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Route-Specific and Time-of-Day 
Demand Elasticities 

YUPO CHAN 

In assessing user response to cost and service changes, demand 
elasticities are useful tools. Current compilations of demand elas
ticities, however, are not helpful to scheduled transportation op
erators. The reason is that the range of an elasticity is too wide, 
and there is no practical guideline for picking an appropriate value 
within the range. Furthermore, they are often compiled for sys
temwide and average-day operations, whereas most analyses need 
to be performed on a route-by-route basis during peak or off
peak periods. A methodology to address this problem is presented 
with the objective of providing demand elasticities that are prac
tical for patronage analyses in an operating agency. Through 
statistical analyses of spatial and temporal data aggregation, the 
methodology explains the differences among elasticity tabula
tions, and in so doing, provides insights into the variations among 
elasticity values . The results of this research include (a) guidelines 
for selecting an appropriate value of elasticity among the broad 
range of values (instead of simply taking the average or midpoint 
of the range) and (b) a method for converting the most commonly 
available elasticities (which are usually in aggregate form) to a 
more useful form, such as route-specific and time-of-day elastic
ities. The results have been demonstrated in a case study of the 
transit system in York, Pennsylvania. 

A common concern expressed by scheduled-transportation 
operators is how a system can become more attuned to user 
preferences by innovation in service changes (J). Clearly, 
addressing such concerns requires knowledge of travelers' 
(shippers') response to changes in such items as user charges, 
schedules, and route coverage. For example, would a user 
still patronize the system if the fare is raised or the frequency 
of service is cut back (2)? Users' decisions clearly affect the 
revenue or well-being of the operator, which in turn leads 
to either success or failure of the scheduled transportation 
system. 

Increasingly, systems are scrutinized on a route-by-route 
basis (3). Schedules and user charges are becoming more and 
more differentiated between peak and off-peak periods be
cause user responses are widely different among routes and 
time of day. For example, peak-hour travel is typically in
elastic inasmuch as it is made up largely of work trips on 
routes from suburb to center city. This contrasts with off-peak 
travel, which typically consists of discretionary trips. Unless 
distinctions are made between routes and time of day, fare 
and schedule changes cannot be planned judiciously to cater 
to the user's preferences ( 4). 

A common way to address this issue is to examine demand 
elasticities, which by definition measure patronage responses 
to changes in attributes such as fares and service. Although 
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several tabulations of urban demand elasticities exist (5), the 
use of these tabulations has been limited because of the tre
mendous variations in reported elasticity values-even for 
the same city or scenario (6). For example, within a given 
commuter rail authority, the time elasticity can vary from 
-0.31 to -0.87-a threefold difference. This is mainly due 
to the different levels of aggregation used in the derivation 
of these elasticities. Whereas there is tremendous need, op
erators rarely have usable guidelines available for selecting 
an appropriate elasticity for day-to-day operations-from route
level to peak versus off-peak analyses. There is no reason to 
believe that the midpoint (between -0.31 and -0.87) is the 
number to use (5) or that a uniform scale factor can be applied 
indiscriminately (between -0.31 and -0.87) to arrive at the 
appropriate value for a specific route or time of day. 

Thus there is a knowledge gap to be filled in establishing 
probable variations in elasticities among routes and peak ver
sus off-peak hours. The provision of these guidelines would 
allow operators to fine-tune elasticities by route and time of 
day on the basis of associated activity-system and level
of-service characteristics. Thus user responses to service changes 
can be accurately estimated for operational planning 
purposes. 

LITERATURE REVIEW 

Among the various approaches to estimating demand on a 
route-specific level, the elasticity method performs extremely 
well (7,8). In fact it can be argued that as a general method, 
it is most satisfying. Recent work on chain pivot-point analysis 
is merely a variation of the elasticity method (9). The same 
can be said for areawide-equilibration approaches (10). 

Various fare-policy evaluation techniques have been built 
around demand elasticities. Ballou and Mohan (11) gave an 
example of the use of elasticities to analyze differentiated fare 
change on selected routes. Their analyses indicate the diverse 
effects of fare changes among routes and according to time 
of day, trip purpose, trip duration, and schedule frequency. 
Because demand elasticities are the basis of such fare-policy 
evaluations, the need for a reliable set of elasticities becomes 
obvious. To attain this accuracy, we need elasticities disag
gregated by route, time of day, service level, and the socio
economic composition of the potential riders (12,13). This 
in turn requires knowledge about how elasticities are derived, 
which is the only way to arrive at such a disaggregation 
procedure. 

