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Foreword 

Said et al. indicate that current trip generation techniques do not explicitly allow for treatment 
of the presence of structurally different socioeconomic groups in urban areas. The paper 
describes a statistical approach based on the general linear model that can be used in such 
cases. A case study based on data from the Kuwait metropolitan area is presented. 

Kurth and Chang discuss a travel model that has been calibrated to project ridership on 
various circulator/distributor alternatives in the central area of Chicago. The model is based 
on the Downtown People Mover System. 

Bajpai examines the sensitivity of the urban transportation planning process (UTPP) to 
differences (or errors) in socioeconomic input using the Dallas-Forth Worth area as a case 
study. The sensitivity analysis indicated that the final output of the UTPP, link volumes, is 
sensitive to errors in the district-level forecasting of population and employment. The author 
suggests that planners undertaking corridor-level studies should be most concerned about the 
reliability and accuracy of district-level socioeconomic forecasts, particularly for districts 
directly served by the corridor. 

Morikawa et al. present a methodology for incorporating revealed preference and stated 
preference data in discrete choice models, apply the methodology to intercity travel mode 
choice analysis, and predict new mode shares for each origin-destination (OD) pair resulting 
from changes in service levels. 

Davis and Nihan indicate that a number of researchers have sought to develop methods 
for estimating the OD matrix from observations of traffic volumes on the region's road 
network. The authors believe that the link counts on a traffic network are generated by a 
stochastic process that is parameterized by the means and variances of the separate OD flows. 
According to the authors, by using a tractable approximation to this traffic generating process, 
it is possible to develop maximum likelihood and method of moments estimators of these 
OD parameters, and these estimators have desirable consistency and asymptotic normality 
properties. 

Chan presents a methodology to provide demand elasticities that are practical for patronage 
analyses in an operating agency. The results presented in this paper include guidelines for 
selecting an appropriate value of elasticity among the broad range of values and a method 
for converting the most commonly available elasticities to a more useful form, such as route­
specific and time-of-day elasticities. 

Prevedouros and Schofer present the results of an investigation of the variations in travel 
behavior across social groups and between location on the basis of a mid-1989 mail-back 
survey of individuals residing in Chicago suburbs. A primary objective of the research was 
to gain more knowledge about the causes of variations in traffic congestion. According to 
the authors, four prominent factors associated with traffic congestion are residence location, 
population aging, working women, and fixed work hours. 

Talvitie and Koskenoja explore the socioeconomic determinants of automobile travel cost 
choices. The reported work is part of a study into the effects of quality of work on work­
related travel conducted in the Road and Traffic Laboratory, Technical Research Center of 
Finland. The study started from the need to assess driving cost estimates for the mode choice 
model and was approached through separate functions for fixed, variable, and total driving 
costs of the respondent. Within-household effects were examined through driving cost regres­
sions of the household members of the respondent. According to the authors, the driving 
cost models indicate that travel choices are a part of complex behavioral interplay within a 
household in which the costs of transport have a major role. 

Janson presents a link flow formulation and a convergent solution algorithm for the dynamic 
user equilibrium (DUE) traffic assignment problem for road networks with multiple trip 
origins and destinations. DUE is a temporal generalization of the static user equilibrium 
assignment problem with additional constraints to ensure temporally continuous paths of 

v 



vi 

flow. As the author states, dynamic traffic assignment procedures are needed to evaluate the 
impacts of alternative travel demand management strategies during peak periods in urban 
areas and will play a key role in the development of real-time traffic management and in­
vehicle route guidance systems. 

Wie discusses an equivalent continuous time optimal control problem for dynamic user­
optimized traffic assignment with elastic travel demand. Using the Pontryagin minimum 
principle, the author derives optimality conditions and provides economic interpretations that 
correspond to a dynamic generalization of Wardrop's first principle. Under steady-state 
assumptions, the model is shown to be a proper dynamic extension of Beckmann's equivalent 
optimization problem for static user-optimized traffic assignment with elastic demand. 

Haghani presents an alternative approach to simultaneously consider several objectives in 
public- and private-sector location decisions. The approach is based on the analytical hierarchy 
process, which is a useful tool in multicriteria decision making. The approach is demonstrated 
by a numerical example. 

Gendreau et al. describe a study to explore issues related to modeling and estimation of 
short-term demand for empty containers for subsequent movements on international shipping 
lines. The study is part of a larger research effort directed toward the development of models, 
methods, and integrated planning tools to address typical problems related to the management 
of the land distribution and transportation of containers. 
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Trip Generation Procedure for Areas with 
Structurally Different Socioeconomic 
Groups 

GALAL M. SAID, DAVID H. YOUNG, AND HASSAN K. IBRAHIM 

Many urban areas contain a mix of ethnic groups or households 
with structural differences in income and social status. Current 
trip generation techniques do not explicitly allow for the treat­
ment of these structurally different socioeconomic groups. Asta­
tistical approach that can be used in such cases is described. The 
proposed framework allows for the treatment of different ethnic 
household groups; each group can have different subgroups based 
on one or more qualitative features, such as dwelling unit type 
or income. A case study based on data from the Kuwait metro­
politan area is presented. Households are classified according to 
three nationality groups and four house types. The house type is 
found to be significant for only one of the groups. Differences in 
important quantitative household characteristics, such as car own­
ership and number of adults and children, appear both between 
and within subgroups. 

Current household-level trip generation procedures assume a 
degree of homogeneity in the mix of households in the urban 
areas under investigation. Households are allowed to differ 
in such features as size, car ownership, and income, but nor­
mally there is no allowance for the presence of structurally 
different household groups. Many large cities in different parts 
of the world are growing increasingly into multiethnic urban 
areas, and the differences between groups may merit special 
treatment. 

Structural differences in household groups in urban areas 
require that the adopted household-level trip generation pro­
cedure establish the extent to which the differences merit 
consideration and how the features can be allowed for without 
excessive sample sizes for calibration. Furthermore, there is 
a need for adopting mean trip rate estimate procedures that 
overcome the expected problem of poor reliability when trip 
rates are estimated for groups containing few households. 

The purpose of this paper is to present the framework and 
an application of a procedure based on the concept of gen­
eralized linear models that can be used in estimating mean 
trip rates of households in urban areas with a distinct mix of 
household groups. The proposed procedure allows for 

1. The presence of structurally different household groups; 
2. The presence within each household group of subgroups, 

which differ in other qualitative features such as house type 
and income category; and 

3. Households within each of the preceding classifications 
varying in other characteristics that can be described using 

Kuwait University, P.O. Box 5969, Kuwait. 

quantitative variables, such as size, car ownership, and num­
ber of adults. 

Identification of the significance of any of these classifi­
cations is done by using statistical testing procedures. Fur­
thermore, the effects of each variable can be assessed. The 
proposed approach overcomes several problems associated 
with the widely used cross-classification analysis procedure, 
which has several shortcomings when used for urban areas 
with diverse characteristics. 

These difficulties have been reported in the literature (1-
3). Stopher and McDonald (2) presented a multiple classifi­
cation analysis procedure based on an extension of analysis 
of variance (ANOV A) to respond to some problems of cross­
classification analysis, especially those related to poor relia­
bility of trip rate estimates. Dobson ( 4) discussed the possi­
bility of using the general linear model analysis of variance 
in conjunction with cross-classification analysis. Rickard (5) 
described an application of generalized linear models to rail­
way trips. Said and Young (3) proposed a general linear model 
( G LM) framework for modeling trips of one of the households 
groups in Kuwait as a function of quantitative household vari­
ables. Said et al. (6) extended this analysis to include qual­
itative variables and addressed the use of GLM with cross­
classified household data using its regression and ANOV A 
specifications. 

TRIP RATE DATA OF HOUSEHOLD GROUPS IN 
KUWAIT 

The characteristics of the different population groups in Ku­
wait have been described previously (1,7). The Kuwait pop­
ulation reached 1.697 million in 1985; 40.1 percent were Ku­
waitis, 37.9 percent were non-Kuwaiti Arabs, and 21.0 percent 
were non-Kuwaitis of Asian origin. The age-sex distributions 
of these groups are markedly different. The Kuwaiti popu­
lation is dominated by younger age groups. Arab and Asian 
population groups are dominated by individuals in the work­
ing ages, and the number of males is almost double the num­
ber of females. 

Labor force participation rates of the nationality groups are 
also different. Kuwaiti females have noticeably low partici­
pation rates compared wit.h other groups. Participation rates 
of Arab males and Asian males and females are extremely 
high, a result of the labor laws that govern foreigners in 
Kuwait. 
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Households of different nationalities vary in size. The av­
erage sizes of Kuwaiti, Arab, and Asian households are 9.2, 
5.4, and 3.9, respectively. Kuwaiti households are large, with 
the majority of household members in the school-age group. 
Non-Kuwaiti Arab households are mostly of the family type, 
of medium to large size. Asian households are small to me­
dium, with few members at the pre-work ages. The average 
numbers of working persons in these households are 1.48, 
2.00, and 3.30, respectively. The number of workers per 
household reflects labor force participation rate differences 
and the age-sex composition. There are also significant vari­
ations in the occupation status of workers in the household 
groups. 

The nationality of households in Kuwait is an important 
qualitative factor that has implications for social status, in­
come, household structure and composition, and possible oc­
cupational status of working individuals of these households. 
Variations in trip rates indicate an important nationality ef­
fect, so households of different nationalities need to be treated 
separately (1). Three household groups are identified on the 
basis of the nationality types listed earlier. 

For households within each nationality, house type provides 
another important qualitative factor. Four house types are 
commonly available: private villas, government housing (mostly 
villas), apartments, and "others." The latter includes Arabian 
houses (old-style villas) and annexes. Only very small Kuwaiti 
households live in apartments; 70 percent are in private and 
public villas. Only 2 to 3 percent of non-Kuwaiti households 
live in villas, whereas more than 75 percent live in apartments, 
and the rest live in other housing types. 

Table 1 classifies households included in the 1988 home 
interview into three nationalities and four house types. Be­
cause government housing is available only for Kuwaitis, the 
two cells for Arab and Asian households in government hous­
ing have zero frequencies . 

The raw work trip data used in this study are restricted to 
trips made in the morning peak period between 6:30 and 8:00 
a.m. This restriction has resulted in the recording of fewer 
trips than expected. If work trip data for a longer morning 
duration were available, greater differences in the mean trip 
rates of household groups would have been detected. This is 
evident from Figure 1, in which the recorded mean trips of 
households of different sizes are plotted against the number 
of full-time workers of these households. Figure 1 indicates 
that the mean number of full-time workers is generally about 
50 percent more than the recorded mean trip rates. 

Said (J) described variations in trip rates of households of 
the three nationality groups for different levels of household 

TABLE 1 HOUSEHOLDS IN 1988 HOME INTERVIEW 
SURVEY OF KUWAIT CLASSIFIED BY NATIONALITY 
AND HOUSE TYPE 

Bouse Type 

Villas 

Public Housin<J 
(too.) 

Aparboento 

Others 

Total 

Nationality 
Kuvai tia Arahe 

1107 

762 

140 

183 

2192 

155 

2640 

688 

3483 

Asians 

12 

0 

296 

68 

376 

Total 

762 

3076 

939 

6051 

TRANSPORTATION RESEARCH RECORD 1328 

KUWl\fTI llOllS!;llOIJ>S 

• 

• 

0 2 3 1 s 6 1 e 9 10• 

ARAB HOUSEHOLDS 

• • 

• • 
• 

0 2 3 1 s 6 1 e 9 10• 

6 
• 

1 • 
• 

2 

2 3 1 s 6 1 e 9 10• 

F\.IU,TIME WORKERS 

FIGURE 1 Mean morning work trip rates and 
number of full-time workers for households of 
various nationality groups. 

size, car ownership, income, and numbers of adults and chil­
dren in the household. Through the use of simple regression, 
Said and Young (3) showed that household size, car owner­
ship, and number of adults in the household, when used as 
independent variables, are significant in explaining much of 
the variation in trips made by households. Said et al. (6) 
showed that, for Kuwaiti households, use of the number of 
children variable instead of household size is more appropri­
ate because it complements the number of adults variable. 



Said et al. 

The regression analysis using ungrouped data for Kuwaiti 
households in villas (3) uses all combinations of values of the 
explanatory variables within each house type for which at least 
one trip rate observation was available. As a consequence, 
in many cases the mean trip rates are based on small cell 
household frequencies. Because forecasts of future numbers 
of households for combinations of specified values of the ex­
planatory variables would be needed, it is advantageous to 
have a fairly broad grouping of the values of the variables. 

The grouping varies for the three nationality groups. For 
Kuwaiti households a total of 80 cross-classification cells are 
used, based on five levels of the number of children variable 
X 1 , four levels of the car ownership variable X 2 , and four 
levels of the number of adults variable X 3 • The house type 
effect is ignored for Kuwaiti and Asian households, and the 
reason will become apparent later in the paper. For Arab 
households a total of 48 cross-classification cells are used, 
based on four, four, and three levels for the variables X 1 , X 2 , 

and X 3 , respectively. The grouping is performed for each of 
the three house types. A total of 27 cross-classification cells 
are used for Asian households. The variations in the grouping 
respond to observed differences between the three nationality 
groups. For example, whereas the range of the number of 
children variable extends from 0 to 20 for Kuwaiti households, 
few Asian households have more than 4 children. 

Table 2 presents the cross-classification table for Kuwaiti 
households as well as the observed trip rates for each house­
hold cross-classification cell. Table 3 gives the household fre­
quencies and trip rates for Arab households. The table is 
organized in three parts corresponding to three housing types 
(villas, apartments, and others). The most frequent house­
holds are those with one to two and three to five adults, one 
to three and four to eight children, and one or two cars per 
household. Table 4 presents household frequencies for Asian 
households. There are small discrepancies between the totals 
of Tables 2 through 4 and the relevant numbers in Table 1. 
These occur because a few outlying observations were elim­
inated. 

STATISTICAL MODELS 

In the previous discussion, the presence of large structural 
differences among household groups reflecting nationality was 

TABLE 2 TRIP RATES AND HOUSEHOLD 
FREQUENCIES FOR KUWAITI HOUSEHOLDS 
Mulb --·car---·· llullkr of Chi ian.:. UndftC 18 y...,a 
in the Ownership 
llouaehold 0 1-3 4-7 8-11 12-15 

l - 2 0 ·- 1 O. Sj(l7) 0.62 (68) 0.62(120 ) 0 . 43(35) 0 . 00(1) 
: - 3 1.18(17) 1.08(148) 1.07(203) O.SS(38) 0.00(2) 
4 - 6 1.00(1) 0.86(7) 1.09(_11) O.SC(2) 
7 - 9 

3 - 5 0 - 1 0.86(14) 0. 73(30) 0.54(57} 0.53(40) 0.45(11) 
2 - 3 1. 27(33) 1.16 (149) 0.93(207) c. 70(81; 0.46(19) 
4 - 6 1.91(11) 1.67(86) l.65(83) 1. 2S (24) 2.li (9) 
7 - 9 3.00(1) 2.S0(2) 2.17(6) 2.50(2) 

6 - 8 0 - 1 2.00(2) 0.80(S) 1. 88(8) 0.88(8) 0. 33(6) 
2 - 3 2.33(3) 1.72(47) 1.61 (62) 1. 34141) 1.20(20) 
4 - 6 3.00(12) 2 . 4S(98) 2.20(107) 1. 78(37) 1.80(10) 
7 - 9 3.00(15) 3.11(18) 4.33(6) 3 , 50(2) 

9 - 12 0 - • 3.00(1) 3.50(2) 1.00(2) 2.00(2) a.com 
2 - 3 2.00(1) 1.55(11) 1.25(4) 1.00(6) 
4 - 6 3.00(11) 3. 58(26) 3.10(21) 2. 70(10) 
7 - 9 5.00(1) 4. 39(18) 4.35(17) 3 .42(12) 4.00(3) 

-- indicates a h6uaehold frequency 

TABLE 3 OBSERVED TRIP RATES AND 
HOUSEHOLD FREQUENCIES FOR ARAB 
HOUSEHOLDS 
Muits io th;-----car·-----HUDiber Of"ChildI-;n 
l!!!u..we!.!! 9'!!!•1'.l!hl.11 1-3 :!:!! 2.:t 

1 - 2 

3 - 5 

6+ 

1 - 2 

3 - s 

1 - .:! 

