares in estimating in­
tersection turning-movement proportions. Thus for linear net­
works, consistent estimators of OD parameters are readily 
constructed from least-squares algorithms, whereas for gen­
eral networks, Equation 1 permits consistent estimation only 
if the number of counted links exceeds the number of OD 
pairs. 

The source of this discrepancy lies in how the information 
available in a set of link counts is used. Equation 1 essentially 
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states that the observed traffic counts are equal to the sum 
of a mean value and an error term, where the mean value 
vector is a linear function of the OD parameters. Even though 
the link count mean is consistently estimable from stationary 
observations, the consistency is not inherited by the estimates 
of the OD parameters because of the noninvertibility of the 
function relating the mean link flows to the OD parameters. 
In linear networks, on the other hand, the statistics of interest 
are not the mean values of the counts, but the covariance 
matrix between the input counts and the output counts. This 
matrix is also consistently estimable, and, given certain con­
ditions on the process generating the input counts, an in­
vertible relationship between the OD parameters and the 
covariance matrix elements can be established, permitting 
consistent estimation of the OD parameters. This suggests 
that if not only the mean values but also the covariance prop­
erties of link counts can be expressed as well-behaved func­
tions of the OD parameters, consistent estimators of these 
parameters requiring only link count data can be constructed. 
In fact, it has been known for quite some time that the OD 
flows and the covariance of the link volumes have a well­
defined and plausible connection (10), but it has been difficult 
to find an appropriate use for this knowledge. In large part 
this is because the process that generates traffic counts has 
nontrivial dynamics, so that a time series of link counts must 
be viewed as a realization of a stochastic process rather than 
as the result of random sampling. The temporal dependencies 
among the link counts often invalidate the use of classical 
statistical procedures, whereas attempts to develop dynamic, 
stochastic models of traffic assignment have either been re­
stricted to simple networks (11) or have produced intractable 
models (12). However, recent work has investigated this prob­
lem in some detail (13,14) and established that under con­
ditions similar to those needed to justify the use of stochastic 
user equilibrium (SUE) traffic assignment methods, a sto­
chastic traffic generation model similar to that used by Cas­
cetta (12) can be approximated by a stationary linear sto­
chastic process driven by normally distributed noise as the 
number of travelers in the system becomes large. The param­
eters of this process are in turn well-defined functions of the 
OD parameters, and the approximation can be used to de­
velop both ML and method of moments (MOM) approaches 
to OD parameter estimation. The approximation model is 
first presented in some detail, and the way the model is par­
ameterized by the OD parameters is emphasized. OD esti­
mation based on this model is then described. 

A STOCHASTIC TRAFFIC MODEL 

Before one can develop and validate statistical procedures, 
one must have an explicit model of the probabilistic mecha­
nisms that are assumed to generate the available data. Equa­
tion 1 provides a model for traffic counts, but for the reasons 
described is not sufficiently rich for developing a useful sta­
tistical theory. Fortunately, Equation 1 has been used not so 
much because of its inherent validity, but because more re­
alistic alternatives are lacking. Development of better alter­
natives requires more detailed consideration of how traffic 
counts are generated by the underlying trip generation and 
assignment processes, and these are poorly understood. One 
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could wait until more detailed knowledge is available (pre­
sumably from laboratory studies) and then use it to construct 
models of traffic generation for actual systems, much as well­
established principles of mechanics are used in structural de­
sign. A more direct strategy would be to formulate plausible 
models based on available knowledge with the aim of even­
tually using real-world systems as one's laboratory, and this 
is the strategy followed here. Thus, rather than attempting to 
construct a comprehensive stochastic model of traffic gener­
ation, just enough probabilistic structure will be added to the 
standard assumptions concerning traffic generation so that a 
tractable stochastic process model of traffic counts can be 
derived. These assumptions lead to a simple but, from an 
estimation standpoint, intractable stochastic process model. 
For large traveling populations, however, it is possible to 
approximate this intractable model by a more tractable linear 
time-series model, from which OD estimators are readily con­
structed. The justification for this approximation uses stan­
dard mathematics but is long and technical. Because it is 
described elsewhere (13,14), it is not included here. However, 
familiarity with the structure of the resulting models helps 
one to see the straightforward way in which OD parameter 
estimators are constructed and how the properties of the es­
timators follow from the properties of the models. 

