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Dynamic Analysis of User-Optimized 
Network Flows with Elastic Travel 
Demand 

BYUNG-WooK Wm 

An equivalent continuous time optimal control problem is for
mulated for dynamic user-optimized traffic assignment with elas
tic travel demand. Using the Pontryagin minimum princip.le, op
timality conditions are derived and economic interpretations that 
correspond to a dynamic generalization of Wardrop's first prin
ciple are provided. The existence and optimality of singular con
trols are examined. Under steady- tate as umptions, the model 
is shown to be a proper dynamic extension of Beckmann's equiv
alent optimization problem for static user-optimized traffic a -
signment with elastic demand. Finally, limitations and extensions 
of the present model are discussed. 

There has been a great deal of interest in dynamic network 
equilibrium models . The interest derives from a growing rec
ognition that steady-state network equilibrium is not typically 
reached during peak hours of commuting and that demand 
and supply characteristics of urban transportation networks 
are inherently time-varying in certain situations. With this 
recognition, a number of researchers have developed dynamic 
network equilibrium models from different perspectives. Friesz 
(J), Alfa (2), and Wie et al. (3) provide literature reviews of 
the dynamic network equilibrium models proposed to date. 

In this paper, a simplistic dynamic extension of the static 
user equilibrium traffic assignment model with elastic de
mand, which was first formulated as an equivalent optimiza
tion problem by Beckmann et al. (4), is analyzed. The key 
simplification is related to the assumption that adjustments 
from one system state to another may occur instantaneously 
as traffic conditions on the network change. The problem of 
dynamic user-optimized traffic assignment with elastic de
mand is not only to predict time-varying traffic flows on con
gested networks, but also to predict the temporal distribution 
of travel demand from each origin node in response to dy
namic changes in traffic conditions. This paper should be 
regarded as an extension of the dynamic user-optimized traffic 
assignment model presented by Friesz et al. (5). The particular 
extension is to include elastic time-varying travel demand, 
which leads to the implicit consideration of departure time 
changes. The previous model considered only the route choice 
decision-making process because travel demand at each in
stant was assumed to be known and inelastic with respect to 
changes in travel costs. This paper is a direct extension of 
Wie (6), which was restricted to a very simple network with 
one origin-destination pair connected by parallel arcs to a 
network with many origins and a single destination. 
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To describe individual behaviors of departure time and route 
choices, we assume that each driver receives complete infor
mation on the current state of the network at each instant 
through an in-car computer connected to a traffic information 
center. The current traffic information may include instan
taneous measures of arc densities and arc capacity changes 
due to traffic accidents, weather conditions, or road construc
tion . On the basis of continuously updated traffic information, 
each driver can estimate the instantaneous expected unit path 
costs from an origin node or any en route intersection node 
to the destination node. We further assume that all network 
users attempt to minimize individual travel costs by changing 
routes and departure times. The problem considered in this 
paper corresponds to a type of noncooperatively dynamic 
game in which network users act independently without col
laboration and compete with one another for limited network 
capacity through route and departure time choices. 

Our dynamic model has different behavioral assumptions 
compared with the dynamic models that have been developed 
by Hendrickson and Kocur (7), de Palma et al. (8), Mah
massani and Herman (9), Ben-Akiva et al. (JO), Newell (11), 
and Arnott et al. (12). The choice of route or departure time, 
or both, in these dynamic models is generally based on the 
trade-off between travel time and schedule delay (i.e., a pen
alty for late or early arrival). In contrast, our dynamic model 
cannot explicitly treat schedule delay ; in other words, the 
choice of departure time is not based on the trade-off between 
travel time and schedule delay. Our dynamic model handles 
departure time and route choices in a sequential manner. At 
each instant, travel demand-that is, the rate of departure 
from each origin node-is endogenously determined as a 
function of the instantaneous expected travel cost between 
the associated origin-destination pair. Each driver who de
cides to depart then chooses the shortest path with minimum 
instantaneous expected unit travel cost to the destination. It 
is assumed that no driver has information as to how travel 
costs for further downstream arcs may change by the time of 
arrival at those arcs. However, as a driver moves downstream, 
he is free to revise his route choice at any en route intersection 
node if his current route is no longer optimal on the basis of 
updated traffic information. 