3 - s 

6+ 

3+ 
0 
1 
2 
3+ 
0 
1 
2 
~± 

3+ 
0 
1 

3+ 
0 
1 
2 

3+ 
0 
1 
2 
3+ 
0 
1 
2 
~ 

0.00 (:' 
0.00 (2) 
1.00 (1) 

3.oo (1) 
0.00 (1) 

2 .OO_j.1J. 

;hQO_Jl]_ 

0. 96 (24) 
0.97 (68 J 
1. 38 (21) 

f°36 (47) 
1.S3 (Sl) 
2.14 (42) 
~ 
3.87 (15) 
2.S3 (!SJ 
3.00 (5) 
~ 

I.DO (3) 
I. so (2) 
I.CO (1) 

2.;j8 cm 
3.67 (3) 
I.SS (11) 
~ 
S.31 (13) 
3. 7S (4) 
6.00 (2) 
3.00 12) 

- indicates a household frequency 

0.50 (21 
1.10 (IQ) 
l.00 (! 4 ) 
Llti2.l 

0.86 (7) 
!.46 (11) 
1.00 (2) 

3. 50 (4) 
Ll1-J.ll 

0.87 (67) 
1.05 (39S) 
1.29 (161) 
L_Jl_.ill 
o. 96 (44) 
1. 22 (232) 
1.4S (129) 
Ll2.J.ffi 
1.00 (4) 
2.25 (S6) 
2.20 (3S) 

'-'n...illl 

l.OC (1) 
0.61 (18) 
0. 9: (12) 
LQQ_ill 
:-.. 7S (4) 
1. 13 (8) 
1.40 (S) 
hQ!Lill 
1.0C (1) 
0. 7S (4) 
1 ."7S (4) 
f..,_QQ_Jl]_ 

1.00 (1) 

~ 
1.00 (2) 
1. 25 (4) 
1.00 (i) 
2.00 (!) 

0.00 (1) 
!.dLW 

o. s9 (68) a.so (2) 
0 . 83 (43) 0.86 (14) 
1.10 (109) 0. 67 (3) 
1.31.J.§.J. 
i-:Oo (SS) 0.JJ (3) 
1.03 (266) 1.28 (7) 
1.37 (76) 1.SO (4) 
; ·~ LQQ__ilJ 
2. 57 (7) 
1.S4 (26) 2 . 00 (3) 
2.SB (19) 3. 00 (3) 
LlLill 2.00_.ru 

< 'Other' ll9u! I pg Type!!) 

0.67 (12) 0. 70 (27) 0.43 (7) 
0 . 95 (cO) o. 77 (1()4) 0.88 (25) 
1. 36 (11) 1.00 (14) o.aJ (61 

f_.QQ__ill LQQ__ilJ 
f:'oo C1l a.a: c22) 1.18 (11) 
1. 21 (34) 0 . 81 (69) 0 .97 ( 30) 
1.63 (16) 1.24 (33) I. S2 (23) 
~ !.d.Lill LlUfil 
I. 00 (2) 0. 71 (7) l.2S (4) 
1. 77 (13) 1. 20 (10) I.OD (3) 
1.67 (6) 1.4S (11) 2.00 (11) 
fu.§J..ill 2.15 (13) b.Q§__fil) 

TABLE 4 TRIP RATES AND HOUSEHOLD 
FREQUENCIES FOR ASIAN HOUSEHOLDS 

Adults in Number of Children 
the car 1-3 4+ 

Household OWDersbip 

I - 2 0. 77 (13) 1.29 (28) 1.00 (7 ) 
1.46 (11) l.1.2 (87) o . 79 (19) 

2+ I.CO (1) 1.23 (13) o . oc (1) 

3 - 5 2.47 (19) 2 . 0S (21) 1.33 (6) 
2. 00 (lS) 1.41 (39) 1.12 (17) 

2+ 2.00 (9) 2 . 20 (20) 2.00 (3) 

6+ 2. 73 (11) 1 . 00 ( I ) 0 . 50 (2) 
1. 7S (4) 2.86 (7) 2 . 00 (3) 

2+ 6.00 (6) 3. SO (2) 1.00 (1) 

3 

stressed. House type is another qualitative factor that must 
be evaluated. In addition, previous analyses made using data 
for Kuwaiti households alone indicate that the quantitative 
variables X 1 (number of children in the household), X 2 (num­
ber of cars owned per household), and X3 (number of adults 
in the household) should be included as possible variables for 
explaining variations in trip rate ( 6). 

The statistical models use the following notation, where the 
superscript i indicates nationality, with 1, 2, and 3 denoting 
Kuwaitis, other Arabs, and Asians, respectively. Define Cell 
(j, k, l, m)Ul as the cell corresponding to the group of house­
holds with Nationality i, House Type j, kth observed value 
of X 1 , Ith observed value of X 2 , and mth observed value of 
X3 • Note that the range of values for j (house type) depends 
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on the i (nationality group) that is being considered and that 
the ranges of values fork, l, and m depend on which nation­
ality/house type grouping (i, j) is being considered. 

For Cell (j, k, l, m)(il in the sample, let 

NJJ,m = number of households; 
l]2,mr = number of work trips observed for the rth house­

hold, r = 1, ... , NjJ,m; and 
ljJ,m = total number of observed work trips. 

In the population, let 

µJ21m = mean number of household work trips and 

aJ21m = standard deviation of number of household work 
trips. 

Examination of the observed within-cell variations of trip 
rates about the cell means indicated that the variance/mean 
ratios are reasonably stable with values close to 1; this extends 
a similar finding for Kuwaiti households in villas (3). Such a 
relation between mean and variance suggests that the trip 
rates for Cell (j, k, l, m)(il may be taken to have approximately 
a Poisson distribution with mean µJJim· To model the depen­
dence of the mean on house type and the three quantitative 
variables X1 , X 2 , and X3, a logarithmic link is assumed, taking 

log µJJ,m = 13g] + 13iJXlk + 13~7X21 + 13~7X3m 

+ l3¥]XlkX21 + 13~7XlkX3m + 13¥]X2kX3m 

+ l3V]XlkX2,X3m (1) 

This model ensures that the mean is positive and, taken 
with the Poisson assumption, a Poisson log-linear regression 
model. The model is general in form because it (a) includes 
interaction as well as linear effects for the variables X 1 , X 2 , 

and X3 and ( b) allows the regression coefficients to vary over 
both nationality and house type levels. 

More concise model forms are also of interest. Although 
the order of model simplification is arbitrary, we shall adopt 
the procedure of first evaluating the house type effects within 
each nationality group by examining the reduced models 

log µ)!Jim = 13g} + 13i'l X1k + 13~'l X21 + 13¥l X3m 

+ 13~'J XlkX11 + 13~'! XlkX3m + 13¥J X2kX3m 

(2) 

and 

logµJJ1m = 13gJ + 13\ilXlk + 13~JX21 + 13¥)X3m 

+ l3~iJXlkX21 + 13~iJXlkX3m + l3¥lX2kX3m 

(3) 

Model 2 allows for house type to have a systematic effect 
on the average trip but takes the effects of X 1, X2, and X 3 to 
be the same for all house types within each nationality groups. 
Model 3 implies that house type has no effect at all. Other 
reduced model forms of interest are obtained by setting sub­
sets of the 13 terms on the right-hand sides of Models 1, 2, 
and 3 equal to zero. 
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Models are fitted by the method of maximum likelihood, 
and the statistical package GLIM provides a suitable way to 
perform the calculations ( 8). The goodness of fit of any model 
is measured by the deviance (9,10) and is given by 

D = " " " " {Y\iJ [Y\il Ii> (iJ ] 2L..,,jL..,,kL.,,tL.,,m jklm log jklm/ N jktm fLjklm 

(4) 

If the model is correct, D is approximately distributed as 
chi-square with degrees of freedom equal to the number of 
cells in the nationality group minus the number of parameters 
in the model. Changes in the deviances may be assessed using 
chi-square tests to test the goodness of fit of reduced models. 
Similar approaches can be used when the values for X1 , X 2 , 

and X3 are grouped into broader intervals; variable values are 
then put equal to the central values of the groups. 

Finally, if the quantitative nature of X 1 , X 2 , and X3 is ig­
nored, the regression models may be replaced by ANOV A 
models. For example, Model 1 is replaced by the four-factor 
model 

+ (AB)JJ + (AC)Jfl + (AD)J:,; 

+ (BC)~/ + (BD)~~ + (CD))~ 

+ (ABC)JJ, + (ABD)JJm + (ACD)Jf~ 

+ (BCD)~lm + (ABCD)JJ,m (5) 

where A, B, C, and D are factors representing house type, 
number of children, car ownership, and number of adults, 
respectively. Models are again fitted by maximum likelihood, 
and assessments of fit are again based on changes in the 
deviances. 

MODEL FITS FOR KUWAITI HOUSEHOLD DATA 

Four house types were considered for Kuwaiti households: 
villas, NHA (government housing), apartments, and "others." 
As was indicated earlier, the untransformed trip rates could 
be taken to have approximately a Poisson distribution with a 
logarithmic link function for the means, the initial model being 
given by Model 1. The effect of house type was first examined 
by comparing Model 1 with the reduced Models 2 and 3 for 
i = 1. 

For the ungrouped data, fits by maximum likelihood of 
Models 1, 2, and 3 for i = 1 gave deviances equal to 887.5, 
904.1, and 905 .1, with 971, 985, and 987 degrees of freedom, 
respectively. The x2 statistic for comparing Models 1 and 2 
has value 904.1 - 887.5 = 16.6 with 14 degrees of freedom. 
Similarly, the x2 statistic for comparing Models 2 and 3 has 
value 1.0 with 2 degrees of freedom. From x2 tables the upper 
10 percent points are xM0.9) = 21.06 and x~(0.9) = 4.61, 
so neither value is significant even at the 10 percent level. 
Thus, there is no evidence of any house type effect, and Model 
3 is to be adopted. 

Said et al. ( 6) pointed out that the models and associated 
statistical analyses are the same using the grouped data for 
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Kuwaiti households as using the ungrouped data. The only 
change is that the values of the explanatory variables are taken 
as the midpoints of the ranges selected for each variable. The 
broad findings are the same as for ungrouped data. 

When reduced forms of Model 3 are examined, analysis 
using the grouped data indicates that only the three-variable 
interaction term f31XlkX21X3m and the two-variable interac­
tion term f35XlkX3m can be excluded. The equation for the 
estimated cell mean trip rates was 

,iJnm = exp(-0.483 - 0.064X1k + O.l50X21 

+ O.l20X3m + 0.008XlkX21 - 0.006X21X3m) (6) 

Using the ANOVA specification of GLM, if the house type 
effects are dropped and the chi-square tests are applied to 
the differences between the deviances of Model 5 with i = 1 
and its reduced forms, the only significant interaction is ( CD)im· 
The parameter estimates can be used to provide estimates of 
the cell mean trip rates using 

where from the computer fit of the model 

µ = -0.311, 
/Jk = (0, -0.170, -0.232, -0.454, -0.450), 
C1 = (0, 0.553, 0.479, 0.732), 

bm = (0, 0.064, 0.711, 1.260), and 

(

0 0 0 0 ) 
(CD) = o -0.083 -0.237 -0.880 

Im 0 0.494 0.165 0.050 
0 0.612 0.300 0 

(7) 

These results for the regression and ANOV A models indicate 
that trip rates of Kuwaiti households increase with car own­
ership and number of adults but decrease with increasing 
number of children. The interaction effect of car ownership 
and number of adults is also significant in the two models. In 
the regression model the interaction effect of number of chil­
dren and car ownership is also significant. The estimates of 
cell mean trip rates provided by the fitted regression and 
ANOV A models were close and in general agreed well with 
observed mean trip rates. The largest discrepancies were as­
sociated with outlying cells containing low frequencies. 

MODEL FITS FOR ARAB HOUSEHOLDS 

The effect of house type for Arab households (i = 2) has 
been tested with a procedure similar to that used for Kuwaiti 
households. When an underlying Poisson distribution with a 
logarithmic link was assumed for the trips, the deviances for 
the fits of Models 1, 2, and 3 using the ungrouped data were 
511.4, 533.5, and 536.9, respectively. The x2 statistic for com­
paring Model 2 with Model 1 is therefore 22.1with15 degrees 
of freedom. This value, when compared with xts(95) = 24.9, 
confirmed that the house type effect is significant. 

Fits of the Poisson model for the means in Table 3 indicated 
that the most concise models for households in different hous­
ing types are of the following forms: 

•For households in villas, 

tlmm = exp(-0.636 + 0.222X21 + 0.117X3m) 

• For households in apartments, 

tl~~tm = exp(-0.127 - O.lOX1k + 0.063X21 

+ O.l48X3m + 0.033XlkX21) 

• For households in other dwelling unit types, 

,imm = exp(-0.193 - 0.057X1k - 0.124X21 

5 

(8) 

(9) 

+ 0.231X3m + 0.047XlkX21 - 0.018XlkX3m) (10) 

Comparisons among the models are difficult because they 
have markedly different forms. In all cases, the fitted models 
show the expected increase in mean trip rate with increasing 
number of adults. The sign and magnitude of the effect of 
car ownership depends strongly on whether the number of 
children has a significant effect on or interaction with other 
factors. 

When the ANOV A specifications of GLM are used, the 
possible Poisson models for the means that were selected have 
the following forms: 

•For households in villas, 

where 

µ = -0.374, 
C1 = (0, -0.009, 0.422, 0.546), and 

Dm = (0, 0.365, 0.642). 

• For households in apartments, 

tl~;(,m = exp(µ + Bk + C1 + Dm + (B~C)k1) 

where 

µ = .502, 
/Jk = (0, -0.739, -0.807, -1.573), 
C1 = (o, -0.406, -0.052, o.089), 

bm = (0, 0.246, 0.761), and 

(

0 0 0 0 ) <iC) = o o.656 o.5o5 1.393 
kl 0 0.450 0.457 1.279 . 

0 0.528 0.652 0.651 

•For households in other dwelling unit types, 

where 

µ = .67, 
/Jk = (0, -0.708, -0.978, -0.851), 
C1 = (0, -0.028, 0.164, 0.266), and 

Dm = (0, 0.220, 0.689). 

(11) 

(12) 

(~3) 



6 

Compared with Models 8, 9, and 10, Models 11, 12, and 
13 indicate that both regression and ANOV A approaches lead 
to fitted models having similar structure, with the exception 
of households in "other" dwelling unit types. 

Table 5 gives the estimated mean trip rates of Arab house­
holds in apartments using the regression and ANOV A models. 
The table indicates that the two models produce similar es­
timates. The model estimates compare reasonably well with 
the observed trip rates of Table 3 for high-household­
frequency cells. There are some discrepancies for outlying 
low-frequency cells. 