We begin by treating the OD flows not as constants but as 
random variables, and in particular assume that di(t), the flow 
between OD Pair j on Day t is a binomial random variable 
with parameters n1 and Pi· The outcomes for each OD pair 
and for each day are assumed to be independent, and the 
means and variances of the OD flows are thus given by 

d1 = n1P1 

a'J = n1P1(l - P1) (3) 

The values of the OD parameters~ and crJ are what we desire 
to estimate from link count observations. (If the OD flows 
are treated as constants rather than random variables, we 
simply deal with the special case where cr~ = 0, j = 1, .. . , 
m.) Now assume we have a total of n links in our network, 
and let 

x(t) = the n-dimensional vector whose kth element xk(t) 
gives the traffic volume on Link k on Day t; 

ck(x) = a differentiable function that gives the cost of 
traversing Link k as a function of the traffic 
volume vector x; 

gk(t) = the traveling population's anticipated cost of 
traversing Link k on Day t; 

p1,[g(t)] = differentiable functions giving the probability that 
a traveler between OD Pair j uses the rth route 
connecting j, as a function of the current antic­
ipated cost vector g(t); and 

81,k = 1 if Link k lies on Route r connecting j and 0 
otherwise. 

Then the underlying traffic generation model, Model A, 
can be expressed in recursive form as follows: 

0. Given initial anticipated costs g(O) and link volumes x(O), 
let t = 1. 

1. Generate the dif) as binomial outcomes with parameters 
n1 andp1,j = 1, . . . , m. 
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2. Let gk(t) = (1 - cx)git - 1) + cxck[x(t - 1)], 0 
:5cx:51. 

3. Generate the route flows d1,(t) as multinomial outcomes 
with parameters [dit), p1,(g(t)]. 

4. Let xk(t) = Ii 81,k d1,(t), k = 1, . .. , n. 
5. Let t = t + 1 and go to Step 1. 

The process described in Model A is a first-order Markov 
process. The recursion in Step 2 allows the anticipated cost 
to be a weighted average of the actual historical link costs, 
with ex controlling the relative importance of recent costs. 
Adjustment mechanisms of this sort have appeared elsewhere 
(11,12), whereas the idea that route selection is a multinomial 
process appears to date back to Daganzo (10). Model A is 
easy to simulate, at least for small networks, but the convo­
lutional nature of the link volumes expressed in Step 4 makes 
derivation of the probability distribution of the link volumes 
a difficult practical problem. Similar problems have been en­
countered in statistical mechanics, population biology, math­
ematical sociology, and so forth (15,16). They have often been 
successfully dealt with by using tractable approximations that 
become increasingly accurate as the size of the population 
increases. Intuitively, the approximation of Model A can be 
based on the fact that, conditional on what has happened on 
Day t - 1, the link volumes on Day tare the result of a large 
number of independent, individual route choice decisions, so 
that analogs of the Strong Law of Large Numbers and the 
Central Limit Theorem ought to apply. This intuition is given 
formal substance elsewhere (13,14). The result is that for large 
traveling populations, and in the vicinity of a stable user equi­
librium assignment, the link count process generated by Model 
A can be approximated by a vector-valued autoregressive 
moving average process. In many cases the moving average 
component of this approximation can be neglected, giving the 
following first-order, vector autoregressive [VAR(l)) model, 
Model B: 

x(t) - x = F[x(t - 1) - x] + a(t) (4) 

In Model B, x is a stochastic user equilibrium assignment 
satisfying 

'" 
x = 2: d1qi[c(x)] (5) 

i - 1 

F is a weighted Jacobian matrix of the right hand side of 
Equation 5: 

(6) 

The a(t) are independent, identically distributed normal ran­
dom vectors with mean vector equal to 0 and covariance 
matrix Q given by 

(7) 

As defined earlier, the qi appearing in Equation 7 denote the 
vectors of link use probabilities, whose elements are given by 
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qjk = L (ojrk)pAc(i)] (8) 
r 