Another important difference in behavioral assumptions is 
associated with the dynamic user equilibrium conditions. The 
instantaneous expected travel cost defined in this paper is not 
the cost actually experienced on that particular day , but an 
estimate based on current traffic information . Therefore , our 
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dynamic model cannot predict time-varying traffic flows and 
elastic travel demands satisfying the dynamic user equilibrium 
conditions such that all network users with the same desired 
arrival time and same origin-destination pair experience equal 
travel cost to the destination regardless of route and departure 
time chosen. Because the optimality conditions of our dy
namic model require only equalization of instantaneous ex
pected unit path costs, it is possible that some drivers can 
reduce individual travel costs by unilaterally changing routes 
or departure times. 

An equivalent continuous time optimal control problem 
that corresponds to the problem of dynamic user-optimized 
traffic assignment with elastic travel demand is formulated. 
We derive the optimality conditions using the Pontryagin min
imum principle, and we examine the existence and optimality 
of singular controls. The economic interpretation of the op
timality conditions is given as a dynamic generalization of 
Wardrop's first principle. Our dynamic model is also analyzed 
under steady-state assumptions to show that it is a proper 
dynamic extension of Beckmann's equivalent optimization 
problem for static user-optimized traffic assignment with elas
tic demand. Finally, limitations and extensions of our dynamic 
model are discussed. 

MODEL FORMULATION 

Assume a network represented by a directed graph G(N, A), 
where N is the set of nodes and A is the set of arcs. The 
cardinality of the set N is denoted by /NJ = n. Nodes 1, 2, ... , 
n - 1 are origins, whereas n is the only destination. The set 
of all origins is denoted by M. In general, we use the index 
a to denote an arc, k a node, and p a path. The set of all 
paths connecting Node k and Node n is denoted by Pkn· We 
consider a fixed time horizon of length T; that is, all activities 
occur at some time t E [O, T]. 

Let x.(t) denote the number of vehicles traveling on Arc a 
at Time t, which will be referred to as the traffic volume on 
Arc a at Time t. We assume that the instantaneous expected 
travel cost for a driver (or drivers) entering Arc a at Time t 
is dependent on x.(t) and that the instantaneous expected unit 
cost functions c.[x.(t)] are positive, nondecreasing, differen
tiable, and convex for all x.(t) :::.:: 0 and t E [O, T]. Link 
interactions are not considered in this model. To depict the 
physical phenomenon of traffic congestion on each arc, the 
exit functions g.[x.(t)] are assumed to be nonnegative, non
decreasing, differentiable, and concave for all x.(t) :::.:: O and 
t E [O, T] with the additional restriction that g.(O) = 0 for 
all a E A. A functional form of the exit functions can be 
represented as 

g.[x.(t)] = g:;'•• · {1 - exp[ -x.(t)/13.]} 

'v'a EA 'v' t E [O, T] (1) 

where g:;i•• is the maximum number of vehicles that can exit 
from Arc a at each instant and 13. is a parameter that varies 
with road type and traffic signal system. 

The dynamic evolution of the state of each arc is described 
by first-order nonlinear differential equations: 
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dx0 (t)/dt = x.(t) = u.(t) - g.[x.(t)] 

'v' a EA 'v' t E [O, T] (2) 

where 

x.(t) = the state variable denoting the traffic volume 
on Arc a at Time t; 

u.(t) the control variable denoting the traffic flow 
entering Arc a at Time t; and 

g.[x.(t)] the traffic flow exiting Arc a at Time t. 