MODEL FITS FOR ASIAN HOUSEHOLDS 

Three house types were initially considered for Asian house­
holds. The chi-square test indicated that house type has no 
effect for these households. All Asian households in the home 
interview survey are therefore treated collectively in this sec­
tion. The GLM analysis of trip rates using the data in Table 
4 indicated that, when applying the regression model, only 
the main effects of X 1 (number of children in the household) 
and X 3 (number of adults in the household) were significant. 
The equation for the estimates of the cell means is 

P.,mm = exp(0.086 - 0.109X1k + O.l70X3m) (14) 

In the case of the ANOVA model, the three main effects 
were significant, but there were no significant interactions. 
The estimated means are 

A (3) ( A BA A DA ) 
µjklm = exp µ + k + L1 + m 

where 

µ = .306, 
/Jk = (O, -0.143, -0.52), 
C1 = (0, - 0.102, 0.228), and 

Dm = (0, 0.430, 0.853). 

(15) 

The estimated mean trip rates are given in Table 6 on the 
basis of Models 14 and 15. The table indicates that the regres­
sion and ANOV A model estimates are consistent. The regres-

TABLE 5 ESTIMATED MEAN TRIP RATES BASED ON 
FITS USING GROUPED DATA OF ARAB HOUSEHOLDS 
(APARTMENTS) (POISSON MODEL WITH LOGARITHMIC 
LINK) 

Adults in Number of Children 
the Car 1-3 4-6 9+ 

Household Ownership 
(i) (ii) (i) (ii) (i) (ii) (i) (ii) 

1 - 2 1T o 1. 65 . 90 . 79 .60 • 74 .42 .34 
1.17 1. 10 1.02 J.01 • 7B . Bl .61 . 92 
1.25 l. 57 1.17 J.lB J. 01 J. 11 .90 1.17 

3+ I. 35 1.81 1. 36 J.46 J. 39 1.55 1.41 O.BB 

l - 5 1. 59 2. 11 1.30 1.01 .B7 . 94 . 61 . .:.! 
l. 70 J. 41 1 . 43 1. 30 J.13 l. 04 . B9 1.13 

2 J. 81 l . 01 1.69 1.50 J.47 1.41 1.30 l.5C 
3+ I. 95 .:! . 31 1.97 :.B7 2 . 01 1. 9B 2. 04 1.12 

6+ 2. 3B 3.54 1. 95 J.69 1.30 J.5B .91 0., 
2, 53 2.36 2.21 2.17 1.69 1. 74 1. JJ 1. 97 
2. 70 3.36 2.52 2.52 2. 19 2. 37 1.9·1 2.50 

3+ 2. 91 3.B7 2.94 3.13 2. 99 3. 31 3. 04 1. 88 

(i) Regression MOO.el 
(ii) ANOVA Model 
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TABLE 6 OBSERVED AND ESTIMATED MEAN TRIP 
RATES BASED ON FITS USING GROUPED DATA OF 
ASIAN HOUSEHOLDS (POISSON MODEL WITH 
LOGARITHMIC LINK) 

Adult. in 
the Car 

llouaehold OWnerehip 

1 - 2 

2+ 

3 - 5 0 
1 
2+ 

6+ 0 
1 
2+ 

(i) Reqression rbiel 
(ii) l>NOVA ~odel 

(i) 

1.41 
1. 41 
1. 41 

2. 15 
2. 15 
2. 15 

3. 46 
3 . 46 
J, 46 

lhmber of Cbildreo 
0 1-3 

(ii) (i) (ii) (i) 

1. 36 1.13 1. IB . Bl 
1. 23 1.13 1.06 . Bl 
l. 71 1.13 1.48 . 82 

2. 09 1. 73 1.81 1.25 
1.89 1. 72 1.64 1. 25 
2. 62 1. 73 2.27 1. 25 

3 . 19 2 . 78 2 . 76 2 . 00 
2 . 88 2. 78 2. 49 2 . 00 
4 . 00 2. 78 3. 47 2 . 00 

4+ 

(ii) 

. Bl 

. 73 
1. 01 

). 24 
1. 12 
1. 56 

J.89 
J. 71 
2 . 38 

sion model trip rate estimates do not vary for the different 
car ownership groups, because Model 14 implies that this 
factor has no effect. This is unlike the ANOV A models, which 
indicate that some car ownership effects exist. The structure 
of the two model fits is consistent with the socioeconomic 
characteristics of Asian households in Kuwait, which are dom­
inated by low-income working adults with low car ownership 
rates and significant reliance on public transport for work trip 
purposes. 

USE OF DEVELOPED TRIP RATES IN PLANNING 

The fitted models given in the preceding three sections can 
be used to construct charts giving estimates of the mean trip 
rates that allow planners to forecast total numbers of morning 
work trips for individual zones. Figure 2 shows such a chart 
based on estimates from the fitted ANOVA models. For con­
venience, only Arabs in apartments are included. In a more 
complete representation, Arab households in villas and "other" 
housing types would be needed. 

The use of the chart is straightforward. Estimates of fre­
quencies of households classified by nationality, car owner­
ship, number of children, and number of adults are needed 
as input. Multiplication of these frequencies by the associated 
estimated means read from the chart and summation of the 
resulting products give the required estimate of trips in the 
zone. 

Morning work trips in 1995 for two typical zones, Jahra 
and Hawalli, are estimated here for demonstration purposes. 
Jahra is typical of zones dominated by Kuwaiti households. 
The expected numbers of Kuwaiti and non-Kuwaiti house­
holds in 1995 are 15,726 and 9,270, respectively. These esti­
mates are based on the cohort survival technique for popu­
lation forecasting using the 1985 data base. The household 
size and relative proportions of households by size are as­
sumed to remain stable over the 1985-1995 forecasting pe­
riod. The cross-classification of these households is shown in 
Table 7. 

Hawalli is typical of zones dominated by non-Kuwaiti 
households. The zone is expected to have 33,324 Arab non­
Kuwaiti households in apartments, 3,200 Arab households in 
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FIGURE 2 Work trip rates of households of different nationalities with levels of three explanatory variables based on fits of ANOV A 
models. 

"other" housing types, and 800 Kuwaiti households. Table 8 
shows the 1995 household frequencies for Arab households 
in apartments for this zone. 

The expected numbers of morning work trips that can be 
generated by the two zones in 1995 are 29,060 and 51,250, 
respectively . These numbers were estimated on the basis of 
household frequencies and the appropriate trip rates from 
Figure 2 supplemented with a similar chart for Arab house­
holds in "other" housing types . 

STABILITY OF ESTIMATED WORK TRIP RATES 

Most trip generation studies assume a degree of stability over 
the forecasting period of the trip generation equation devel­
oped for the calibration year. The stability of the household 
level trip generation equations could be verified through (a) 
the stability of the estimated values of the regression coeffi­
cients for the household groups or the effects estimated when 
the ANOVA specification of GLM is used and (b) the stability 
of the ranges of the underlying explanatory variables in these 
equations. 

The stability of the regression coefficients or the ANOV A 
effects is the subject of current research using data collected 
in a 1977 home interview survey along with the 1988 data. 

The differences between the magnitudes of the coefficients 
based on the two data sets will be studied. 

Confirmation of stability in the ranges of underlying ex­
planatory variables in the household-level trip generation 
equations is relevant to this investigation, because these equa­
tions can only be used with confidence over roughly the range 
of the explanatory variables used in the calibration. Large 
structural shifts in the magnitude of these variables clearly 
could introduce forecasting errors. 

The regression and ANOVA models used three variables: 
number of children, number of adults, and car ownership. 
The first two variables are studied jointly through the house­
hold size variable, because there are no historical records of 
households classified by numbers of children and adults. 

Household Size 

The top of Figure 3 uses census data to show the percentage 
of households by size of household for Kuwaitis between 1970 
and 1985. The figure indicates that household size distribution 
has been reasonably stable. This will probably be the case for 
the short and medium term. The trend of large household 
size because of increased number of children is being com­
pensated for by the increasing presence of extended families 
where married sons remain within the parent household. 
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TABLE 7 HOUSEHOLD FREQUENCIES FOR TYPICAL 
KUWAITI ZONE IN 1995: JAHRA 
Multa Car l(u.])er of Childre.n 

Ownership 0 1-3 4-7 8-11 12-15 
1 - 2 0 - 1 0 336 1193 796 0 

2 - 3 0 192 530 597 66 
4 - 6 0 0 0 0 0 
7 - 9 0 0 0 0 0 

3 - 5 0 - 1 66 265 796 928 265 
2 - 3 a 336 2254 928 463 
4 - 6 0 133 265 192 66 
7 - 9 0 0 0 0 0 

6 - B 0 - 1 66 66 66 133 66 
2 - 3 0 396 663 597 463 
4 - 6 66 336 530 265 396 
7 - 9 0 66 0 0 0 

9 - 12 0 - I 0 0 66 0 0 
2 - 3 0 0 66 133 192 
4 - 6 0 66 66 398 66 
7 - 9 0 66 0 0 0 

(b) Arab llouseholda in Apact.iita 

Adult.. Car Nu.her of Cb lldre.n 
Ownership 0 1-3 4-8 9+ 

1 - 2 " 274 549 0 0 
0 823 1646 549 

2 0 0 549 0 
3+ 0 0 0 0 

3 - 5 a 823 0 c 0 
I 0 0 0 0 
2 0 0 274 0 
3+ 0 274 0 0 

(c) Arab Bouaebolda in 'otbera' llousln<J 

1 - 2 0- ---21- - - - -23f-- __ so ______ 
0 53 372 26& 
0 27 53 60 

3• 0 0 0 0 
J - 5 c 0 0 159 159 

I 0 133 478 345 
27 53 133 186 

3+ 0 0 27 53 
6+ 0 0 0 53 53 

I 0 0 BC 53 
2 0 0 53 60 
3+ 0 27 BO 80 

TABLE 8 HOUSEHOLD FREQUENCIES FOR 
TYPICAL NON-KUWAITI ZONE IN 1995: 
HA WALLI (ARAB HOUSEHOLDS IN 
APARTMENTS) 

Adulta in lluaber of Children 
the Car 

llou.sehold Ownership 0 1-3 4-8 

I - 2 143 620 620 
810 3909 4624 
361 1287 1430 

3+ 0 95 143 

3 - 5 238 1049 1049 
1001 3269 4290 
715 1907 1287 

3+ 143 620 48 

6+ 0. 0 95 95 
l 191 953 286 
2 48 715 266 
3+ 143 334 95 

9+ 

-·---
0 

143 
0 
0 

0 
95 
48 

0 

0 
95 

0 
0 

The bottom of Figure 3 shows household size data for non­
Kuwaitis; data for separate non-Kuwaiti nationality groups 
are not available. These households showed some instabilities 
in household size over the first 5 years, although the scale of 
change was not large. Household size remained relatively 
stable from 1975 to 1985 and can be expected to remain so. 

Household Car Ownership 

Data on household car ownership in Kuwait are limited. Only 
the 1970 census contained this information. The two home 
interview studies of 1977 and 1988 had questions on car own-
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FIGURE 3 Percentage of Kuwaiti and non-Kuwaiti 
households by size, 1970-1985. 

ership for a sample of households. These studies, along with 
the 1970 census data, are used in this section. 

Figure 4 shows the trend in car ownership for Kuwaiti and 
non-Kuwaiti households. The top shows that for Kuwaiti 
households the proportion of one-car households declined 
from 70 percent in 1970 to 17 percent in 1980 llnd that the 
proportion of three- and four-or-more-car households rose 
noticeably between 1977 and 1988. This period corresponds 
to the em of rising national and per capita income because 
of the rise in the price of oil, Kuwait's main export, in the 
early 1970s. It is thought that current car ownership levels 
reflect saturation levels and that significant increases in the 
proportion of households with three or more cars are unlikely. 

The bottom of Figure 4 shows reasonable stability in the 
proportions of one-, three-, and four-or-more-car households 
among non-Kuwaitis. Major shifts occurred in the proportions 
of zero- and two-car households. Zero-car households de­
clined from 40 percent in 1970 to 15 percent in 1988, whereas 
the proportion of two-car households increased from 5 percent 
in 1970 to 20 percent in 1988. The socioeconomic character­
istics of non-Kuwaitis and the regulations that govern the issue 
of operator licenses to various non-Kuwaiti occupational groups 
suggest that the current household car ownership structure 
will not change significantly in the short run. 
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households by car ownership level, 1970-1988. 

CONCLUDING REMARKS 

The objective of this paper was to present the findings of a 
3-year study of trip rates of households in Kuwait. The study 
led to a proposed general modeling approach that can be 
applied to a variety of urban areas. In the initial stages of the 
study, the intent was to refine one of the routinely used trip 
generation procedures. Further analysis indicated that several 
features in Kuwait, such as great variations in size in already­
large households and variations in car ownership up to levels 
not common in many urban areas, would make the routine 
use of one of these techniques inappropriate. Other major 
variations among these households in characteristics such as 
income, labor force participation rates, and occupation and 
variations among subgroups based on nationality and house 
type were also shown. Situations like these may exist in other 
areas. Cities in neighboring countries in the Persian Gulf re­
gion provide good examples. 

When the approach proposed in this paper is to be used 
for other urban areas, some investigative work will be war­
ranted. Its purpose will be to (a) identify potential qualitative 
variables to be considered and verify their significance, (b) 
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identify potential quantitative variables to be used in the anal­
ysis and select the most appropriate, (c) establish the relation 
of the variance-mean pattern of the individual household trips 
to aid in the selection of their underlying distribution, and 
(d) construct tlie groupings of the quantitative variables . Once 
these steps have been completed, model fits can be made 
using the GLM framework. 

The specific conclusions of this paper are as follows : 

1. There are marked variations among household groups 
in Kuwait. 

2. House type is significant in the case of Arab households 
as a qualitative variable but not significant in the case of 
Kuwaiti and Asian households. 

3. Regression and ANOVA models produce similar mean 
trip rate estimates, and these estimates agree with observed 
trip rates for high-frequency classification cells. 

4. The number of adults and car ownership were found to 
be important variables in explaining variations in observed 
trip rates. 

5. The number of children was found to be significant in 
most cases, with trip rates tending to decrease as the number 
of children increased. 
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Circulator/Distributor Model for the 
Chicago Central Area 

DAVID L. KURTH AND CATHY L. CHANG 

The city of Chicago is evaluating alternative methods for provid­
ing for the distribution of commuters to and workers, visitors, 
and residents in the vibrant and growing central area. A detailed 
travel model has been calibrated to project ridership on the var­
ious circulator/distributor alternatives . The model is based on the 
Downtown People Mover System travel demand models devel­
oped for Los Angeles, Detroit , and Miami. The Chicago central 
area and the calibration of the circulator/distributor model are 
described. The calibrated model coefficients are compared with 
the coefficients used for the Los Angeles , Detroit , and Miami 
models. Finally, some brief recommendations regarding future 
circulator/distributor model development and research efforts are 
presented. 

Chicago's central area is one of the most significant, highly 
concentrated, and exciting activity centers in the Midwest. 
Historically, the downtown coincided with the elevated loop 
structure. It is roughly bordered by Wacker Drive on the north 
and west, Michigan Avenue on the east, and the Congress 
Expressway on the south. This vibrant area is continually 
expanding. In the past 20 years significant new multiuse tow­
ers have punctuated the skyline. Growth is occurring along 
the North Michigan Avenue corridor and in areas south and 
west of the traditional Loop in office, retail, and residential 
space. 

The existing transportation system was planned to serve 
destinations within the traditional Loop area. In this compact 
core area , most transit riders were able to walk from their 
alighting station to their destination. As the central area grows 
in shape and size , it becomes more and more difficult for the 
existing transit system to serve all destinations adequately. 
Expanded development patterns coupled with ever-increasing 
congestion add to travel times. It is becoming apparent that 
an expanded transit system is needed to serve the expanding 
central area , which now stretches from North Avenue on the 
north to Cermak Road on the south and from Halsted Street 
on the west to Lake Michigan on the east. It is approximately 
4 mi long by 2 mi wide. Although the area is not completely 
developed (i.e. , growth occurs in spots), these boundaries 
indicate the limit of current development trends. 