The matrices Qj appearing in Equation 7 are defined so that 
the kith element Qj,kt gives the probability that a trip between 
OD Pair j uses both Links k and/: 

Qj,kt = L (&1,k)(&1r1)PAc(i)] (9) 
r 

The advantages of replacing Model A with Model B derive 
from the fact that the V AR(l) process is arguably the most 
tractable and well understood of Markov processes. VAR(l) 
processes are parameterized by the quantities i, F, and Q 
and, for a set of observations x(t), t = 1, ... , N, the ML 
estimates of i, F, and Q are easily calculated using Ieast­
squares methods (17). We are not interested in all VAR(l) 
processes, however, hut only those th<it c<in result from under­
lying traffic assignment processes, and thus must restrict our 
attention to VAR(l) processes whose parameters satisfy 
Equations 5 through 7. Because Equation 5 expresses the 
mean vector x as an implicit function of the OD flow means, 
the question arises as to whether the relationship betwe~ the 
VAR parameters i, F, and Q and the OD parameters d1 and 
cr] is well defined. If the VAR parameters are differentiable 
functions of the OD parameters, we can consider taking the 
derivative of the VAR likelihood function with respect to the 
OD parameters and solving for the OD parameter values 
making these derivatives equal to zero, producing ML esti­
mates. If no such functions exist, the estimation task is much 
more difficult. Fortunately, it can be shown (13, chapter 4) 
that if (a) the link cost functions ck(.) and the route choice prob­
ability functions PA.) are continuously differentiable and (b) 
the rank of the matrix I - (l/u)F is n when the d1 are the 
true values of the OD paramet~rs, then at least in a neigh­
borhood of the true values of d1 , cr], the VAR parameters 
are continuously differentiable functions of the OD param­
eters. Although an explicit representation of this function 
cannot be given, implicit differentiation can be used to obtain 
the necessary derivatives. It can also be readily verified that 
when the link cost functions have the BPR form, while the 
route choice probabilities are given by the multinomial logit 
formula, conditions (a) and (b) are satisfied (13). This well­
behaved relationship between the OD parameters and the 
VAR parameters is the basis of OD estimation. 

Essentially Model B claims that if one had time-series data 
consisting of, say, morning peak-period traffic volumes for 
all links in a network collected over several months, the data 
should be accurately modeled as a VAR(l) process. The mean 
of the data set should be equal to the SUE assignment and 
the regression and covariance matrices, respectively, should 
be equal to the F and Q given in Equations 6 and 7. If traffic 
counts are only available from a subset of the network links, 
the time-series model describing these partial counts will no 
longer necessarily be VAR(l) but will still be a stationary 
linear model whose parameters are at least in theory com­
putable from x, F, and Q (18). Thus Model B makes some 
strong claims concerning the nature of traffic count data that 
are, at least in principle, testable from data collected by au­
tomatic surveillance and control systems. A limited amount 
of published empirical work suggests that Model B is not 
implausible. For instance, Cascetta (12) provides evidence · 
that an SUE assignment is as reasonable a forecast of traffic 
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volumes as the more standard DUE assignment, whereas in 
earlier work (19,20) we found that once seasonal trends have 
been accounted for, stationary linear models provide reason­
able representations of freeway volume counts. However, more 
adequate empirical testing of traffic assignment methods re­
quires accurate estimation of OD parameters, because other­
wise one cannot distinguish between poor fit caused by a poor 
model and poor fit caused by ignorance of the actual OD 
patterns (21,22). By treating OD estimation as a problem in 
system identification, these aspects-model estimation and 
model validation-can be integrated. 