Throughout the paper, Equation 2 will be called the state 
equation. In addition , we assume that the traffic volume on 
Arc a EA is a known nonnegaliw constant at the initial time 
t = 0: 

x.(O) = x~(t) :::.:: 0 'v'a EA (3) 

Different initial values of traffic volumes may lead to different 
predictions of time-varying traffic flow patterns. 

Let Sk(t) denote the instantaneous travel demand generated 
(i.e ., the rate of departure) from an origin node k at Time t. 
We assume that Sk(t) is endogenously determined as a func
tion of the instantaneous expected unit travel cost between 
an origin node k and the destination node n at Time t. It 
follows that 

'v'kEM 'v' t E (0, T] (4) 

where Dk(-) is the instantaneous demand function for travel 
between Nodes k and n at Time t and µk(t) is the minimum 
instantaneous expected travel cost between Nodes k and n at 
Time t. We assume that the instantaneous demand functions 
are nonnegative and monotonically decreasing and that they 
can continuously change in functional form over the time 
interval [O, T] to represent time-varying price elasticity of 
demand for travel between each origin-destination pair. We 
are unable to discuss a functional form of the instantaneous 
demand functions and their calibrations. A more realistic dy
namic model should also consider cross elasticity of demand, 
implying that Sk(t) is determined as a function of the trajectory 
of µk(t) over the time interval [O, T]. At this point, we are 
unable to model this case. Furthermore, we assume that the 
inverse of the instantaneous demand function is well defined 
and exists as follows: 

'v'kEM 'v' t E [O, T] (5) 

The flow conservation constraints are stated as follows: 

Sk(t) + L g. [x.(t)] 2: u.(t) = o 

where 

a E B(k) a E A(k) 

A(k) 
B(k) 

'v'kEM 'v' t E (0, T] (6) 

= the control variable, denoting the instantane
ous travel demand generated from Node k 
at Time t; 
the set of arcs whose tail node is k; and 

= the set of arcs whose head node is k. 
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We ensure that both the state and control variables are non
negative: 

V a E A V t E [0, T] 

u.(t) 2: 0 V k E M V t E [0, T] 

VkE M Vt E [O, T] 

(7) 

(8) 

(9) 

However, we will not consider the nonnegatively of the state 
variables in an explicit manner because the assumption g.(O) 
= O ensures that the state variables are always nonnegative. 

We define x(t) = ( .. ., x.(t), ... ), u(t) = ( ... , u0 (t), ... ), 
and S(t) = ( ... , Sk(t), ... ). In the sequel, we employ the 
set of feasible solutions 

n = {[x(t), u(t), S(t)): Expressions 2, 3, 6, 8, and 9 are satisfied} 

(10) 

for economy of notation. We are now ready to formulate the 
dynamic user-optimized traffic assignment problem with elas
tic demand as an equivalent continuous time optimal control 
problem: 

l
Tlxo(<) 

Minimize J = L c.(w)[dgiw)ldw] dw dt 
a EA 0 0 

(11) 

subject to 

[x(t), u(t) , S(t)) E !l 

where w and 'Tl are dummy variables of integration. The per
formance index J is a scalar function that has no intuitive 
economic interpretation. It should be viewed strictly as a 
mathematical construction. The derivation of J is analogous 
to that of the objective function of Beckmann's equivalent 
optimization problem for a static user equilibrium traffic as
signment with elastic demand ( 4). 

OPTIMALITY CONDITIONS 

The Pontryagin minimum principle (J 3) is used to derive the 
necessary conditions for an optimal solution of the control 
problem (Equation 11). We first construct the Hamiltonian 
function: 

H[x(t), u(t), S(t), A.(t), µ(t)] = L rxo(<) c.(w)[dg.(w)ldw]dw 
aE A Jo 

- L <l>k(t, TJ) dTJ + L A..(t) u.(t) - g.[x.(t)] l~ { } 
kEM 0 aEA 

+ L µk(t) {sk(t) + L g.[x.(t)] - L u.(t)} 
kEM aEB(k) aEA(k) 

(12) 

where A..(t) is the costate variable associated with the state 
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equation (Equation 2) and µk(t) is the Lagrange multiplier 
associated with the flow conservation constraints (Equation 
6) . Note that A.(t) = ( ... , A..(t), . . . ) and µ(t) = ( ... , 
µk(t), ... ). 