Calibrated elasticities are of two types, depending on the 
methodology and data used for their computation. Disaggre-
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gate elasticities are estimated using detailed information (such 
as household data), whereas aggregate elasticities are based 
on coarser data (such as zonal averages). Aggregate elastic
ities implicitly assume that travel behavior is homogeneous 
within a geographic subdivision, such as a zone or a route. 
Use of aggregate elasticities therefore ignores the high levels 
of variation in travel behavior (particularly modal choice) that 
may exist among users of a route. The use of such aggregate 
data fails to extract much of the variational information from 
the constituent observations used to obtain zonal aggregates. 
In contrast, disaggregate elasticities, which use households as 
the unit of analysis, are able to tap an extremely rich source 
of variation. 

In other words, one potential problem of aggregate-level 
analysis is the risk of ecological fallacy, in which aggregate
level correlations are mistakenly attributed to individuals. An
other problem is the loss of variability in the data used for 
estimation. Because a model's coefficients are determined by 
explaining variations in observed travel behavior, the less the 
variation to be explained, the less reliable the model will be. 
The reduced variability in aggregate data also results in a high 
level of collinearity between variables at the aggregate level, 
which does not exist at the disaggregate level. These obser
vation errors tend to impart downward bias to estimated coef
ficients. For example, the results of a study (14) show that 
by using disaggregate demand models, disaggregate elastic
ities-for a given level of service-are usually lower than the 
corresponding aggregate elasticities in algebraic value. Thus, 
a route-specific fare elasticity may be - 0 .4, whereas a sys
temwide figure may be - 0.3. 

THEORY 

To be able to use the tabulated elasticities meaningfully, the 
relationship between aggregate elasticities and disaggregate 
elasticities needs to be reviewed as a first step. The most 
disaggregate level of demand elasticities is at the household 
level. These elasticities are usually derived from logit models 
of the following form (15): 

p(m, t) = :ixp(R,,,X,,,,) 

L exp(R)(i,) 
j~I 

where 

m 1, 2, . .. , M (1) 

p(m, t) = probability of Mode m being taken by House
hold t (t = 1, 2, ... , T), 

xmt = vector of level-of-service and activity-system 
characteristics of Mode m for Household t, and 

Rm = estimated vector of coefficients for the level-of
service and activity-system variables of Modem. 

From this model form, elasticities can be derived as 

(2) 

where 

TJ(m, xm, t) = elasticity for Mode m with respect to attri
bute xm for Household t given a destination 
and given that a trip will be made; 
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rx = estimated coefficient for level-of-service 
variable xm; and 

xm, = level-of-service attribute of Mode m, by 
Household t for a given destination. 

There are mathematical relationships between disaggregate 
and aggregate elasticities. Recall that the elasticity for House
hold t, TJ(m, xm, t), is given in Equation 2. The demand elas
ticity aggregated over T households in a geographic subdi
vision such as a route is correspondingly 

T 

L TJ(m, Xm, t) 
1• 1 (3) T 

2: p(m, t) 
t=l 

Equation 3 can also be derived in a different way (16). 
Define Pm as the average market share of Mode m for a 
subdivision with a population of T households: 

1 T 

Pm = T ~ p(m, t) (4) 

We proceed to differentiate Pm with respect to xm: 

ap,,. = _a [£ p(m, t)ITJ 
axm axm r-1 

1 T 

= T ~ p(m, t)[l - p(m, t)]rx (5) 

The aggregate elasticity then becomes 

= {~ :f p(m, t)[l - p(m, t)]}rx :m 
r~l Pm 

(6) 

By substituting Pm(l - Pm) for the terms in brackets { }, 
the following is obtained: 

(7) 

This is analogous to the disaggregate elasticity Equation 2. 
The substitution above, however, assumes that 

1 T 

p;;, = - 2: p(m, t)2 

T 1~1 
(8) 

This assumption, when interpreted together with the defini
tion of Equation 4, implies that individual mode-choice be
havior is homogeneous within the subdivision. Because the 
individual travel decisions are not likely to be homogeneous 
in actuality, Equation 7 can only be an approximation of 
Equation 6. 