ESTIMATION METHODS 

Before turning to the construction of estimators for the OD 
parameters, it is necessary to resolve two technical issues. The 
first concerns the placement of the traffic counters generating 
the available data. In most practical cases, not all network 
links contain traffic counters, although the advent of auto­
matic surveillance and control systems makes the availability 
of traffic counts more widespread. The estimation theory for 
VAR(l) processes, however, assumes that, subject to a lim­
itation to be discussed shortly, observations from all links are 
available. This assumption allows the estimation theory for 
Markov processes developed by Billingsley (23) to be applied 
to this problem, resulting in relatively straightforward esti­
mation methods whose asymptotic properties are readily es­
tablished. On the other hand, when we assume that only a 
subset of the links have counters, it is well known from systems 
theory that the stochastic process describing the observations 
will no longer be Markov, even though the underlying process 
is. Computation of the likelihood function for this case re­
quires employment of the Kalman filter, and establishing the 
asymptotic properties of the resulting estimators is an un­
solved problem. Thus in this paper we concentrate on the 
case where a full set of traffic counts is available, saving the 
partial count case for later research. 

Having made the case for a full set of traffic counts, we 
next note that the link flows on a network contain linear 
dependencies because of conservation of flow requirements. 
This means that the link flow vector x can be partitioned into 
x1 and x2 , with a linear relationship x2 = Bx1 existing between 
x1 and x2 • The linear dependence causes the covariance matrix 
Q to be singular, which in turn causes both practical and 
theoretical problems in OD estimation (13). This is easily 
solved by working with the independent set of link counts x1 

and deleting the appropriate rows and columns from Q. Com­
putation of the corresponding matrix F is readily done using 
the chain rule for vector-values functions. Thus from here on 
it is assumed that we have available a full set of linearly 
independent counts, and the quantities i, F, and Qare com­
puted for this linearly independent set. 

With these cautions noted, let 

x(t) = x + F[x(t - 1) - x] (10) 

denote the predicted value for x(t). ML estimates for the 
model parameters are then obtained by minimizing the scaled 
log-likelihood function 

N 

L = loglQI + (1/N) L [x(t) - x(t)VQ - 1[x(t) - x(t)] (11) 
1~1 
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with respect to the parameters of interest. For the VAR pa­
rameters x, F, and Q, the ML estimates have a closed-form 
solution, which can be readily computed using standard 
regression methods. It is also well known that these estimates 
are consistent, asymptotically normally distributed, aE_d asymp­
totically efficient (17,23). For the OD parameters dj and o-J, 
one can still take derivatives of Equation 11 using the chain 
rule and implicit differentiation, set the derivatives equal to 
zero, and then in principle solve the resulting equations for 
the ML estimates. The likelihood equations will in this case 
not admit a closed-form solution, so that numerical solution 
methods must be employed. However, given some technical 
conditions, it can still be established that Billingsley's results 
on ML estimation for Markov chains apply to this situation 
and that the solutions to the likelihood equations are con­
sistent, asymptotically normally distributed, and asymptoti­
cally efficient (13). Thus the classical results concerning ML 
estimators apply to the ML estimates of the OD parameters, 
though with some numerical difficulties in actually computing 
these estimates. 

Alternatively, Equations 5 through 7 defining the VAR 
parameters can be written in a vectorized form: 

m 

x = 2: d;qj 
j - 1 

v(F) = a i; d;v([aqj]) 
1 ~1 ax 
m 

vh(Q) 2: [d;vh(Qj - Q/I)) + o-Jvh(qjqj)] (12) 
j~1 

where v(.) denotes the vector operator (the stacking of the 
columns of a matrix on top of each other) and vh(.) denotes 
the vector half-operator (the stacking of the columns of the 
lower diagonal of a symmetric matrix on top of each other). 
Given estimates of x, F, and Q and knowledge of the param­
eter a, Equation 12 defines a system of linear equations with 
the OD parameters as the unknowns. When the number of 
individual paramaters in x, F, and Q exceeds the number of 
OD parameters, these equations can be solved using the Moore­
Penrose pseudoinverse (or equivalently, ordinary least-squares) 
to obtain estimates of the OD parameters. Because the ML 
estimates for the VAR parameters are also the MOM esti­
mators, the second approach gives a MOM estimator of the 
OD parameters. Under the conditions that the link cost and 
route choice functions are continuously differentiable, the 
function relating the MOM OD estimates to the MOM VAR 
estimates will also be continuously differentiable, so that the 
consistency and asymptotic normality shown by the VAR es­
timators will be inherited by the MOM OD estimators (24, 
p. 388). The asymptotic efficiency of the VAR estimators, 
however, is not guaranteed to transfer to the MOM OD 
estimators. 