The expanded central area is served by various modes of 
transportation. Commuter rail lines, rapid rail lines , and buses 
provide service to and through the area . In addition , taxis 
and private automobiles are prevalent. Because of the ex­
pansion of central area, it is no longer reasonable to expect 
all persons to walk from transit service or parking to their 
destinations, which may be as far as 2 mi . Thus, the concept 
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of a central area circulator or downtown people mover (DPM) 
has evolved. The circulator system would provide quick and 
convenient access within the expanded central area. The pro­
posed system would consist of either buses (the TSM alter­
native) or light rail transit (LRT). 

The Chicago Central Area Circulator Study required a de­
tailed model capable of projecting ridership for the extensive 
transit system in the central area and the proposed alternative 
network configurations. The study focused on modeling two 
major types of trips: those made from central area commuter 
rail stations to destinations within the central area (distributor 
trips) and those made wholly within the central area by res­
idents, workers, and visitors to the central area (circulator 
trips). The modeling of these two types of trips led to the 
typical model form for modeling DPM systems (1-3) . 

In addition to these types of trips, there was concern about 
the proper assignment of trips that entered the central area 
on Chicago Transit Authority (CTA) bus and rapid rail lines. 
This concern , coupled with the modeling of the distributor 
trips, required an extensive interface with the regional trans­
portation model maintained by the Chicago Area Transpor­
tation Study (CATS). CATS provided basic travel data for 
regional trips destined for the central area that used one of 
the six Metra commuter rail stations located in the central 
area and trips that entered the central area on CT A bus and 
rapid rail. 

The remainder of this paper focuses on model form, model 
calibration and validation, and lessons learned from the cal­
ibration of the model. The final section discusses potential 
improvements and research for central area circulator/DPM 
models. The actual model results and recommendations re­
garding alternatives are not discussed. Readers who are in­
terested in the results and recommendations should contact 
the City of Chicago Department of Planning for copies of 
reports written for the Chicago Central Area Circultitor Al­
ternatives Analysis. 

MODEL FORM 

Model form generally refers to the specific mathematical models 
and relationships used to estimate trip generation, trip dis­
tribution, mode choice, and assignment. These are important 
and will be discussed as appropriate. However, for modeling 
travel in the central area, the level of detail of the zone and 
network structure and the market segments modeled are of 
equal importance. If they are not well defined at the outset 
of a central area circulator study, it will be difficult to produce 
reasonable results even with the best travel models available. 
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Zone Structure 

A detailed zone structure was developed for the Central Area 
Circulator Study to properly analyze the trade-offs between 
walking, taking a taxi, and taking another transit vehicle or 
the circulator/distributor system from the line-haul transit sys­
tem to the central area destination. Whereas the detailed zone 
structure was crucial for improving ridership forecasts, in­
creases in the number of zones increased the difficulty of 
producing socioeconomic projections for those zones. Thus, 
there was also a practical trade-off restricting the level of 
detail used in the zone structure. 

Figure 1 shows the zone structure used for the Central Area 
Circulator Study. The 8-mi2 area modeled included 406 in­
ternal zones, 49 "transit external stations," and 51 "auto­
mobile external stations." Within the Chicago Loop, most of 
the zones were block-level zones. Outside the Loop, increas­
ingly large zones were used. Transit external stations were 
established wherever transit lines crossed the boundary of the 
study area and at the six central area Metra commuter rail 
stations: Chicago & North Western Station, Union Station, 
LaSalle Street Station, and the Randolph Street, Van Buren 
Street, and Roosevelt Road Metra Electric Stations. The ex­
ternal transit stations were mode specific. If an express bus 
and several local bus routes crossed the boundary of the study 
area on the same street, two external stations were estab­
lished-one for the express bus line and one for local bus 
lines. This process prevented spurious transfers between modes 
at external stations. 

The commuter rail stations were handled as special cases 
in modeling travel to the central area. As will be discussed, 
detailed mode choice models were developed to estimate the 
number of trips by egress mode from the commuter rail sta­
tions to the central area destinations. Four of the six stations 
are terminals on commuter rail lines, and each of the com­
muter rail stations is a major transfer point. Commuters are 
forced to make a decision and are generally offered a number 
of choices for traveling to their destination at each of the 
stations. In contrast, bus passengers and rapid rail passengers 
have multiple points at which they can make a choice re­
garding travel from the main line-haul mode (crossing the 
study area boundary) to their destination. Because of the 
complexity of the choices, the trips made by bus and rapid 
rail passengers from external transit stations to central area 
destinations were handled simply through route choice (i.e., 
transit assignment). 

Network Structure 

Network coding was crucial to the accurate modeling of rider­
ship on the alternative circulator/distributor systems. EMME/ 
2 was used to code an integrated transportation network for 
the central area. It would have been possible to use other 
microcomputer- or mainframe-based transportation planning 
packages to perform the detailed coding; however, the coding 
was simplified greatly by using an interactive and integrated 
network editor. An integrated network was crucial because 
consistent highway, transit, and walk networks were required 
to build automobile and taxi paths, transit paths, and walk 
paths for the area being modeled. 
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The transportation network was coded as accurately as pos­
sible. This included coding of distances to the nearest 0.01 
mi; coding an extensive walk network, including all sidewalks 
(streets) in the area, as well as pedestrian-only links; coding 
stair links to represent the time necessary to walk from the 
center of a subway or elevated platform to the street level; 
and coding access/egress links from the center platform of 
each commuter rail station to each possible exit from the 
station. This level of detail in network coding was necessary 
because walk was one of the possible modes considered. For 
example, had the network been coded to the neare~t 0.1 mi, 
substantial differences in results could be obtained with little 
difference in actual travel times. Consider the estimation of 
walk travel times from a commuter rail station to two adjacent 
zones, one 0.24 and the second 0.26 mi from the station. If 
the network had been coded to only the nearest 0.1 mi, the 
distances to the two stations would have been coded as 0.2 
and 0.3 mi. The modeled travel times using a 3-mph walk 
speed would have been 4.0 min to the first zone and 6.0 min 
to the second zone. Using a network coded to the nearest 
0.01 mi would result in modeled travel times of 4.8 and 5.2 
min to the two example zones. 

Market Segments Modeled 

Travel models were developed for two times of day: the morn­
ing peak period and midday. Two major types of trips were 
considered: the distribution of regional transit riders entering 
the central area on commuter rail to their destinations and 
the circulation of central area residents, workers, and visitors. 
Six main market segments resulted: 

•The morning peak-period distributor market segment (re­
gional commuter rail passengers making work trips to the 
central area), 

• The morning peak-period circulator market segment 
(central area residents making work trips), 

• The midday distributor market segment (regional com­
muter rail .passengers making nonwork trips to the central 
area), 

•The midday worker circulator market segment (central 
area workers making midday nonwork trips), 

•The midday nonworker circulator market segment (cen­
tral area visitors making midday nonwork trips), and 

• The midday resident circulator market segment (central 
area residents making midday nonwork trips). 

The afternoon peak-period distributor and circulator trips 
were considered to be the reverse of morning peak-period 
trips for the corresponding market segments. 

In addition to these market segments, peak-period and mid­
day trips entering the central area by bus and rapid rail (sub­
way and elevated) were included in the assignment of transit 
trips. However, they were simply assigned from their "ports­
of-entry" to their destinations. Modes used to reach their 
destinations were based strictly on path choice. 

In the application of the models, trips to and from the 
central area were estimated by CA TS using the regional travel 
model. CATS estimated new trip tables for each model al­
ternative. The trip tables were all based on the same trip 



A Local Bua External Station 
• Ea:pr111 Bua External Station 
• Ropld Roll Extornol Stotlon 
e Commuter Rill Extern•I St•tlon * Auto Ex l01n1I Stollon 

FIGURE I Structure of CBD distributor study zone. 

; ·•• 1,•' ,_. __ 



Kurth and Chang 

distribution results. However, the "external-internal" trips to 
the central area varied for each alternative, because regional 
submode shares (bus, rapid rail, and commuter rail) to the 
central area were affected by the various alternatives. 

Modes Considered 

Four main modes were considered in the estimation of cir­
culator/distributor travel in the central area: walk, transit, 
taxi, and automobile. The actual modes available depended 
on the market segment being considered. The walk, transit, 
and taxi modes were considered for all market segments. The 
automobile mode was considered for only those market seg­
ments that could have automobiles available-central area 
residents (peak-period and midday trips), central area work­
ers (midday circulator trips only), and central area nonwork­
ers (midday circulator trips only). 

The actual mode considered for the central area circulator/ 
distributor system was LRT. Figure 2 shows the full-build 
LRT system proposed as the most extensive of the alternatives 
for the central area circulator system. For most of the market 
segments, the proposed LRT system was not modeled as a 
separate, distinct mode in the mode choice models. Rather, 
the system was considered to be the same main transit mode 
as the rapid rail, local bus, shuttle bus, and express bus sys­
tems serving the central area. This was a departure from many 
previous DPM modeling efforts. 

In all cases, only one set of transit travel paths (skims) was 
built from the coded network. The LRT system was used in 
these transit paths only if it was a part of the shortest path. 
However, EMME/2 determines transit travel times on the 
basis of multiple transit paths. If two or more efficient transit 
paths are available between two zones, the transit travel times 
posted on the transit skims are a composite of the efficient 
paths (4). This is done even if the different transit paths use 
different transit submodes (e.g., one path uses bus, a second 
uses an express bus, and a third uses LRT). 

The use of the EMME/2 multipath transit model is a de­
parture from previous DPM modeling efforts using UTPS or 
other all-or-nothing transit path-building algorithms. The 
EMME/2 multipath algorithm could slightly bias the results 
toward an LRT system. If two points were served by both 
bus and LRT and the LRT were a slightly slower mode, 
EMME/2 would still include the LRT in the impedance cal­
culation and assign trips to the LRT. In contrast, all-or­
nothing transit path-builders would ignore the LRT and as­
sign all trips to the bus system. However, the reverse situation 
could also be true: the LRT might be the slightly faster mode 
for the interchange. 

For midday worker circulator trips and midday nonworker 
circulator trips, LRT was considered more attractive than bus 
or rapid rail in the mode choice models. If the circulator was 
used on the shortest transit travel path, a positive circulator 
mode bias was added to the transit utility in proportion to 
the amount of in-vehicle travel time spent on LRT in com­
parison with the total transit in-vehicle travel time. The effect 
of this bias on LRT ridership was probably less than that 
obtained by considering LRT to be a separate, distinct mode, 
as in previous DPM modeling efforts. 

Separate shortest-travel-time paths were built for the walk, 
transit, taxi, and, when necessary, automobile modes. When 
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transit paths were built, steps were taken to minimize the 
number of walk-only paths. This resulted in some very short 
transit paths that, in most regional modeling efforts, would 
have been considered illogical. However, because walk was 
considered a competing mode in the mode choice models, 
this was a desirable result. The mode choice models were 
"allowed" to determine which short transit (or taxi or auto­
mobile) trips were not likely compared with the walk mode. 

The building of separate paths obviated the need to consider 
fares in the path-building process. There was no need to ex­
clude short, illogical transit trips from the path-building pro­
cess for the reasons just mentioned. Fares and other travel 
costs were considered explicitly in the circulator/distributor 
models . 

MODEL CALIBRATION PROCESS AND RESULTS 

Disaggregate data were not available to perform a rigorous 
calibration of the logit models used to model the central area 
distributor and circulator mode use. Thus, an existing model 
was borrowed and adjustments were made to match observed 
aggregate data. DPM models from Los Angeles, Detroit, and 
Miami were considered as donor models. Both the Detroit 
and Miami models are based on the original Los Angeles 
DPM modeling work performed in the late 1970s. Apparently 
the Detroit model was calibrated in much the same way as 
the Chicago model-an adjustment of model constants and 
coefficients to match aggregate mode shares. The Miami model 
apparently used a slightly more rigorous calibration proce­
dure. At the least, the calibration of the Miami model was 
based on observed travel behavior with a circulator/distributor 
system in place. However, the basic form of the Miami model 
was not changed from the form originally developed for Los 
Angeles. 

The Detroit model was selected as the donor model for 
Chicago for several reasons. First, like Chicago, Detroit is a 
large northern city, and its climate resembles Chicago's more 
closely than Miami's does. Second, the implied values-of-time 
from the Detroit model appeared to be more reasonable than 
the implied values-of-time from Miami. Finally, because the 
Miami and Detroit models were both derived from the same 
root model, Los Angeles, they offered the same benefits in 
terms of model form. 

Adjustments were made to alternative specific constants 
and to system coefficients. Good aggregate data existed to 
guide the adjustments. Most of the data were collected as 
part of ongoing monitoring processes conducted by CA TS 
and Metra. The data included 

• Egress mode shares from five of the six commuter rail 
stations; 

• Egress mode shares by distance from the commuter rail 
stations; 

•Average egress trip length from th<: commuter rail sta­
tions by mode; 

•Mode shares for midday trips made by central area work­
ers, nonworkers, and residents; 

• Average trip lengths for midday trips made by central 
area workers, nonworkers, and residents; and 

• Mode shares and average trip lengths for peak trips made 
by central area residents. 
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Two types of adjustments were made to system coefficients. 
The first adjusted the coefficients on travel cost to account 
for a different base year for measuring travel costs and for 
the local value-of-time. The value-of-time for central area 
commuters was assumed to be one-third of the average wage 
rate of the Metra commuters (as obtained from 1980 census 
journey-to-work data). The value-of-time for the circulator 
models for central area workers was assumed to be one-third 
of the wage rate for those workers. The average wage rate 
for central area workers is slightly lower than the average 
wage rate for central area Metra commuters. Finally, the 
value-of-time for central area nonworkers and midday resi­
dent trips was assumed to be one-sixth of the central area 
wage rate. The use of one-third and one-sixth of the average 
wage rate was based on guidance from UMT A. 

The second type of coefficient adjustment was the modi­
fication or addition of a walk distance coefficient. This coef­
ficient was adjusted so that modeled walk mode shares by 
distance range and average walk distance matched aggregate 
observed shares. An iterative approach was used to adjust 
the coefficient. 

Alternative-specific constants were iteratively adjusted so 
that modeled aggregate mode shares matched observed ag­
gregate mode shares. This process used the following formula 
to guide the adjustment of the constants: 

P, x (1 
(1) 

where 

cl revised constant, 
C0 original constant, 
P1 desired share, and 
P0 share obtained using C0 • 

Morning Peak-Period Distributor Mode Choice Model 

The morning peak-period distributor mode choice model is a 
simple logit-based model of the form 

where 

exp( Um) 
l:Jexp(U)) 

(2) 

Pm proportion of trips (for an interchange) using Mode 
m; 

exp the exponential function with the base of natural 
logarithms, e, as base; and 

Um utility of Modem. 

Table 1 compares the calibrated coefficients for the Chicago 
morning peak-period distributor mode choice model with the 
models for Los Angeles, Detroit, and Miami. Some differ­
ences between the Chicago model and the other models war­
rant discussion. First, the coefficients for travel time and travel 
cost were set so that the implied value-of-time was equal to 
one-third of the average wage rate of central area workers 
who rode the Metra commuter rail service. This method for 
determining the coefficients for time and cost was consistent 
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TABLE 1 COMPARISON OF CENTRAL AREA 
DISTRIBUTOR MODEL COEFFICIENTS 

Coefficient/Constant Los Angeles Delroit Miami Chicago 

Walk Constant 2.29000 1.99000 -1.29000 2.74164 

Transit Constant 0.20500 0.19860 -3.06200 -0.27072 

Circulator Constant 0.00000 0.72500 0.00000 NA 

Taxi Constant NA NA NA -3.13828 

Travel Time (minutes) -0.09790 -0.07419 -0.06370 -0.09000 

Travel Cost (cents) -0.00954 -0.02130 -0.02870 -0.01065 

Walk Distance (miles) NA NA NA -3.00000 

Walk Distance (transit paths)' NA NA NA -3.00000 

Implied Value of Time $6.16 $2.09 $1.33 $5.07 

Year for Dollars 1975 1975 1986 1985 

NA = not applicable. 
•The walk distance coefficient for transit is applied only to the distance walked for lransit 
access, egress, and transfer. 

with the process used for Detroit. This method results in an 
implied value-of-time for central business district (CBD) 
workers that is substantially higher than the value-of-time for 
workers in Miami. It is slightly higher than the value-of-time 
for Detroit CBD workers (if the same year dollars were used) 
and substantially lower than the value-of-time used for the 
Los Angeles model. 