Systemwide transit elasticities-being another level of ag
gregation-can also be derived from disaggregate elasticities 
calibrated for households (16). Let us write T as Nk to spe-
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cifically denote the number of households on the kth route 
and to show that there is more than one route systemwide. 
Now let p(m, k) be the average probability of choosing Mode 
min the kth route (where k = 1, 2, 3, ... , K). By definition, 

(9) 

For the study area, using the new notation, and with the 
substitution 

Nkp(m, k)[l - p(m, k)] -

N> 

L p(m, k, t)[l - p(m, k, t)] (10) 
t = 1 

systemwide elasticity can be approximated as 

( k) 
<Jp(m, k) Xmk 

'l']fflX = ·---
' m• dXmk p(m, k) 

{ 
K } X = L Nkp(m, k)[l - p(m, k)Jrx K mk 

k - 1 "' ( - :L, p 111 , k) 
k=l 

(11) 

This relationship is obtained on the basis of the assumption 
of homogeneous household behavior within a route. The vari
ability in the data is among routes (rather than households) 
in this case. 

IMPLICATIONS 

Now that the relationship between household, route, and sys
temwide elasticities has been derived, their applications in the 
field can be discussed. Specifically, the numerical values of 
these elasticities when they are applied in scheduled trans
portation analysis can be compared. In a study consisting of 
K routes, for example, the difference between the approxi
mation of Equations 7 and 11 and the theoretical elasticity 
(Equations 6 and its route equivalent shown by substitution 
Equation 10) can be computed. The resulting difference be
tween an aggregate and disaggregate elasticity on Route k is 

'l'J(m,xm,k) - 'l'J(m,xm,t) = ':Vmk{Nkp(m,k)[l - p(m,k)] 
Pm 

- 1~p(m,k,t)[l - p(m,k,t)]} 

= rNx~nk [ ~ p(m,k,t)2 - N.p(m,k)2] 
Pm r=1 

(12) 

where a~ is the variance of p(m, k, t) in Route k . The dif
ference between an aggregate elasticity and a disaggregate 
elasticity for the kth route is therefore 
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(13) 

If d-2 is defined as the maximum ak over Route k = 1, 2, 3, 
... , K (hence a~ :s 0-2), the inaccuracy of an elasticity 
estimated for a route is bounded by the inequality 

(14) 

Because a2 is the squared deviation of p(m, t)'s from Pm, 
in general, and both p(m, t) and Pm are between 0 and l, it 
appears that a should be very small. However, in a case study 
using a 1955 data sample from Chicago, Warner (16) found 
that rr2 was about 0.04 (or a = 0.2). 

What can be said about the estimation error associated with 
an elasticity? Let us compare the estimated value using Equa
tion 7 and the following value, which has been corrected by 
such ertor terms as Equations 13 and 14: 

(15) 

By using values of Pm = .824 and a 2 = 0.04 from Warner's 
experiment in Chicago, the following is obtained from 
Equation 7: 

(16) 

and 

ii(m, Xm) = 0.127rxxm (17) 

according to Equation 15. The ratio between the two values 
is 

direct estimation 0.176r,,x.,, 
corrected estimation 0.127r,,.x.,, 

1.386 (18) 

This indicates that a route elasticity, for example, could be 
overestimated by as much as 40 percent by an aggregate figure 
(which assumes homogeneous travel behavior among all users 
in the route). 

Similarly, any individual route elasticity can be overesti
mated by the ratio 

(19) 

even after corrections of the estimated values are made ac
cording to Equation 15. 

SITE TESTING 

The theory described in the earlier section was applied to a 
transit line in a medium-sized city: York, Pennsylvania. The 
bus line, called the W. Market/E. Market line, runs between 
York's central city and two suburbs-one to the west and the 
other to the east. The line covers these zones en route: 15 .--. 
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14 ~ 5 ~ 1 ~ 2 ~ 10 ~ 32, with 15 denoting the western 
suburb and 32 the eastern suburb. 

We can obtain the travel times for our model from the 
published time schedule of the transit line. The waiting time 
(usually approximated by half of the headway) has to be added 
to the line-haul times to obtain the user's actual travel time. 
The activity-system and level-of-service data were collected 
for calibrating a logit model. The model specification includes 
the following explanatory variables for the zones the transit 
line goes through: 

• Interzonal travel times by automobile at posted speed; 
•Transit travel times , including wait time and walk time 

(at 5 ft/sec from zone centroid to bus station); 
•Automobile travel costs expressed in perceived costs (at 

5 cents per mile); and 
• Transit travel costs at a uniform fare of 65 cents per trip . 

The data are summarized in Table 1. 
A logit model was calibrated by Chan (17) for the 

city of York, yielding a disutility function (or impedance 
function) of 

R...Xmt = -290.2c'"' - 70.5Tm1 + 1.51 (20) 

Only level-of-service variables such as cost (c) and time (T) 
are explicitly modeled; activity-system variables were all lumped 
under the calibration constant of 1.51, and there are only two 
modes (m = automobile or transit). 