MONTE CARLO EVALUATION OF ESTIMATORS 

Both the ML and the MOM estimators assume the VAR(l) 
Model B is an accurate description of the process generat­
ing the link volumes. Model B is in turn derived as a large-
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population approximation to the Markov process described 
in Model A. With infinite populations and infinite amounts 
of data, the asymptotic theory characterizes the properties of 
these estimators. However, for a given finite population and 
finite data sequences, the asymptotic properties may not be 
operative, and simulation studies are required to verify the 
practical usefulness of the asymptotic results. We have already 
described some asymptotic properties of the ML and MOM 
estimators based on large-population and large-sample ap­
proximations. To gain some appreciation of how the ML and 
MOM estimators would perform on finite data sets generated 
by a Model A process, we conducted the following simulation 
study. A FORTRAN program, SIMFLO, was written that 
could simulate the Model A process for networks small enough 
that enumeration of the network routes was feasible. (This 
was necessary so that the multinomial simulation described 
in Step 3 of Model A could be performed.) SIMFLO assumes 
that the link costs are given by the BPR functions with 
the form 

(13) 

The route choice probabilities are given by the logit formula 

e-0Cjr 

Pjr = L e- a .. 
s 

(14) 

Two FORTRAN estimation programs were also written. Pro­
gram MARKOD computes numerical ML estimates of the 
OD parameters using the quasi-Newton routine E04JBF, ob­
tained from the NAG subroutine library (25). Program 
MOMOD computes MOM estimates using standard least­
squares procedures. Although we conducted tests with several 
hypothetical networks, space limitations permit the descrip­
tion of only one simulation experiment. However, the results 
of all experiments were consistent with the results that we 
now present. Figure 1 shows a 14-link network with three 
origin nodes (01, 02, and 03) and three destination nodes 
(Dl, D2, and D3), for a total of nine OD pairs. lfone imagines 
collecting weekday peak-period volume data for a network, 
a time series of length 150 would correspond to 7 to 8 months 
of observations, and this was considered a reasonable upper 
bound on the duration over which OD patterns might be taken 
as being constant. From such a time series, one could obtain 
one set of estimated OD parameters, so to sample the statis­
tical properties of the OD estimators, 50 separate time series, 
each of length 150, were generated using SIMFLO. The 50 
time-series were then input to MARKOD and MOMOD to 
obtain a sample, of size 50, of the ML and MOM estimates. 
Although in principle it is possible to treat the weight­
ing parameter o: and the logit parameter 8 as unknown 
(MARKOD permits this option), the relationship between 
x, F, and Q and the unknown parameters shown in Equation 
12 is no longer linear, and computation of the MOM esti­
mators will be more difficult. Because the primary goal of 
this study is assessment of the estimates of the OD parameters 
d; and aJ, o: and 8 will be treated as known a priori. Esti­
mation using MARKOD was done on the Cyber 180/855 com­
puter at the University of Washington, and estimation using 
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FIGURE 1 Diagram of 14-link network 
used in simulation study. 

01 

02 

03 

MOMOD was done on the Cyber 170/845 computer at the 
University of Minnesota. 

Table 1 gives statistical information concerning the prop­
erties of the ML estimator. The column labeled "True" gives 
each OD parameter's true value; the column labeled "Mean" 
gives the average, across the 50 simulations, of the estimated 
values produced by the ML method; and the column labeled 
"S.D." gives the standard deviation of these estimates about 
their average. The column labeled "t" gives a computed 
/-statistic testing the hypothesis that the average estimate equals 
its corresponding true value, which is a test for bias in the 
estimator. The column labeled "r" gives the normal-score 
correlation test for normality (26), which tests the asymptotic 
normality of the estimates. Table 2 gives similar information 
for the MOM estimator. One asterisk indicates statistical sig­
nificance of a test at the .05 level, whereas two asterisks 
indicate statistical significance at the .01 level. 