The second difference was the inclusion of taxi as a viable 
distributor mode. This was done by adding a taxi alternative­
specific constant and adjusting the model constants to provide 
correct overall mode shares for the central area distributor 
portion of the model. 

Perhaps the biggest difference between the Chicago model 
and the other models was the inclusion of walk distance as 
an explanatory variable. The need to add this variable resulted 
from an analysis of aggregate mode shares summarized by 
walk distance. Without the use of this explanatory variable, 
the model tended to greatly overpredict the walk mode share 
for walk travel times greater than 15 to 20 min. This overpre­
diction of walk shares for the longer walk travel times resulted 
in an underprediction of transit use for the same walk travel 
time range. Figure 3 shows a comparison of modeled and 
observed mode shares by walk time for the walk and transit 
modes based on the calibrated model. As can be seen, walk 
shares still tend to be overpredicted and transit shares un­
derpredicted. However, the relative magnitude of the over­
and underpredictions was substantially reduced by the walk 
distance variable. 

Walk distance can be directly converted to walk travel time, 
because a constant walk speed of 3 mph is used in the modeling 
process. Thus, it might be argued that the inclusion of walk 
distance in the utility function is equivalent to adding - 0.15 
to the coefficient of travel time for walk trips. This would 
result in raising the value-of-time for walk trips to $13.52/hr, 
which is similar to the value-of-time used for the Los Angeles 
model (if stated in the same year dollars). It is, however, 
more proper to consider this variable as a "fatigue factor," 
not as a change in the value-of-time. Alternatively, the in­
clusion of the walk distance factor can be viewed as an ad­
justment to account for the effects of out-of-vehicle travel 
time. Many regional mode choice models have found out-of-
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FIGURE 3 Comparison of modeled and observed mode shares for a.m. peak 
period. 

vehicle travel time to be two to three times more onerous 
than in-vehicle travel time. 

Table 2 gives the modeled and observed shares by distance 
range and the modeled and observed mode shares by com­
muter rail station. The observed shares are based on a 1985 
Metra survey. As is obvious, the model reproduces the ob­
served results closely for the North Western, Union, and LaSalle 
Street stations. Whereas the match was not as close for the 
Van Buren and Randolph stations, a separate 1989 survey 
suggested that walk mode shares for those stations were near 
95 percent. This implies that the models were also working 
properly for those two stations. 

Morning Peak-Period Circulator Trip Distribution­
Mode Choice Model 

The morning peak-period circulator model is a logit-based 
simultaneous trip distribution-mode choice model of the fol­
lowing form: 

P. = exp( VJ.,..) 
J,m 2:,2: . ..lexp( u, .. ,, )] for each production zone (3) 

where Pi.m is the proportion of trips to Destination Zone j 
using Mode m and Ui ,m is the utility of Destination Zone j 
for Modem. 

Table 3 gives lhe calibrated coefficients for the Chicago 
morning peak-period circulator trip distribution-mode choice 
model. The Los Angeles, Detroit, and Miami DPM models 
did not include such a market segment. Unlike Chicago, lhey 
apparently did not have a CBD population large enough to 
warrant such a model. The Chicago model used the coeffi­
cients of travel time and travel cost determined for the morn­
ing peak-period distributor model. This was based on the 
assumptions that the trip purpose being represented in both 
the peak-period distributor and circulator models was the 
work trip and that workers should have similar sensitivities 
to travel time and travel cost regardless of where they live. 
The destination zone trip density and logarithm of the des­
tination zone area coefficients were taken from the midday 
circulator models for workers . The walk distance and walk 
distance to transit coefficients were adjusted to match ob­
served average trip lengths as closely as possible. Finally, the 

TABLE 2 COMPARISON OF MODELED AND OBSERVED 
EGRESS MODE SHARES FOR COMMUTER RAIL 
STATIONS 

Walle Share Transit Shan> TllXi Share 

Modeled Observed Modeled ObJerVed Modeled 

Mode Sh.Ires by Walk Dlotanc:e (time interval in minutes) 

().S lOOlL OlL OlL 

5-10 99 95lL SlL 0 
1().15 96 87 4 10 

15-20 87 81 11 16 

2().25 76 74 23 26 

25-30 58 41 39 59 

3().35 37 36 59 64 

35-40 17 36 77 60 

4().45 9 84 7 

45-50+ 4 87 9 

Mode Shares by RaU Station 

Roosevelt 40" 53" 7ll 

Van Buren 94 88" s 12lli I 

Randolph 95 82 4 14 

North Western 83 84 16 16 

Union 82 81 17 18 

LaSalle 92 91 7 6 I 

Average 84" 84" IS" ISlli l lli 

- Indicates that data were unavailable. 

TABLE 3 CENTRAL AREA PEAK-
PERIOD CIRCULATOR MODEL 
COEFFICIENTS 

Coefficient/Conmnt 

Walk Con•tant 

Transit Constant 

Taxi Con•tant 

Auto Constant 

Travel Time (minutes) 

Travel Cost (cents) 

Walk Di1tance (miles) 

Walk Distance (transit paths)' 

Destination Zone Trip Density (trip attr/acre) 

Ln of Destination Zone Area (in acres) 

Implied Values of nme 
Year for Dollars 

Chicago 

2.69269 

0.54637 

-1.06622 

0.00000 

--0.0QOOO 

--0.01065 

-4.70000 

-4.70000 

0.00767 

1.00000 

$5.07 

1985 

• The walk distance coefficient for transit i• applied only to the di•· 

OblUVed 

3ll 

Olli 

2 

I" 

tance walked for transit acces•, 0Jre5S,;....;.;''-an_d_tran....;;.:.s"-fe"-r . ____ _ 
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alternative-specific constants were adjusted to match ob­
served mode shares. Table 4 gives observed and modeled 
mode shares and average trip lengths by mode. The observed 
data were obtained from unpublished results of a CA TS sur­
vey of central area residents. 

Midday Distributor Mode Choice Model 

The midday distributor mode choice model for Chicago has 
the same form as the morning peak-period distributor model. 
Like the peak-period circulator model, the midday distributor 
mode choice model for Chicago does not have a counterpart 
in the Los Angeles, Detroit, or Miami models. In 1985, ap­
proximately 16,000 trips were made to the central area on 
Metra outside the morning peak period. This was only 15 
percent of the total daily trips made to the central area on 
Metra during the day, but it was not a trivial number of trips. 
To calibrate the model, the morning peak distributor model 
was chosen as a base. The coefficient of travel cost was dou­
bled to cut the implied value-of-time in half for two reasons: 
(a) the midday trips were assumed to be nonwork trips and 
(b) travelers making nonwork trips value their time at ap­
proximately one-half the level of work-trip travelers. The 
alternative-specific constants were not modified from the val­
ues determined for the morning peak-period distributor model. 
Table 5 gives the coefficients and constants used for the mid­
day distributor model. 

No data were available to guide the adjustment of the mid­
day distributor model constants and coefficients. However, 
the model results were compared with the peak-period model 
results for reasonableness. Table 6 gives the comparison. Note 

TABLE 4 OBSERVED AND l"STIMATED MODE SHARES 
AND AVERAGE TRIP LENGTHS FOR PEAK-PERIOD 
CIRCULATOR MODEL 

Mode Share Average Trip Length (minutes)' 

Mode Observed Modeled Observed Modeled 

Walk 51.4% 51.4% 8.5 8.3 

Transit 23.2 23.1 21.4 28.0 

Taxi 12.6 12.7 20.1 24.9 

Auto 12.9 12.8 19.0 37.4 

• Average trip lengths based on walk travel times between zones for all modes. 

TABLE 5 CENTRAL AREA MIDDAY 
DISTRIBUTOR MODEL COEFFICIENTS 

Coefficient/Consrant Chicago 

Walk Consranl 2.74164 

Transit Consrant -0.27072 

Taxi Conslant -3.13828 

Travel Time (minutes) -0.09000 

Travel Cost (cents) -0.02130 

Walk Dislance (miles) -3.00000 

Walk Distance (transit psths)' -3.00000 

Implied Values of Time $2.54 

Year for Dollars 1985 

• The walk disrance coefficient for transit is applied only to the dis­
tance walked for transit access, egress, and transfer. 
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TABLE6 COMPARISON OF MORNING PEAK-PERIOD 
AND MIDDAY DISTRIBUTOR MODE SHARES 

Walk Share Transit Share Taxi Share 

Modeled Observed Modeled Observed Modeled Observed 

Mode Shares by Walk Distance (time interval in minutes) 

0-5 100% 100% 0% 1% 0% 0% 

5-IO 99 99 0 0 

10-15 96 99 0 

15-20 87 96 11 0 

20-25 76 93 23 0 

25-30 58 88 39 12 0 

30-35 37 66 59 33 

35-40 17 38 77 62 

40-45 9 26 84 73 

45-50+ 4 13 87 87 

Mode Shares by Rail Station 

Roosevelt 40% 66% 53% 34% 7% 1% 

Van Buren 94 97 3 0 

Randolph 95 98 0 

North Western 83 82 16 17 0 

Union 82 76 17 22 0 

LaSalle 92 91 0 

Average 84% 83% 15% 16% 1% 0% 

that the midday walk shares were consistently higher by dis­
tance range interval than the peak shares. This was expected 
because of the lower value-of-time used in the model. On the 
other hand, results by commuter rail station were mixed be­
cause of differences between the distributions of trips by com­
muter rail station for the peak and midday periods. The North 
Western, Union, and LaSalle Street stations were relatively 
farther from the midday attractors of trips than they were 
from the peak-period attractors. Thus, the midday walk shares 
from those stations were lower than the peak-period walk 
shares. The opposite was true for the Roosevelt, Van Buren, 
and Randolph Street stations. 

Midday Circulator Trips-Central Area Workers 

The midday circulator model for central area workers simul­
taneously determines trip generation, trip distribution, and 
mode choice. The model has the following form: 

exp(U0 ,.,,) 
for each production zone 

(4) 

where P1J,m is the probability of making zero trips or making 
one trip to Zone j on Modem and U1J,m is the utility of making 
zero trips or making one trip to Zone j on Mode m. 

Each of the combinations of alternatives has its own utility 
function that takes on unique values for each origin zone and 
in all cases, except for making zero trips, for each destination 
zone. The utility functions are 

U(f = 0) = C0 + A 1 * origin employment density (5) 
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U(f = 1, j, walk) 

Cw + A 2 * walk time + A 3 * walk distance 

+ A 4 * worker trip attraction density of Zone j 

+ As * In (zonal area in acres) (6) 

U(f = 1, j, transit) 

C, + A 2 * transit time + A 6 * transit walk distance 

+ A7 * transit fare 

+ A 4 * worker trip attraction density of Zone j 

+ As * In (zonal area in acres) (7) 

U(f = 1, j, taxi) 

Cc + A 2 * taxi time + A7 * taxi fare 

+ A 4 * worker trip attraction density of Zone j 

+ As * In (zonal area in acres) (8) 

U(f = 1, j, automobile) 

c. + A 2 * automobile time 

+ A7 * automobile cost 

+ A 4 * worker trip attraction density of Zone j 

+ As * In (zonal area in acres) (9) 

In Equations 5 through 9, C0 , Cw, C,, Cc, and C. are the 
alternative-specific constants for zero trips, walk, transit, taxi, 
and automobile, respectively, and A 1 , A 2 , ••• , A 7 are cali­
brated model coefficients. 

Table 7 compares the calibrated coefficients for the midday 
circulator model for central area workers with the models 
used in Los Angeles, Detroit, and Miami. There are several 
differences between the Chicago model and the others. First, 
the constant for zero trip making for Chicago is substantially 
higher than for Detroit and Miami but similar to the constant 
for Los Angeles. The constant was set to cause the model to 
match the observed percentage of zero trip makers for the 
central area in 1985: 39. 7 percent. Table 8 gives the modeled­
to-observed match for the other calibration measures-the 
mode shares and average trip lengths. Note that the observed 
mode shares and average trip lengths were obtained from a 
central area building survey performed by CATS in 1985. 

The coefficient for walk distance is also substantially higher 
for the Chicago model than for the other cities. The coefficient 
was set to match an observed average walk trip length of 4.4 
min for central area workers' midday trips. 

The implied value-of-time for Chicago is substantially lower 
than for Los Angeles, similar to that for Detroit, and sub­
stantially higher than that for Miami. The variation in the 
values-of-time suggests that the worker model is not stable 
across urban areas. This is likely, because the model simul­
taneously projects trip frequency, trip distribution, and mode 
use. Indeed, one of the problems in calibrating the model for 
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TABLE 7 COMPARISON OF MIDDAY CIRCULATOR 
MODEL COEFFICIENTS FOR CENTRAL AREA WORKERS 

Coefficient/Constanl Los Angeles Detroit Miami Chicago 

Constant-No Trips 9.29400 4.80000 4.98160 11.50000 

Walk Constanl 3.03400 4.34000 5.03600 6.12823 

Transit Constant 2.90000 2.43540 2.80200 0.39150 

Circulator Constant -0.81000 1.08500 -0.05400 0.79697 

Taxi Constant NA NA NA -1.27064 

Auto Constant 0.00000 0.00000 0.00000 0.00000 

Travel Time (minutes) --0.09190 -0.05226 -0.05980 --0.05226 

Travel Cost (cents) -0.00896 -0.01500 --0.04120 -0.00750 

Walk Distance (miles) -3.00000 -3.00000 -3.00000 -9.50000 

Walk Distance (transit paths)' -4.20000 -4.20000 -4.20000 -1.00000 

Destination Zone Trip Density 0.00767 0.00767 0.00767 0.00767 
(trip altractions/acre) 

Ln of Dest. Zone Area 1.00000 1.00000 NA 1.00000 
(in acres) 

Employment Density (employ.I 0.0008552 0.0008552 0.0008552 0.0008552 
acre) (for 0 !rip makers) 

Implied Value of Time $6.15 $2.09 $0.87 $4.18 

Year for Dollars 1975 1975 1986 1985 

NA = not applicable. 
• The walk distance coefficienl for transit is applied only lo the distance walked for transit 
access, egress, and transfer. 

TABLE 8 MIDDAY CIRCULATOR MODE SHARES AND 
AVERAGE TRIP LENGTHS (CENTRAL AREA WORKERS) 

Mode Share Average Trip Length (minutes) 

Mode Observed Modeled Observed Modeled 

Walk 90.1% 89.5% 4.4 4.9 

Transit 6.5 7.0 24.7 24.6 

Taxi 1.6 1.7 19.0 

Au lo 1.7 1.8 25.5 

- Indicates that data were unavailable. 

Chicago was the effect of the interaction of the variables-it 
was difficult to get the model to "settle down." 