The Pontryagin minimum principle states that the dynamic 
evolution of the costate variables are governed by the follow
ing first-order differential equations: 

- ~.(t) = aH[x(t), u(t), S(t), A.(t), µ(t)]lax.(t) 

= { c.[x.(t)] - A..(t) + µ.k(t)} g~ [x.(t)] 

VaEB(k) VkEM VtE(O, T] (13) 

where g~ [x.(t)] = dg.[x.(t)]ldx.(t). Equation 13 will be called 
the costate equation. Let <!>.[x.(T)] denote the salvage value 
function when the terminal state is x0 (T). Because we impose 
no constraint on the values of the state variables at the ter
minal time T, the value of <1>.[x0 (T)] must be equal to zero 
for all a E A. Hence, the terminal boundary conditions on 
the costate variables are given as follows: 

A.0 (T) = a<1>.[x.(T)]lax.(T) = o Va EA (14) 

Equation 14 is often called the transversality conditions. In 
addition, the state equation (Equation 2) can be expressed in 
terms of the Hamiltonian as follows: 

x.(t) = aH[x(t), u(t), S(t), A.(t), µ(t)]/ax.. (t) 

= u.(t) - g.[x.(t)] 

Va EA Vt E (0, T] (15) 

In optimal control theory, the differential equations for the 
state variables and the differential equations for the costate 
variables plus all boundary conditions are called the canonical 
equations, which give rise to the two-point boundary value 
problem. 

The Pontryagin minimum principle also requires that the 
Hamiltonian (Equation 12) be minimized by choice of the 
optimal control variables at each point along the optimal state 
trajectories. The control problem (Equation 11) can thus be 
converted into an infinity of constrained static optimization 
problems for each instant t E [O, T] as follows: 

Minimize H(x(t), u(t), S(t), A.(t), µ(t)] (16) 

subject to 

u.(t) 2: 0 Va EA 

VkEM 

While holding x(t) and A.(t) constant, the Kuhn-Tucker nec
essary conditions for u(t) and S(t) to be optimal are readily 
obtained: 

aHlaSk(t) = µit) - <l>k[t, Sk(t)] 2: o 

VkE M Vt E [O, T] (17) 
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't/kEM 't/ t E [O, T] (18) 

't/ a E A(k) 't/kEM 't/ t E [O, T] (19) 

't/ a E A(k) 't/kEM 't/ t E [O, T] (20) 

't/kEM 't/ t E [O, T] (21) 

The complementary slackness conditions (Equations 17 and 
18) indicate that if the optimal value of the control variable 
Sk(t) is positive, Equation 17 must hold as an equality. In 
other words 

't/kE M 't/ t E [O, T] (22) 

Both sides of Equation 22 can be inverted to obtain 

't/kE M 't/ t E [0, T] (23) 

Hence, if the traffic flow generated at Node k at Time t is 
positive, it must be determined by the instantaneous demand 
function Dk[t, µ,k(t)]. If, however, µk(t) > <l>k[t, Sk(t)], then 
Sk(t) = 0, meaning that the minimum instantaneous expected 
travel cost between Origin k and Destination n at Time t may 
be too high to induce any departure. Because the instanta
neous demand function Dk[t, µk(t)] is assumed to be mono
tonically decreasing, it follows that its inverse, <l>k[t, SAt)], 
should be a decreasing function. The integral of a decreasing 
function is strictly concave, and the negative of the sum of 
concave functions is a strictly convex function. Thus, the sec
ond term in the Hamiltonian (Equation 12) is strictly convex, 
implying that the optimization problem (Equation 16) has a 
unique solution in terms of S(t): 