From the "r" columns, it can be seen that both the ML and 
the MOM methods produce estimates that tend to be normally 
distributed, indicating that a data series of length 150 appears 
sufficient to obtain asymptotic normality. Looking at the "t" 
columns, we see an undeniable tendency for both estimators 
to generate biased estimates, indicating that with data se­
quences of length 150 there is still some gap, on the average, 
between the estimate and the true value. Inspection of the 
"True" and "Mean" columns in both tables indicates that for 
the ML estimator the biases tend to be less than 10 percent 
of the true values, whereas for _MOM the biases are somewhat 
worse. A comparison of the "S.D." columns in Tables 1 and 
2 indicates that the ML estimates have markedly less variance 
than the MOM estimates, a result consistent with the asymp­
totic efficiency property of the ML estimator. The variability 
of the MOM estimates of the OD variances is in fact so large 
that it calls into question the practical value of such estimates. 

TABLE 1 ESTIMATION SUMMARY FOR ML 
METHOD 

eamm'IQt I au:: 

d, 450. 
d1 300. 
d, 301. 
d, 352. 
d, 490. 
d, 150. 
d, 100. 
d, 200. 

<42 
700. 

a, 45. 
a 2 75. 

22 
42.1 a, 

a 2 42.2 
'2 

147. a, 
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TABLE 2 ESTIMATION SUMMARY FOR MOM 
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126.23 31.08 
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187.56 52.80 

CPU seconds/estimation = 0.89 
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Finally, at the bottom of Tables 1 and 2 we display the average 
CPU time required for the two estimation methods. Whereas 
the MOM method is very efficient from a numerical stand­
point, the ML procedure proved to be computationally bur­
densome, suggesting that ML estimation for networks of 
realistic size may prove difficult even on a supercomputer. 

SUMMARY AND CONCLUSION 

We have considered here the problem of estimating the pa­
rameters describing the OD demand on a traffic network from 
time-series observations of the network's link volumes. The 
existence of such methods, coupled with the availability of 
automatic traffic-counting technology, holds the promise of 
being able to obtain timely, inexpensive estimates of existing 
travel demand and of being able to detect and track changes 
in demand over time or in response to transportation initia­
tives. Because the dynamics of the processes generating traffic 
cannot be neglected, we argue that OD estimation is more 
properly seen as statistical inference on stochastic processes 
rather than an example of classical statistical procedures. After 
developing a tractable stochastic process model that is a plaus­
ible approximation of the traffic count process, we use the 
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model to develop both ML and MOM estimators of the pro­
cess's OD parameters. Both estimators have desirable consis­
tency and asymptotic normality properties, but only the ML 
estimator can claim asymptotic statistical efficiency. Simula­
tion studies indicate that the ML estimator is superior from 
a statistical standpoint, but the numerical labor needed to 
compute ML estimates makes application to networks of re­
alistic size problematical. On the other hand, the MOM es­
timates, though clearly inferior statistically, are numerically 
efficient enough to be considered for networks of realistic 
size. At this point, the trade-off between statistical and nu­
merical efficiency is unforgiving. Thus, although it is possible 
to begin developing a statistical theory for making inferences 
about OD parameters from traffic count data, numerical is­
sues stand between the theory and its general usefulness. 

The obvious research need then is to develop methods that 
preserve the statistical efficiency of the ML method but reduce 
its computational burden. The minimization procedure im­
plemented in Program MARKOD can be viewed as a variant 
of the reduced-gradient algorithm, and it has been recently 
reported that reduced-gradient algorithms tend to be numer­
ically slower than competitors such as sequential quadratic 
programming (SQP) (27). A promising line of investigation 
would be to reformulate the ML estimation problem as an 
SQP and use a state-of-the-art SQP code to solve it. We are 
currently pursuing this course. Another need is to develop 
methods that do not require a full set of traffic counts. Nu­
merical computation of ML estimators for this case is rela­
tively straightforward (although some limited numerical ex­
periments indicate that the CPU demands tend to be greater 
than those for the full-count case). What is problematic is 
demonstrating that these estimators have desirable asymptotic 
properties, such as consistency and asymptotic normality. Be­
cause the numerical difficulties shown by the full-count case 
also tend to be shown by the partial count case, the main 
obstacle to practical use is the lack of a numerically efficient 
computation method. 
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