From logit Equations l, a table can be generated consisting 
of the probability of a household t taking bus transit B, p(B, 
t), among the seven zones (i = 1, 2, ... , 7; j = 1, 2, ... , 
7) covered in the transit line. From the 42 (or 7 x 6) nonzero 
values in the table, we can obtain the average market share 
of the bus mode for Route k, Pn, as 

1 42 

- L p(B, t) = 0.0064 
42 1 ~ 1 

(21) 

TABLE 1 INTERZONAL TRAVEL TIME AND COST 

From zone i .5 

0 2.7/68 J.8/28 
(-4. l) (6.0) 

2 27/29 0 5.2/J5 
(4.l) (9. 2) 

5 3.8/Jl 5.2/99 0 
(6.0) ( 9. 2) 

10 6.1/29 4. bf 22 8. 6'/42 
(10.l) (7.5) 05. 2) 

14 5.b/27 7. 1/95 3.7/4 
oo. 7l ( lJ. 8) (7. 0) 

15 b.l/27 7.b/95 6.2/12 
(10. l) (lJ. J) (10.1) 

32 8.3/55 b.8/48 ·10.8/68 
(14. 9) (12. J) (19. 9) 
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and 

<TZ = 0.0001 

Using Equation 7 for Route k, we have 

Similarly, through Equation 15, we have 

The ratio of the two values is 

~ = 1.124 
ii 

(22) 

(23) 

(24) 

(25) 

which means that the route elasticities can be overestimated 
by as much as 12 percent. Notice that we have not ascertained 
the other routes, and hence a, the maximum over <Tk's, is 
not known. For this reason, it is possible to be off by signif
icantly more than 12 percent in certain routes. 

Even though this is a site testing of limited scope, we have 
obtained a few useful observations. It is clear that care should 
be exercised in the use of elasticities in route-specific transit 
analysis in view of the Chicago and York experiences. If any 
aggregate elasticity is used, adjustments should be made using 
Equation 15. 

Whereas the preceding study illustrates elasticity adjust
ment for route-specific applications, the same procedure can 
be applied to time-of-day variations. In the latter application, 
the subscript k in Equations 12 through 14 simply takes on 
the meaning "peak period," "off-peak period," and so forth. 
The rest of the procedure follows in a manner similar to the 
disaggregation by route, keeping in mind that we are now 
performing temporal instead of spatial aggregation. 

To Zone 

10 14 15 J2 

6. 1/22 5.6/24 6.1/24 8. J/J5 
(lol (lo. 7l (lo .1) (14. 9) 

4.6/44 7. l/Jl 7. 6/J l 6.8/57 
(7. 5) (lJ. 8) ( lJ. J) (12. J) 

8.6/5J ) • 7 /4 6.2/8 10.8/66 
(15. 2) ( 7. 0) (10. l) (19. 9) 

0 10.5/38 11. 0/38 3.2/28 
(19. 8) (19. 3) (5.8) 

10.5/49 0 4.8/8 lJ. 7/62 
(19. 8) (6.9) (24.5) 

11.0/49 4.8/8 0 14.2/62 
(19.3) ( b. 9) (25.4) 

3. 2/ 41 lJ . 7/64 14.2/64 0 
(5.8) (24.5) (25.4) 

KEY (for each entry): nuto-time-in-min/transit-time-in-min 
(auto-cost-in-cents) 
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A FORMULA FOR PRACTITIONERS 

The foregoing represents a formal development of the elas
ticity adjustment procedure. The development is necessarily 
predicated on the availability of a disaggregate logit model 
for the study area. In real-world applications, however, a 
calibrated logit model is seldom available. The only available 
information is often a set of demand elasticities-if one is 
fortunate enough to have them. Frequently, elasticity figures 
have to be borrowed from similar cities in the form of a range 
of numbers that are disparate in value (18). Care should be 
exercised in the definition of a "similar" city, which should 
include both size and urban structure to guarantee transfer
ability (5,10). The problem now is to choose an approximate 
value within this range for the application at hand. 

Suppose maximum and minimum algebraic values are both 
available, representing the two extremes of the range. It is 
possible to work backwards to get an appropriate value through 
the use of an adjustment factor. From Equations 7 and 15, it 
can be assumed that 

,,min(n1 , x,,,) 
Tl rna.x Cn1 , x,,, ) 

(26) 

inasmuch as the two elasticity estimates come from the two 
extreme levels of aggregation with the Tlm;n having the most 
aggregation bias and 'Ylmax the least. Assume further that the 
average modal split pm can be approximated by empirical data 
obtainable locally (meaning the logit model replicates ob
served data reasonably well). The term cr2, being the only 
unknown in Equation 26, can now be estimated. 