From the complementary conditions (Equations 19 and 20), 
we know for all a E A(k) and k E M that if A..(t) > µk(t), 
then u.(t) = O; if A..(t) = µk(t), then u.(t) ~ 0. Obviously, 
the optimal value of the control variable u.(t) is influenced 
by the sign of [A..(t) - µk(t)], which is called the switching 
function. If, however, A..(t) = µk(t) for some a E A(k) and 
k E M during a finite time interval, the minimization of the 
Hamiltonian (Equation 12) leads to nonunique determination 
of the optimal value of u.(t), that is, singular control. As a 
result, the Pontryagin minimum principle yields no useful 
information to determine the optimal value of the control 
variable u0 (t). In this circumstance, an additional necessary 
condition is required to replace the optimality conditions 
(Equations 19 and 20) so that the singular controls could be 
tested for optimality. To this end we proceed to derive an 
expression for the singular control and to ensure that the 
generalized Legendre-Clebsch condition is satisfied. If A.

0
(t) 

= µk(t) for some a E A(k) and k E M during a finite time 
interval [t1, t2] ~ [O, T], it follows at once that 
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(24) 

(25) 

Consider an arc whose tail node is k and head node is s, that 
is, a = (k, s) EA. Using the costate equation (Equation 13), 
we may rewrite Equations 24 and 25 as follows: 

-{ c.[x.(t)] - A.0 (t) + µ,(t)} g; [x0 (t)] - µ,k(t) = 0 (26) 

-{ c;[x.(t)] x.(t) - ~.(t) + iis(t)} g; [x.(t)] 

-{ c.[x.(t)] - A.0 (t) + µ,s(t)} g~ [x0 (t) ]x.(t) - µ,k(t) = 0 (27) 

where dc0 [x 0 (t)]ldx 0 (t) = c; [x 0 (t)]. For the moment, we sup
press the time notation (t) and the traffic volume notation 
xa(t). Substitution of Equations 2 and 24 into Equation 27 
yields an expression for the singular control as a feedback 
control: 

ua[x(t), A.(t), µ(t)] = 

(c;ga + Ji..k - Ji.,,)g; +(ca - J.l.k + µs)g~ga - ilk 
c;g~ +(ca - µk + µs)g~ 

't/a = (k,s)EA 

't/tE [t1, t2] ~ [O, T] 

't/kEM 't/sEM 

(28) 

When a singular control exists, an additional test is needed 
to determine whether this singular control is optimizing or 
not. Usually, the optimality of singular controls given by 
Equation 28 can be tested by using the generalized Legendre
Clebsch condition (14) as follows: 

iJ { d2 [ iJL J} ( + µs)g~ - c;g; S 0 au,,(t) dt2 aua(t) = - ca - µk 

't/ a = (k, s) EA 't/kEM 't/s EM 

(29) 

Because c.[xa(t)] and ga[xa(t)] are assumed to be nondecreas
ing for all x.(t) ~ 0, it follows that c;[x.(t)] g;[x.(t)] is non
negative. We also know that g~[x.(t)] s 0 because ga[x.(t)] is 
concave for all x.(t) ~ 0. It remains to be proven that c.[x.(t)] 
- µk(t) + µ,(t) s 0. However, this condition is not strictly 
satisfied because it requires from the costate equation (Equa
tion 13) that dA.

0
(t)!dt always be nonnegative. Certainly, we 

know that dA.0 (t)/dtcan be negative during a finite time period. 
Hence, we are not able to conclude that the singular controls 
expressed in Equation 28 are optimal. We reserve this issue 
for future research. 

ANALYSIS OF OPTIMALITY CONDITIONS 

Let us consider a path p connecting an origin node k and the 
destination node n, expressed in generic form as 
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(30) 

Using the costate equation (Equation 13), we define the in
stantaneous unit path travel cost function: 

{ 
~·a(t) } 

"'p(t) = 2: ca[x.(t)] + --,--[. < )l a E A(p) Kn X0 t 

Vt E [O, T] (31) 

where A(p) denotes the set of arcs composing a path p . We 
are now ready to state and prove the following theorem: 

Theorem 1. If u0 (t) > 0 for all a E A(p) at some time t E 
[O, TJ, then 'l'p(t) = inf {'l'b(t): V b E Pkn} for an optimal 
solution of the dynamic user-optimized traffic assignment 
problem with elastic demand (Expression 11). 