Contrary to the other models used for Chicago, the midday 
central area worker model included a constant for the cir­
culator mode that was different from the normal transit mode. 
Unlike the models for the other cities, the constant for the 
circulator makes it more attractive than transit when all travel 
impedances are equal. This was done in the Chicago model 
because the circulator (LRT) was not modeled as an explicit 
mode separate from transit, but rather as a transit submode. 
This procedure avoided the independence of irrelevant alter­
natives problem that would have been obvious if LRT had 
been considered a new mode. LRT could not be considered 
substantially different from the bus, subway, and elevated 
systems already in place in the central area. 

Nevertheless, because of its visibility, accessibility, fare col­
lection system, and other unique characteristics, it was felt 
that LRT would be more attractive than the existing transit 
system. This is especially true for intra-central-area trips. Spe­
cifically, it was assumed that at a point of indifference on an 
interchange, travelers would choose LRT 60 percent of the 
time and regular transit 40 percent of the time. This meant 
that the constant for LRT should be more positive than the 

. constant for transit by the following amount: Delta = In (0.6/ 
0.4) = 0.405. Note that at the point of indifference (i.e., 50 
percent choose bus and 50 .percent choose transit), the delta 
value would be zero. 
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In the actual application of the model, the added attrac­
tiveness of LRT was added to the utility of transit in pro­
portion to the amount of in-vehicle travel time spent on LRT. 
In other words, if LRT'was used for 50 percent of the in­
vehicle travel time on an interchange, the utility of transit 
was only 0.2025 more than what the transit utility would have 
been if only bus had been used for the entire trip. The full 
difference (0.405) was added only if LRT was the only transit 
mode used for the entire interchange. 

The LRT attractiveness difference can be equated with travel 
time or travel cost by dividing by the coefficients of travel 
time or travel cost, as appropriate. The maximum LRT at­
tractiveness difference is equivalent to 7. 8 min of travel time 
or 54 cents of travel cost. 

During the calibration and validation of the model, it was 
discovered that the trip distribution portion of the model was 
sensitive to the destination zone trip density. There is a sub­
stantial variation in trip density in the central area. It was 
discovered that several zones were attracting a major portion 
of the trips from all other zones in the central area. To solve 
this problem, maximum trip densities were set at two standard 
deviations above the mean trip attraction density for the cen­
tral area. 

Midday Circulator Trips-Central Area Nonworkers 

The midday circulator model for central area nonworkers is 
a simultaneous trip distribution-mode choice model. It is of 
the same form as the model used for peak-period circulator 
trips. However, in the midday circulator model for nonwork­
ers, the destination zone trip density is based on non-home­
based trips, not home-based work trips as in the morning 
peak-period circulator model. Table 9 compares the cali­
brated coefficients for the Chicago model with the models 
used for Los Angeles, Detroit, and Miami. 

The coefficient for walk distance is substantially higher for 
the Chicago model than for the other cities. This is the same 

TABLE 9 COMPARISON OF MIDDAY CIRCULATOR 
MODEL COEFFICIENTS FOR CENTRAL AREA 
NONWORKERS 

Coefficient/Constant Los An&eles Detroit Miami Chicago 

Walk Constant 2.92200 2.87680 3.82400 S.S8921 

Transit Constant 1.31800 4.35300 1.01100 2.78463 

Circulator Constant -3.lSSOO 1.93800 -1.03800 3.19010 

Taxi Constant NA NA NA -1.00428 

Auto Constant 0.00000 0.00000 0.00000 0.00000 

Travel Time (minutes) -0.08780 -0.16900 -0.05810 -0.05226 

Travel Cost (cents) -0.01096 -0.09657 -0.04280 -0.0lSOO 

Walk Distance (miles) -3.00000 -3.00000 -3.00000 -9.00000 

Walk Distance (transit palhs)" -4.20000 ·4.20000 -4.20000 -9.00000 

Destination Z.One Trip Density 0.00378 0.00378 0.00378 Q.(l0378 
(trip attractions/acre) 

Ln of Dest. Zone Area 1.00000 1.00000 NA 1.00000 
(in acres) 

Implied Value of Time $4.83 SI.OS $0.81 $2.09 

Year for Dollars 197S 197S 1986 198S 

NA = not applicable. 
• The walk distance coefficient for transit is applied only to the dislance walked for transit 
access, egress, and transfer. 
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situation that occurred for the midday circulator model for 
central area workers. The coefficient was set to match an 
observed average trip length of 4.4 min. The average walk 
trip length for nonworkers was assumed to be identical to the 
average trip walk length for central area workers. Table 10 
compares modeled and observed mode shares and average 
trip lengths for central area nonworkers. As with the midday 
circulator model for workers, the observed nonworker travel 
characteristics were obtained from the 1985 central area build­
ing survey performed by CATS. 

When the implied values-of-time are compared across the 
three cities for the circulator model for central area non­
workers, the same patterns emerge as in the circulator model 
for central area workers. Specifically, the Chicago value-of­
time is substantially lower than the value-of-time used for Los 
Angeles, similar to the value-of-time used for Detroit, and 
substantially higher than the value-of-time used for Miami. 

Midday Circulator Trips-Central Area Residents 

The midday circulator model for central area residents is a 
simultaneous trip distribution-mode choice model. It is of 
the same form as the model used for peak-period circulator 
trips and the midday circulator model for nonworkers. For 
the midday circulator model for central area residents, the 
destination zone trip density is based on home-based nonwork 
trips. Table 11 gives the calibrated coefficients for the Chicago 

TABLE 10 MIDDAY CIRCULATOR MODE SHARES AND 
AVERAGE TRIP LENGTHS (CENTRAL AREA 
NONWORKERS) 

Mode Share 

Mode Observed Modeled 

Walk 92.73 92.23 

Transit 3.S 3.7 

Taxi 0.9 1.0 

Auto 3.0 3.2 

Average Trip Length (minu~) 

Observed Modeled 

4.4 4.9 

24.7 24.7 

17.9 

38.7 

- Indicates lhat data were unavailable. 

TABLE 11 MODEL COEFFICIENTS FOR 
MIDDAY CIRCULATOR TRIPS (CENTRAL 
AREA RESIDENTS) 

Coefficient/Constant 

Walk Constant 

Transit Constant 

Taxi Constant 

Auto Constant 

Travel Time (minutes) 

Travel Cost (cents) 

Walk Distance (miles) 

Walk Distance (transit paths)' 

Destination Zone Trip Density (trip aUr/acre) 

Ln of Destination Zone Area (in acres) 

Implied Values of Time 

Year for Dollars 

Chicago 

6.35276 

3.51171 

-0.69088 

0.00000 

-0.05226 

-0.01500 

-10.00000 

-10.00000 

0.00378 

1.00000 

$2.09 

198S 

•The wolk distance coefficient for transit is applied only to the dis­
tance walked for transit access, egress, and transfer. 
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TABLE 12 MIDDAY CIRCULATOR MODE SHARES AND 
AVERAGE TRIP LENGTHS (CENTRAL AREA 
RESIDENTS) 

Mode Share 

Mode Observed Modeled 

Walk 92.0% 92.1% 

Transit 4.0 3.8 

Taxi 1.0 0.9 

Auto 3.0 3.2 

- Indicates that data were unavailabie. 

Average Trip Length (minutes) 

Observed 

4.9 

24.7 

Modeled 

5.3 

28.0 

24.9 

37.4 

model. Table 12 gives the observed and modeled mode shares 
and average trip lengths by mode for the midday resident 
trips. Los Angeles, Detroit, and Miami did not use a com­
parable model for their DPM models. 

SUMMARY 

A useful central area circulator/distributor model has been 
calibrated for Chicago based on the DPM modeling meth­
odology originally performed for Los Angeles. A number of 
interesting lessons were learned during the calibration of the 
models. This led to the following conclusions and recom­
mendations regarding DPM models. 

First, detail is critical. A great amount of detail was used 
in defining the Chicago central area zone structure and trans­
portation network. If the model calibration were performed 
again for Chicago, additional detail would probably be used 
in describing the transit system. There are difficulties in ac­
quiring the data necessary to develop detailed networks and 
the socioeconomic data for detailed zones. However, the de­
tail is crucial to properly model the utilities of the different 
choices available in circulator/distributor models. 

In future model calibration efforts, attempts should be made 
to move away from simultaneous model forms. Whereas si­
multaneous model forms might be theoretically satisfying, 
they are very difficult to control in practice. In addition, when 
the circulator/distributor models are transferred from one ur­
ban area to another, it can be easy to "forget" the distribution 
parts of the models in attempts to match mode shares. Al­
though they are not the subject of this paper, simultaneous 
trip distribution-mode choice models make it difficult or im­
possible to isolate the effects of system changes in alternatives 
analyses. 

Attention should be paid to average trip lengths and mode 
shares by average trip length in the calibration of circulator/ 
distributor models. It is interesting to compare the various 
models from Los Angeles, Detroit, Miami, and Chicago and 
speculate on the effects of the different coefficients on the 
model results. In many ways, the Chicago models are similar 
to the Los Angeles models:· The Los Angeles models had a 
high value of travel time. On the basis of the need to add the 
coefficient of walk distance to the Chicago model, it is likely 
that the high value-of-time in the Los Angeles model was 
compensating for the disutility of walk distance. In contrast, 
if a model with low values-of-time had been used in Chicago 
(similar to the Miami models), the coefficient of walk distance 
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would have been even more important to keep the modeled 
travelers from walking "forever." 

Another change that might be appropriate for circular/dis­
tributor models would be to disaggregate travel-time into out­
of-vehicle and in-vehicle travel time as is done in many re­
gional mode choice models. This change would make the 
circulator/distributor models more consistent with the re­
gional model and decrease the importance of the walk distance 
coefficient. 

This model development effort highlighted the need for 
additional research into the modeling of circulator/distributor 
trips. The circulator/distributor models for Detroit, Miami, 
and Chicago are all derivatives of the Los Angeles model 
developed in the late 1970s. The Detroit and Chicago models 
adjusted the Los Angeles model constants and coefficients to 
match observed aggregate travel characteristics. The Miami 
model was apparently recalibrated in a more rigorous manner; 
however, the basic structure was not changed from the struc­
ture originally developed for Los Angeles. Experience in the 
development of the Chicago model suggests that changes in 
the basic model structure used for circulator/distributor models 
could improve both the understandability and the reason­
ableness of the models . However, such changes will require 
a concerted effort to collect and analyze circulator/distributor 
mode choice data from cities with circulator/distributor 
systems. 
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Evaluating the Sensitivity of Travel 
Demand Forecasts to Land Use 
Input Errors 

JIT N. BAJPAI 

The sensitivity of the urban transportation planning process (UTPP) 
to differences (or errors) in socioeconomic input is examined 
using the Dallas-Fort Worth area as a case study. The sensitivity 
analysis indicated that the final output of the UTPP, link volumes, 
is sensitive to errors in the district-level forecasting of population 
and employment. Planners undertaking corridor-level studies 
should be most concerned about the reliability and accuracy of 
district-level socioeconomic forecasts, particularly for districts di­
rectly served by the corridor. Because local transportation facil­
ities are most sensitive to errors in zone-level inputs, site-specific 
studies may be severely affected by data errors at the traffic zone 
level. Greater attention should be paid to suburban areas where 
the potential for introducing large input errors is high. Because 
of the potential for large assignment errors, expansion of a 
district-to-district trip table to a zone-to-zone trip table should 
be avoided. Travel demand models must be applied using traffic 
zone-level data, not district-level data. 

The Urban Transportation Planning Process (UTPP), com­
prising a sequence of models, is commonly used to analyze 
and predict traffic volumes on a transportation network on 
the basis of anticipated changes in socioeconomic variables 
such as population, employment, vehicle availability, income, 
and household size. To produce an accurate geographic dis­
tribution of trip making, these models are usually applied at 
the traffic zone level using the regional transportation system 
network- and zone-level socioeconomic inputs. Agencies re­
sponsible for the preparation of zone-level data, in general, 
develop inputs in two steps: first, from region to district and, 
second, from district to zone (J). Because events that influ­
ence the location of economic activities and population are 
difficult to predict, allocation errors are inevitable though of 
different magnitude in the two steps of allocation. 

Large errors in the forecast of socioeconomic variables are 
likely to produce highly inaccurate traffic forecasts for deci­
sion makers responsible for investment in transportation in­
frastructure. For instance, a large disparity between the fore­
cast and actual traffic can cause substantial misallocation of 
public resources due to under- or overdesign of a facility. A 
recent comparative analysis of 10 urban rail transit projects 
(2) indicated that overestimates of future population and em­
ployment in downtown areas were sufficiently large to con­
tribute significantly to overestimation of future ridership on 
some rail projects built with federal funds. Acknowledging 
this, it becomes necessary for a transportation planner to 

COMSIS Corporation, Suite 1100, 8737 Colesville Road, Silver Spring, 
Md. 20910. Current affiliation: World Bank, 1818 H Street, N.W., 
Washington, D.C. 20433. 

understand the implications of various types and magnitudes 
of socioeconomic input errors on the prediction of travel de­
mand. This issue is examined by analyzing the sensitivity of 
travel demand forecasts to land use input errors. 

Prior works on the propagation of errors in the travel pre­
diction process mostly considered errors caused by the structure 
of models, input data size, and aggregation procedures. For 
example, one of the early works on the sensitivity of the four­
step travel prediction process to model specification errors and 
sampling variation in data used was conducted by CONSAD in 
1968 (3). Later, efforts were made to analyze errors in prediction 
with disaggregate choice models. Koppelman ( 4) identified ma­
jor sources of errors in prediction, including model error and 
aggregation error, and suggested ways to improve prediction 
models. 

The sensitivity analysis reported in this paper differs from 
earlier efforts. The focus of this analysis was on evaluating 
only the impact of changes in the input of socioeconomic data 
on the UTPP outputs; other inputs of the process (network 
data, travel data, and zone structure and the models) were 
kept the same. The same travel demand model was repeatedly 
applied to avoid the effect of changes in the structure of the 
model on traffic forecasts. The Dallas-Fort Worth area travel 
demand model was selected for the sensitivity tests. Five sce­
narios representing various types and magnitudes of errors in 
district and subdistrict (zone) allocations were tested. 

APPROACH 

Selected Travel Demand Model 

The Dallas-Fort Worth area travel demand model was se­
lected for the sensitivity tests. The selection considered the 
sophistication of and familiarity with travel demand models 
as well as staff skill levels in their maintenance and operation. 
However, the foremost factor was the willingness of the North 
Central Texas Council of Governments (NCTCOG) to assist 
in the analysis. NCTCOG currently uses the DRAM/EMP AL 
(5) models to allocate regional land use forecasts for the nine­
county Dallas-Fort Worth area to 170 forecast districts. The 
district forecasts are subsequently allocated to almost 5,691 
traffic survey zones (TSZs). Travel demand simulation models 
produce assignments for transit and highway networks using 
the TSZ-level socioeconomic variable inputs (households; 
median income; and employment by basic, retail, and service 
categories) and mode-specific network attributes (6). The model 
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generates interzonal trip tables for four income categories 
(low, low-middle, high-middle, and high) and four trip pur­
poses (home-based work, home-based nonwork, non-home 
based, and other). The four-step modeling process (trip gen­
eration, trip distribution, mode choice, and network assign­
ment) includes three sophisticated multinomial logit type mode 
choice models for each of the three trip purposes (excluding 
"other" purpose). 

The trip distribution model uses a standard gravity for­
mulation technique and a second-order Bessel curve as the 
travel decay function for each of the seven trip purposes (home­
based work for three income groups, home-based nonwork, 
non-home based, and other). Minimum time of travel be­
tween zones is used as the impedance measure in the distribu­
tion models. 