If more than two elasticities are available, we can have even 
better information on the variability of elasticities among routes 
or time of day. Let us say we have a third elasticity for the 
study area. It is clear that a third level of aggregation was 
used in model calibration, different from the previous two. 
Again, we take the ratio according to Equation 19: 

[ (1 - Pm) - ~] 

[ (1 - Pm) - ;:J 
(27) 

which allows erk, the only unknown in the equation, to be 
estimated. 

In general, the availability of more than one calibrated 
elasticity, rather than being confusing, is now an asset. The 
more elasticity tabulations available, the more we can recon
struct the elasticity variability among routes and time of day. 
Suppose these cr's are obtained: 

(28) 

We can now match each route k (or time of day k) against 
one of the cr's. A rule of thumb may be that the shorter the 
route (or the shorter the time period) the less the er value. A 
shorter route has less variability in such explanatory variables 
as travel time, travel cost, and car ownership, and hence less 
variability in mode choice: 
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= s (29) 

where nk is the number of stops on the route under consid
eration, and nm;n and nmax are the number of stops on the 
shortest and longest routes. Such a linear scale, s, will place 
the mode-choice variability of route k at 

(30) 

Other rules of thumb can be used if additional information 
on local travel behavior becomes available, thus allowing a 
better match between routes and cr's in Equation 28. 

As an example, suppose the disaggregate fare elasticity 
values are available (19) as a range of values characterized 
by a mean and a standard deviation: -0.35 ± 0.14. In the 
absence of the actual constituent figures that make up the 
range, we take two standard deviations (i.e., 0.28) from the 
mean of -0.35 as the maximum and minimum elasticity value. 
For a normal distribution this would cover 95 percent of the 
12 data points in the sample: 'Ylmax = -0.07 and TJm;n = -0.63. 

Suppose further that the observed modal split in York is 
88.83 percent automobile trips and 11.17 percent transit trips. 
From Equation 26, cJ-2 can be estimated as 0.0882 (or a = 
0.297), which is a higher variance than the data sample col
lected in Chicago by Warner. 

The W. Market/E. Market line was 1 of 10 bus routes 
operating in York. With its 17 stops, it was among the longer 
routes in the York Area Transit Authority. Only two routes 
were longer, made up of 18 stops, and the remaining seven 
were 14-stop routes. If route length can be a proxy for mode
choice variability, we can scale the W. Market/E. Market 
route as somewhere between a and crm;n· If a linear scales is 
applied as shown in Equations 29 and 30, the variability as
sociated with the route concerned is erk = 0.222, correspond
ing to s = %. According to Equation 27, this translates to a 
route elasticity of -0.314. Compared with the average, -0.35, 
a 10 percent difference is observed in this case. Again, other 
routes can have biases much larger than 10 percent, consid
ering that the maximum variance a is close to 0.3. 

SUMMARY AND CONCLUSIONS 

In assessing user response to cost and service changes, demand 
elasticities are useful tools. Current compilations of demand 
elasticities, however, are not helpful to scheduled transpor
tation operators. The range of an elasticity is too wide, and 
there is no practical guideline for picking an appropriate value 
in the range. Furthermore, they are often calibrated on the 
basis of different levels of aggregation, rendering them in
compatible with route-by-route or peak versus off-peak anal
yses, which are critical to current operational concerns. 

A methodology providing elasticities that are practical for 
patronage analyses in an operating agency was presented to 
address this problem. Through statistical analyses of spatial/ 
temporal data aggregation, the methodology explains the dif
ferences among elasticity tabulations, and in so doing, pro
vides insights into the variations that exist among elasticity 
values. 

The results of this research include (a) guidelines for scaling 
an appropriate value of elasticity among its broad range of 
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values (instead of simply taking the average or midpoint of 
the range) and (b) a method for converting the most com
monly available elasticities, which are usually calibrated in 
different levels of aggregation, to a more useful form, such 
as route-specific and time-of-day elasticities. 

Rigorous yet simple statistical developments were followed 
in deriving the adjustment procedure. The results were 
demonstrated in a case study of a transit line in York, Penn
sylvania, including a step-by-step calculation procedure for 
practitioners. 

Additional work can obviously be carried out to extend this 
research. It is recommended that more case studies be per
formed, particularly studies geared toward time-of-day rather 
than route-specific applications. One such case study could 
include before-and-after validation (20). 
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