Proof: Using the costate equation (Equation 13), we may 
rewrite Equation 31 as 

m 

"'p(t) = 2: [x..,<t) - µk,<t)J (32) 
1 ~1 

We know from Equation 20 that if u.(t) > 0 for all a E A(p), 

for i = 1, ... , m (33) 

Substituting Equation 33 into Equation 32, it follows at once 
that for a path p E Pkn 

'l'p(t) = [µko(t) - µkl(t)] + [µk.(t) - µk1(t)] + 

+ [µkm -l(f) - µkm(t)] 

= µk(t) - µn(f) 

The theorem follows immediately. Q.E.D. 

(34) 

Provided that µn(t) = 0, the economic interpretation of the 
Lagrange multiplier µk(t) can be given as a minimum instan
taneous expected unit travel cost between Origin k and Des
tination n at Time t: 

µk(t) = inf ( L {c.[x.(t)] 
a E A(p) 

~.(t) } ) 
+ g;[x.(t)] : VP E Pkn 

Substituting Equation 35 into Equation 13 yields 

X..(t) = c.[x.(t)] + { ;\.(t)lg;[x.(t)]} + µs(t) 

= c.[x.(t)] + { ~.(t)lg;[x.(t)]} 
+ inf {'l'p(l): V p E Psn} 

Va = (k, s) EA Vs EM Vt E [O, T] 

(35) 

(36) 

The costate variable X..(t) can be interpreted as a minimum 
instantaneous expected unit travel cost between Origin k and 
Destination n at Time t with only the restriction that a = (k, s) 
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must be the first arc to traverse. Therefore, 'l'P(t) may be 
viewed as consisting of static and dynamic components. The 
term I. e ACPJ c.[x.( t)] is considered to be static. On the other 
hand, the term I. e A(pJ [dX..(t)ldt]g;[x.(t)] is considered to be 
dynamic in that it includes the rate of change of x..(t) with 
respect to time, which represents the dynamics of the costate 
variables, whereas g; [x.(t)] is interpreted as a scaling of 
dX..(t)/dt. 

Theorem 1 requires equilibration of instantaneous unit travel 
costs for all the paths that are being used at each instant in 
time for a given origin-destination pair as follows: 

u.(t) > 0 for all a E {A(p) Ip = 1, ... , j} (38) 

u.(t) = Oforsomea E {A(p) IP= j + 1, ... ,J} (39) 

where J is the cardinality of the set Pkn· Hence, Theorem 1 
can be interpreted as a dynamic generalization of Wardrop's 
first principle (15) such that if, at each instant in time, for 
each origin-destination pair, the instantaneous unit travel costs 
for all the paths that are being used are identical and equal 
to the minimum instantaneous unit travel cost, the corre
sponding time-varying traffic flow pattern is said to be user 
optimized. 

EQUIV ALENCY UNDER STEADY-STATE 
ASSUMPTIONS 

We shall establish that the control problem (Equation 11) is 
a proper dynamic extension of Beckmann 's mathematical pro
gramming problem for a static user equilibrium traffic as
signment with elastic demand ( 4). To this end we analyze our 
dynamic model under the following steady-state assumptions: 
first, that Sk(t) and c.[x.(t)] are time-invariant for all a E A 
and k E M, and second, that dx0 (t)ldt = 0 and thus u.(t) = 
g.[x.(t)] for all a EA and t E [O, T]. By changing the variables 
of integration, we may rewrite the first term in the Hamil
tonian (Equation 12) and have the following relation: 