For roadway traffic assignment a capacity-restrained as­
signment model with an incremental loading procedure is ap­
plied. A generalized cost function of time, distance, and toll 
is used in building the minimum paths between zones. The 
model uses the upper and lower bounds of the total number 
of trips (defined as 20,000 and 100,000 trips) and the critical 
volume-to-capacity ratio (set at 0.8) as three parameters for 
controlling link updating. As the network becomes congested, 
the trips assigned between each successive link updating de­
crease from the upper bound toward the lower bound. Two 
separate volume-delay equations are used for high- and low­
capacity facilities. Further distinction is made between the 
daily and peak-hour assignment models. As the volume-to­
capacity ratio exceeds 0. 7, the delay rises exponentially to the 
maximum allowable delay. 

Because all sensitivity tests were performed for the base 
year, the mode shares (transit and highway) represented the 
observed shares in the base year. In other words, mode-split 
models were not used while running the entire model chain. 
The primary intent was to examine the effect of allocation 
errors on highway trip assignments only. The daily assignment 
procedure was applied, and estimates of daily link volumes 
were converted to hourly units using factors of 0.10 and 0.12 
for high- and low-capacity facilities, respectively. 

Scenarios of Land Use Input Errors 

Traffic zone-level inputs are usually prepared in two steps: 
first, from region to district and second, from district to zone. 
Most agencies use two separate methods for each of the two 
steps of forecasting. The difference between the input fore­
casts and reality, referred to here as errors in allocation/fore­
casting, can occur at either step, though the errors are of 
different magnitude and nature. "Nature of error" means the 
pattern of error distribution in the geographical space. Errors 
can be concentrated in a few locations, reflecting a geograph­
ical bias, or distributed in a random fashion. The contem­
porary phenomenon of rapid suburban growth, for example, 
can easily produce underprediction of employment in the sub­
urbs and overprediction in the central city. This can occur if 
the forecasting/allocation method used for district forecasts 
fails to anticipate, for example, the magnitude and trend of 
suburbanization in high-technology service jobs. Similarly, 
one or more biased parameters in an analytical method can 
produce allocation errors of almost random nature. 
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To illustrate the effect of errors (or changes) in socioeco­
nomic input data on the UTPP outputs, five scenarios, repre­
senting various types and magnitudes of errors in district and 
subdistrict allocations, were formulated. In addition, a sep­
arate test scenario was developed to examine the impact of 
assigning a zone-to-zone trip interchange table that was pro­
duced by disaggregating a district-to-district trip table instead 
of using a trip table generated directly by the application of 
travel demand models at the zone level. The intent behind 
this scenario was to examine whether the practice among 
certain agencies of expanding a trip table to develop a smaller 
spatial unit level trip interchange table is accurate. In practice, 
a district-level trip table, an output of either a trip distribution 
model or a land use simulation model such as DRAM/ 
EMPAL (5), POLIS (7), or PLUM (8), is often disaggregated 
into a zonal trip using a proportioning method. 

Although many test scenarios could be evaluated, the fol­
lowing six tests addressed the issues of land use allocation 
mentioned previously within the available resources. 

• Errors in district level allocation were evaluated by Test 
A (introduce ± 20 percent random errors into land use fore­
casts at the district level) and Test B (introduce ± 40 percent 
random errors into land use forecasts at the district level) . 

• Errors in subdistrict level allocation were evaluated by 
Test C (introduce geographical bias into land use allocation 
at the district level), Test D (introduce ± 40 percent random 
errors into land use forecasts at the zone level), and Test E 
(distribute district forecasts uniformly among zones compos­
ing a district). 

• Trip table disaggregation was evaluated by Test F (dis­
aggregate district-level trip table to zone level). 

For Tests A, B, and D, the distribution of error was created 
by randomly selecting one-third of districts or zones for pos­
itive, one-third for negative, and one-third for no errors. The 
overall magnitude of positive error was kept equal to negative 
error and distributed in proportion to population and em­
ployment. For Test C, employment for the downtown district 
and the districts in the southwestern sector of Dallas was 
reduced by 20 percent, and the same magnitude of employ­
ment increase was allocated among districts located in the 
northwestern sector (Figure 1) in the same proportion as ex­
isting employment. For developing uniform distribution under 
Test E, traffic zone-level data were prepared by dividing the 
district forecasts by the number of zones (i.e., PIN, where P 
and N represent the population and the number of zones in 
a district, respectively) . For Test F, an 800 x 800 trip inter­
change table was first collapsed into a 147 x 147 table and 
then expanded back to an 800 x 800 table using zonal shares 
of households and employment in each district. The number 
of households and total employment were used as the pro­
portioning factors for trip productions and attractions, 
respectively. 

Sensitivity of Travel Models to Zone-Level Inputs 

Changes introduced in zonal socioeconomic inputs affect all 
four steps of travel forecasting: trip generation, distribution, 
mode choice, and assignment. Even though the population 

.. 
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LEGEND: 1 '''''' Area with 20% Employment DecreaH 

2 ~ Area with Employment Increase 

3»'~ Area with 20% Employment Decrease 

FIGURE 1 Introduction of geographical bias into land use allocation (Test C). 

and employment control totals remain fixed, changes in their 
allocation among zones cause variation in estimates of zone­
level trip productions and attractions. The level of variation 
depends on the magnitude of change introduced in the zone­
specific variables and their sensitivity to trip generation rates. 
Because the trip production model of the Dallas-Fort Worth 
area is a function of four income and six household-size cat­
egories, any change in zonal population would affect the es­
timate of trip productions for a given percentage distribution 
of households by income and household size. For example, 
the net effect of a population decline in low-income zones 
and a rise in high-income zones would be an increase in sys­
temwide travel due to the positive relationship between 
household income and trip productions. 

The Dallas-Fort Worth area trip attractions are defined as 
the number of person trips per employee and are stratified 
by five area types, four employment types, and, in the case 
of home-based work trips, purpose by income quartile. For 
each zone the estimate of trip attractions by purpose varies 
with the magnitude of change in zonal employment, assuming 
that the existing shares of employment categories and house­
hold income quartiles remain the same. Though the trip­
balancing procedure guarantees that regional production and 
attraction totals by purpose remain equal, their geographical 
distributions are disturbed under each land use scenario. 

The trip distribution model is sensitive to person trips es­
timated by the trip generation model to and from each zone, 

plus the zone-to-zone travel time. Because interzonal travel 
times remain fixed across scenarios, the trip distribution pat­
tern is principally influenced by the change in the estimates 
of zone-level productions and attractions. In the case of 
Dallas-Fort Worth, the distribution model for work trips is 
further stratified by household income to capture the income 
effect on commuting trip length. Low-income households are 
more sensitive to travel impedance compared with higher­
income households in the Dallas-Forth Worth area. There­
fore, trip lengths and the resulting trip distribution patterns 
are also affected by the spatial distribution of various income­
offering jobs and wage-earning households. 

Because mode shares (proportion of transit and highway) 
between zones represent the observed shares in the base year, 
under each test scenario the estimate of highway trips between 
zones principally depends on total trip estimates between zones 
(output of the trip distribution stage). The effect of fixed mode 
shares on total highway trips can be pronounced for zone 
pairs that experience a large change in the estimate of total 
trips compared with the base and exhibit high transit share 
in the base year [e.g., radial travel to central business district 
(CBD) from low-income areas]. 

The effect of changes in zonal inputs thus propagates through 
each of the three steps of travel demand estimation and, fi­
nally, a highway trip table is produced. The roadway assign­
ment model uses an incremental capacity-restrained proce­
dure to load the vehicle trip table onto the road network. 
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Because the assignment process is sensitive to congestion, a 
significant change in the orientation of vehicle trips can trigger 
traffic diversion. The output of this step is road link volumes, 
the final outcome of the four-step process. Hence, a com­
parison of the base year and individual test scenario specific 
link volumes illustrates the magnitude of overall traffic impact 
caused by a particular scenario. In other words, changes in 
link volumes manifest the accumulated effect of the zone­
level input changes on link-level travel. 

Traffic Impact Measures 

For each test scenario, the effect of introducing a certain type 
and magnitude of socioeconomic input error on the final out­
put of UTPP is measured at both the systemwide level and 
the micro level. The output measures of individual test runs 
and the run without any error (base run) are compared to 
illustrate the magnitude of the effect. 

At the system level, root mean square error (RMSE), av­
erage trip length, and total number of trips are considered as 
aggregate output measures of UTPP. The final UTPP output 
is traffic volumes assigned on a particular transportation sys­
tem network or a group of links. To check the accuracy of 
UTPP, however, the assigned link volumes are generally com­
pared with the ground counts (or ridership counts in the case 
of transit). RMSE is usually calculated to indicate the overall 
goodness of fit between traffic counts and model assigned 
traffic volumes. It is measured in the following manner: 

RMSE 
2: (count - assigned volume )2 

(N - 1) 

where N is the number of traffic count stations. 
Because of the large number of trip interchanges in an area, 

average trip length is a commonly used summary measure of 
trip distribution patterns. Similarly, the total number of trips 
is a simple measure of trip generation model output. 

To examine the micro-level effects of each sensitivity test, 
lane error, a measure reflecting the difference between the 
test case assigned link volume and the base case (without 
error) link volume, is calculated for individual links. Lane 
error for a link is defined as 

test case link volume - base link volume 
Lane error = ---------------­

link capacity • number of lanes 

Link capacity is expressed in terms of vehicles per hour per 
lane. It varies with the type of facility (freeways, major ar-
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terial, minor arterial, and collector) and area type (downtown, 
suburb, etc.). Lane error is a measure of discrepancy in traffic 
volume easily understood by transportation planners and 
highway engineers. A road planning rule of thumb suggests 
that a forecast error not exceeding one half-lane (positive or 
negative) is tolerable without a high probability of under- or 
overdesigning a facility. In other words, it reflects the mag­
nitude of public resource misallocation that may occur be­
cause of the error in traffic forecasts. 

FINDINGS OF SENSITIVITY TESTS 

Errors in Distict Level Land Use Forecasts 

Tests A, B , and C represent three scenarios of district level 
forecasting/allocation errors. Table 1 gives the magnitude of 
population and employment moved under each scenario (i.e., 
the magnitude of disturbance introduced in the land use al­
location). Test B ( ± 40 percent random error) introduces the 
largest allocation errors, followed by Tests A ( ± 20 percent 
random error) and C (geographical bias). Test C causes min­
imum misallocation compared with the other two tests; only 
4.3 percent of total regional jobs are moved. 

Tables 2 and 3 summarize the results of the sensitivity test 
runs. Regionwide output comparisons between the base run 
(without error) and the three district-level tests (A, B, and 
C) indicated no significant variation in total number of trips 
by purpose, average trip length by purpose, or percent of 
RMSE (Table 2). The explanation for this could be that, 
because of no change in the regional control totals and the 
smoothing out of the effects of positive and negative errors, 
the values of the aggregate sensitivity measures of each test 
appear similar to the base run. 

At the micro level, however, the overall number of links 
affected by more than half-lane error varied across the three 
test runs depending on the magnitude of activity allocation 
errors (see Table 3). For example, about 13.6 percent of 
network links experienced more than half-lane error (positive 
or negative) under Test B ( ± 40 percent random error). 
Under Test A ( ± 20 percent random error) and Test C (geo­
graphical bias), however, 5.36 and 2.68 percent, respectively, 
of links were affected by the same magnitude (see Table 3). 
Similarly, for each facility type, the proportion of links se­
verely affected (more than half-lane error) consistently in­
creases with the magnitude of input error across all three test 
runs. 

The results of individual tests indicate that the effect of 
allocation error is not uniform across all types of road facil­
ities. Under each of the three tests, lane error is more pro-

TABLE 1 MAGNITUDE OF POPULATION AND EMPLOYMENT MOVED 
UNDER DISTRICT-LEVEL ALLOCATION TESTS 

Test Scenarios of Errors 
Population Moved Employment Moved 

in District Level Amount % of Region Amount % of Region 

Test A: ( :t 20% Random Errors) 228,392 6.92 153,987 7.43 

Test B: (:t 40% Random Error) 456,820 13.82 307,991 14.86 

Test C: (Geographical Bias) 0 0 89,930 4.34 



Bajpai 25 

TABLE2 AGGREGATE OUTPUTS OF SENSITIVITY TEST RESULTS 

Ema ID Dll ld'I Leri Emra In Sybdlnrlct 1.«ycl 

Base Test A TestB TestC TestD Test E 
No Error ± 20% ± 40% Geo- ± 40% Uniform 

Random Random snphl· Random Distrl· 
Error Error cal Error bution 

Bias 
Output 

Total Person Trips 12,468,578 12,476,562 12,471,145 12,465,871 12,500,563 12,473,757 

Total Vehicle Trips 9,638,826 9,662,462 9,662,935 9,654,295 9,674,076 9,749,958 

Average Trip Length by Purpose (in miles) 

HBW-Low Income 8.83 8.8 8.79 8.86 8.82 8.66 
HBW-Mid. Low Income 10.52 10.46 10.47 10.54 10.52 10.43 
HBW-Mid. High Income 11.65 11.58 11.54 11.63 11.61 11.61 
HBW-High Income 12.10 12.03 11.98 11.95 12.03 12.01 
Home Based Non-Work 6.29 6.16 6.06 6.27 6.04 6.26 
Non-Home Based 6.90 6.75 6.70 6.79 6.78 7.01 
Other 10.72 10.58 10.51 10.65 10.64 10.76 

%RMS 60.2 61.23 64.38 59.19 61.6 60.77 

TABLE 3 DISTRIBUTION OF HIGHWAY LINKS BY FACILITY TYPE AND LANE ERROR 

Percentage of Links by Lane Error ( ±) 

Errors in District Level 

Test A Test B 

±20% Random ±40% Random 
Error Error 

Number 
Facility Type of Links 0.5 Lane >1 Lane 05 Lane >1 Lane 

Freeway 1,966 0.00 0.00 1.02 

Major Arterial 1,789 12.75 2.73 22.47 

Minor Arterial 3,751 9.65 2.11 1655 

Collector 5,964 2.16 0.39 5.42 

Freeway Ramps 2,107 0.24 0.00 1.04 

Frontage Roads 1,369 2.33 0.08 5.12 

Overall 16,946 4.46 0.90 8.16 

nounced in the links of major and minor arterials compared 
with other facility types (see Table 3). Freeways and freeway 
ramps are affected the least, suggesting that district-level al­
location errors have limited effect on high-capacity facilities 
serving mainly regional and interregional movements. Only 
in the case of Test B, where very large error ( ± 40 percent 
random error) is introduced, did almost 20 (i.e., 1.02 percent 
as shown in Table 3) freeway links display more than half­
lane error. Facilities serving local and within-district move­
ments, such as collectors, are affected much less compared 
with major and minor arterials. It appears that errors in link 
volumes gradually accumulate from local facilities to higher­
level facilities, such as major and minor arterials that prin­
cipally serve interdistrict travel. 

Congested links [links with volume/capacity ratio (V/C) larger 
than 1.0] are less sensitive to increases in traffic due to traffic 
diversion, so a comparison of V/C by facility type was un-

0.00 

16.60 

12.16 

2.65 

0.19 

1.16 

5.49 

Errors in Subdistrict Level 

TestC Test D Test E 

Geographical Bias ±40% Random Uniform 
Error Distribution 

05 Lane >1 Lane 0.5 Lane >1 Lane 0.5 Lane >1 Lane 

0.00 0.00 0.00 0.00 0.05 0.00 

8.50 1.34 11.29 5.76 19.17 13.53 

3.82 1.01 11.95 3.17 16.82 13.60 

0.96 0.18 3.79 1.46 6.56 4.59 

0.14 0.00 0.10 0.00 1.04 0.05 

1.82 0.15 1.97 0.22 5.26 1.39 

2.24 0.44 5.34 1.84 8.62 6.17 

dertaken as shown in Table 4. The comparison indicates that, 
with the increase in magnitude of input errors, the proportion 
of congested links (V/C more than 0.8) increases, but the 
increase is low across all facility types. Because almost 60 
percent of freeway links are not congested, low sensitivity of 
freeways, as observed earlier, appears to be less influenced 
by the saturation of freeway links. However, in areas of free­
way congestion such as the northern Dallas, some traffic di­
version from freeways may have occurred, but only in the 
case of traffic increase. Highway links most affected by the 
input errors fall below the 0.8 V/C ratio range. 