L lx"c.(w)[dg
0
(w)/dw]dw= L lg,(xa)c0(~)d~ (40) 

aEA 0 aEA 0 

Let f. denote g.(x.), meaning the traffic flow rate on Arc a. 
Under the steady-state assumptions, the continuous time op
timal control problem (Equation 11) becomes a series of con
strained static optimization problems that are identical at each 
instant during the fixed time interval [O, T] as follows: 

Minimize Z(x) = 

lfa lSk L c.(w)dw - L <I>h1) d11 
aEAO kEMO 

(41) 

subject to 

sk + 2: t. - 2: t. = o 't/kEM 
a E B(k) a E A(k) 
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'Va EA 

V k EM 

The Kuhn-Tucker necessary conditions for the problem 
(Equation 41) can be readily obtained as 

f.[ c.(f.) - µk] = 0 Va EA (42) 

c.(f.) - µk 2: 0 Va EA (43) 

Sk[µk - <l>k(Sk)] 0 'VkEM (44) 

µk - <l>k(Sk) 2: 0 'VkEM (45) 

sk + 2: f. 2: f. = 0 VkE M (46) 
a E B(k) a E A(k) 

f. 2: 0 Va EA (47) 

sk 2: o 'VkEM (48) 

where µk is the Lagrange multiplier associated with the flow 
conservation constraints, denoting the minimum unit travel 
cost between Origin k and Destination n. Because the opti
mality conditions (Equations 42 through 48) are identical to 
user equilibrium conditions (16), the control problem (Equa
tion 11) is proven to be a proper dynamic extension of Beck
mann's equivalent optimization problem for a static user equi
librium traffic assignment with elastic demand. 

CONCLUSION 

We have shown that an equivalent continuous time optimal 
control problem can be formulated to model the problem of 
dynamic user-optimized traffic assignment with elastic travel 
demand. The optimality conditions were derived and given 
economic interpretations. We have also shown that the model 
presented in this paper is, under steady-state assumptions, a 
proper dynamic extension of Beckmann's equivalent optimi
zation problem for static user-optimized traffic assignment 
with elastic demand. 

The dynamic model encounters several limitations. First, 
the instantaneous costs are used as a criterion for departure 
time and route choices. A more realistic model should use 
the anticipated costs ' as the approximations of the actually 
experienced costs. Second, the instantaneous travel demand 
is determined as a function of the instantaneous perceived 
unit cost between the associated origin-destination pair. This 
assumption implies that no cross elasticity of demand is con
sidered in our dynamic model. Third , the choice of departure 
time and route is not based on the trade-off between travel 
time and schedule delay. It means that our model cannot 
explicitly handle schedule delay as a penalty for early or late 
arrival at the destination. Fourth , the state equation (Equa
tion 2) is not empirically tested to answer whether it provides 
an adequate representation of reality. No consideration of 
cross-link interactions further simplifies the dynamics of traffic 
flow on each arc. Finally, a functional form of the instanta
neous demand function is not specified in this paper. The 
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question arises as to whether time-varying elasticity of de
mand can be well represented in its functional form. 

Our future research includes the following important issues. 
First , we should be able to test the optimality of singular 
controls using the generalized convexity condition, and we 
need to investigate transition process from a singular control 
to a nonsingular control. Second, our dynamic model should 
be extended to analyze traffic flows in a congested network 
with multiple origins and multiple destinations . However , as 
discussed by Wie et al. (3) and Wie (17), there are some 
difficulties in generalizing the present model to a multiple 
destination case. Its generalization requires the linear exit 
function assumptions to keep the property of separability, 
which is crucial to show equilibration of instantaneous unit 
path costs. Last, an efficient algorithm must be developed for 
the computation of our dynamic model. Recently, a gradient 
algorithm based on the discrete maximum principle was de
veloped by Wie (18,19) to solve the problem of dynamic user
optimized traffic assignment with fixed demand. It is hoped 
that the algorithm can be modified to solve the problem with 
elastic demand. 
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