To illustrate the impact of geographical bias in allocation, 
Test C results are further stratified by three geographical 
areas: areas with employment increase, areas with employ­
ment decrease, and areas with no change (see Table 5). Most 
road links experiencing more than half-lane error are situated 
in areas where allocation errors are made. Links with positive 
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TABLE 4 DISTRIBUTION OF HIGHWAY LINKS BY FACILITY TYPE AND V/C RATIO 

Distribution of Uaka (in %) % Change in I.he Distribulioo of Links Compared lo Base 

Errors in District uvel 

Test A Tc.ID 
nasc Case +I- 20 rcrccnt ltanJom Error + /- 40 Pcrccnl Random Error 

Pacilily Type < 0.8 0.8 - 1.0 > 1.00 < 0.8 O.H-1.0 > 1.00 < 0.8 0.8 - 1.0 > 1.00 

Freeway 59.92 10.89 29.20 0.10 -0.31 0.20 -1.93 0.15 1.78 

Major Arterial 47.18 11.85 4.97 -2.24 0.17 -0.11 -2.40 -0.11 2.52 

Minor Arterial 75.23 8.93 15.84 0.05 0,56 -0.61 -0.64 J_(J.1 ·0.40 

Colleclor 89.40 3.24 7.36 -0.15 0.03 0.12 0.07 -0.17 0.10 

Freeway Ramps 79.69 6.03 14.29 -0.33 0.09 0.24 -1.00 0.90 0,()9 

Fronlage Roads 81.67 4.60 13.73 -0.37 0.15 0.22 -1.17 0.07 1.10 

Overall 76.55 6.75 16.69 -0.11 0.14 -0.04 -0.81 0,30 0.5! 

TABLE 5 LANE ERRORS BY GEOGRAPHICAL AREAS UNDER TEST C (GEOGRAPHICAL 
BIAS) 

Facility Number Areas wilh No Change 
Type o£Linlcs +0.5 Lane ->0.5 Lane 

Freeways 1966 0 0 

Major Arterial 1789 7 13 
% of Links 0.39 0.73 

Minor Arterial 3751 6 1 
% of Links .16 0.03 

Collector 5964 2 11 
% of Links 0.03 0.18 

Freeway Ramps 2107 0 0 
% of Links 0.00 0.00 

Frontage Roads 1369 2 6 
% of Links 0.15 0.44 

Total 16946 17 31 

% of Links 100.00 0,10 0.18 

(overestimation of traffic) and negative lane error are con­
centrated in areas with employment increase and decrease, 
respectively. For instance, out of 455 road links with greater 
than half-lane error, 228 links serving areas of employment 
increase indicated positive error, and 166 links situated in 
areas where employment is reduced indicated negative error. 
As observed earlier, the most affected links are concentrated 
in the categories of major and minor arterials. Overall, al­
though the percentage of links severely affected appears low 
(2.68 percent with more than half-lane error) due to a small 
magnitude of geographical bias in district inputs (Test C), the 
affected number of links is high enough (176 major and 181 
minor arterial links) to cause misallocation of public resources. 

Errors in the Disaggregation of District-Level 
Inputs to Zone Level 

Tests D ( ± 40 percent random error) and E (uniform distribu­
tion) are extreme cases of subdistrict allocation errors. Test 

Areas w /Employmenl Increase Areas w /Employmenl Deaease 
+0.5 Lane ->0.5 Lane +0.5 Lane ->0.5 Lane 

0 0 0 0 

89 2 4 61 
4.97 0.11 0.22 3.41 

86 2 0 86 
2.1.9 0.05 0.00 2-29 

41 4 0 10 
0.69 0.07 0.00 0.17 

0 0 0 3 
0.00 0.00 0.00 0.14 

12 1 0 6 
0.88 0.07 0.00 0.44 

228 9 4 166 

l.3S 0.05 .02 0.98 

E presents a case where zone-level forecasts are prepared 
with no consideration given to zonal capacity, zoning policy, 
or other major factors influencing the attractiveness of a zone 
for development (e.g., transportation accessibility, availabil­
ity of public services , existing development , etc.). Test D, 
however, reflects a case of large random error in allocation. 
To illustrate the level of disturbance caused under each of 
the two scenarios, R2 values for zonal population and em­
ployment are estimated by comparing the inputs for the base 
(no error) and individual test runs separately (Table 6). In 
this case, the R2 value reflects the strength of association 
between the base case inputs and particular test run inputs. 
A value of 1 represents a perfect match between the two sets, 
and 0 means no match. The higher values of R2 (0.917 for 
population and 0.915 for employment) observed under Test 
D (±40 percent random error) clearly indicate that this test 
does not cause as large a deviation from the base case allo­
cation as Test E (uniform distribution). Actually, uniform 
distribution under Test E causes an extremely large error in 
zonal inputs. 
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TABLE 6 CORRELATION BETWEEN BASE YEAR 
INPUTS AND SUBDISTRICT ALLOCATION 
TEST INPUTS 

Subdistrict 
Al!oca1jon Tests 

Test D: (±40% Random Error) 
Test E: (Uniform Distribution) 

R-Square 
Population Employmem 

0.917 
0.683 

0.915 
0.714 

A comparison between the base and test runs for total trips 
by purpose, areawide RMSE, and trip lengths by purpose 
indicates no visible impact of input errors on systemwide out­
put measures (see Table 2). However, the lane error between 
the two tests varied with the overall magnitude of errors in­
troduced under each test. For instance, large allocation errors 
caused under Test E (uniform distribution) in comparison 
with Test D ( ± 40 percent random error) led to the observed 
large difference in percentages of links severely affected [7.2 
and 14.8 percent of links with more than half-lane error under 
Tests D and E , respectively (see Table 3)]. 

The test results also suggest that, much like the district­
level allocation tests, the magnitude of lane errors in each 
road facility class varied noticeably in all categories. Major 
and minor arterials are the most affected facilities. A com­
parison of the results of Tests D and B, where ± 40 percent 
errors are introduced in a random fashion at the subdistrict 
and district levels, respectively, indicates that the percentage 
of links showing more than half-lane error is much higher for 
district-level error (Test B) than for subdistrict-level error 
(Test D). This is true across all road facility types (see Table 
3). For example , compared with almost 17 percent of major 
arterial links affected by more than half-lane error under Test 
D ( ± 40 percent random error at the district level), 39 percent 
of major arterial links are affected under Test B ( ± 40 percent 
random error at subdistrict level). However, if the results of 
Test E (uniform distribution) and Test B are compared, a 
more or less similar magnitude of lane errors across all facility 
types is seen , except for collectors. This is because, under 
Test E, an extremely large error is introduced in zonal inputs. 
Moreover, collectors are expected to be more affected by 
errors in zonal inputs because they mainly serve local trips. 

In summary, the traffic effects of errors in subdistrict al­
location are similar to district allocation errors in the facilities 
most affected and the association between the magnitude of 
input errors and traffic volume errors. The degree of sensi­
tivity, however, appears to vary substantially. For example, 
major and minor arterials and expressways are more suscep­
tible to errors in district-level allocation than subdistrict al­
location. Local roads, on the other hand, are more affected 
by errors in zone-level than in district-level inputs. 

In the real world, the likelihood of experiencing large sub­
district allocation errors of the magnitude of Test E (uniform 
distribution) is extremely low for two reasons. First, most 
subdistrict allocation procedures distribute the incremental 
growth of a district among its zones and assume almost no 
change in existing developments (except in cases where large 
renovations or revitalization schemes are planned). Second, 
these procedures, in general, take into account major factors 
influencing development in a zone (e.g., availability of public 
services, zoning, accessibility, etc .). Areas with the greatest 
potential for large deviations from anticipated growth are 
undeveloped areas usually located at the fringe of a city. In 
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these areas, there are always uncertainties linked to market 
forces influencing the location of activities. Moreover, there 
is often more than one site competing for new development. 

Disaggregation of District-Level Trip Table to 
Zone Level 

Under Test F, an 800 x 800 trip interchange table is first 
collapsed into a 147 x 147 table and then expanded back to 
an 800 x 800 table using the number of households and total 
employment in zones as the proportioning factors for trip 
productions and attractions, respectively. Such a trip table 
expansion procedure assumes that the interzonal accessibility , 
usually measured in terms of travel time or cost , does not 
influence the magnitude of interzonal interactions. In reality, 
however, an inverse relationship between the magnitude of 
interactions among areas and their spatial separation (or 
impedance) is common . To check the validity of this as­
sumption, the trip length frequency curves for the original 
trip table and Test F are compared in Figure 2. 

The comparison indicates that the average trip length in­
creased from its original value of 13.62 to 15.30 min after 
application of the disaggregation procedure, as evident from 
the trip length frequency curves shown in Figure 2. The pos­
sible explanation for this is that because of the omission of 
the accessibility effect from the zone-level trip distribution, 
the trip interchange volume between zones that are highly 
accessible to each other is likely to be underestimated, and 
volumes between zones that are farther apart will be over­
estimated. The result is an increase in the proportion of longer 
trips. 

As expected, because of the increase in the share of longer 
trips, the highway assignment produces significant positive 
lane error within each class of links (see Table 7). Both major 
and minor arterials experienced substantial increases in traffic, 
almost as high as under Test B ( ± 40 percent random errors 
in district level) . Actually, the proportion of links with more 
than one lane error is extremely high under this scenario 
compared with all earlier tests. For instance, the percentage 
of major arterial links with more than half-lane error under 
Tests B and F are 39.07 and 40.75, respectively (compare 
Tables 3 and 7) . But the percentage of links with more than 
one lane error is 16.6 and 23.53 for Tests Band F, respectively. 
It is obvious that the preceding kind of trip table stratification 
procedure can cause high prediction of trip volumes on major 
facilities, leading to their overdesign. 

Tests results indicate that a procedure used for the disag­
gregation of a district-level trip to zone level must account 
for interzonal accessibility. Exclusion of accessibility variation 
among zones may produce large errors in UTPP outputs. The 
magnitude of overall error will greatly depend on the size of 
districts-the magnitude of expansion (i.e., ratio of total number 
of zones and districts). In general , the smaller the size of the 
districts, the lower the potential for introducing large errors 
in the trip table splitting process. This is true because the 
smaller districts would account for greater variations in in­
terzonal accessibility than the larger districts. 

In the light of these findings , it is recommended that travel 
demand models (for instance, UTPP) be applied at the traffic 
zone level so that interzonal trip tables are produced directly 
and the need for trip table stratification is avoided. In the 
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FIGURE 2 Comparison of trip length frequency curves. 

TABLE 7 DISTRIBUTION OF HIGHWAY LINKS BY LANE ERROR UNDER 
TEST F (SPLITIING OF DISTRICT-LEVEL TRIP TABLE) 

Negative Error 
Facility Type 0.5 Lane > 1 Lane 

Freeway 0.00 

Major Arterial 2.35 

Minor Arterial 1.52 

Collector 0.89 

Freeway Ramps 0.05 

Frontage Roads 1.02 

Overall 0.99 

case of site-level analysis (or local area network planning), 
traffic zones are sometimes further divided into smaller spatial 
units, and the zone-to-zone trip table is once again disaggre­
gated to develop a new trip table. Because of the splitting of 
smaller zones, the potential for large errors is reduced, al­
though it is not fully eliminated. 

SUMMARY OF FINDINGS 

To illustrate the effect of changes in socioeconomic input data 
on the estimation of network traffic volumes, five scenarios 
representing various types and magnitudes of changes in dis­
trict and subdistrict allocations, referred to here as errors, 
were tested (see Table 8). The Dallas-Fort Worth area was 
selected as the test case. Three out of five scenarios reflected 
the random nature of allocation errors. These scenarios were 
created by randomly selecting one-third of districts or zones 
for positive, one-third for negative, and one-third for no er­
rors. One district-level allocation scenario replicated geo­
graphical bias in land use allocation that may occur because 
of the rapid flight of jobs to the suburbs. The test represents 

0.00 

0.95 

0.41 

0.32 

0.00 

0.00 

0.29 

Percentage of Llnks 

Positive Error 
0.5 Lane > 1 Lane 

0.51 0.00 

14.87 22.58 

13.01 13.74 

4.59 3.30 

0.81 0.05 

6.22 6.90 

6.44 6.76 

the contemporary problem of land use forecasting in urban 
areas that are witnessing unexpectedly high suburban growth 
and decline or modest growth in the central city. The scenario 
illustrated the impact of employment underprediction in one 
of the suburban sectors and overprediction in the CBD and 
one of its adjacent sectors. Among subdistrict allocation sce­
narios, one test showed the effect of distributing district-level 
inputs equally (or uniformly) among the zones of each district. 
It represented a special case of subdistrict allocation where 
zone-specific land use forecasts are completely insensitive to 
zone capacity, zoning policy, and major factors influencing 
the potential for development in a zone (existing develop­
ment, availability of utilities, accessibility, etc.). 

In addition, a separate test was performed to examine the 
impact of assigning a zone-to-zone trip interchange table that 
is produced by disaggregating a district-to-district trip table 
instead of using a trip table generated directly by the appli­
cation of travel demand models at the zone level. 

For each scenario the demand sensitivity of facilities was 
measured in terms of the proportion of links experiencing 
large differences in traffic volumes (increase or decrease by 
more than half-lane capacity) after the introduction of input 
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TABLE 8 FINDINGS OF SENSITIVITY TESTS 

Tnllic lmpKt mi Pacilitica 

-------- ---- ---------------------------- ----- ---
Collect on 

>--·------------ -------·---.--... ------------------·-
Prom Region to District Random Small Not significant Moderate ww 

Random Large ww High '-<>w /Moderate 

Geographical Small Not Significant Moderate but '-<>w 
Bias conccntlated in areu 

with input errors 

------- ------------ ·-
Prom District to Zones Random Large Not Significant Moderate ww /Moderate 

Uniform Large WW High Moderate 

------ ·----------·-- ----------- ·---------------------------------
Splitting of Trip Table ww High Moderate/High 

errors. The findings of the case study are summarized in Table 
8. Broad conclusions drawn from the sensitivity tests are as 
follows: 

1. The severity of traffic prediction errors increases with 
the overall magnitude of activity allocation error but not uni­
formly across all types of road facilities. Major and minor 
arterials are most sensitive to input errors , followed by local 
roads and expressways. 

2. Errors in district and zone-level forecasts influence each 
facility type differently. Facilities serving major interdistrict 
movements, such as major and minor arterials and express­
ways, are more sensitive to errors in district-level allocation 
than subdistrict (or zone-level) allocation. Local roads, on the 
other hand, are affected more by the errors in zone-level 
rather than district-level inputs. 

3. A small magnitude of geographical bias in district-level 
forecasts may not produce significant systemwide impacts, but 
it can severely affect facilities near districts with input errors . 

4. Subdistrict allocation procedures must take into consid­
eration the zonal capacity and factors influencing the attrac­
tiveness of a zone for development. Insensitivity to these may 
produce large errors in zonal inputs and, in turn, traffic fore­
casts across all types of facilities . 

5. The practice of trip table expansion (or splitting) to develop 
trip interchange tables for smaller spatial units introduces large 
errors in traffic forecasts. This is mainly due to the omission of 
an accessibility factor influencing trip interchanges. 
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Forecasting Intercity Rail Ridership 
Using Revealed Preference and 
Stated Preference Data 

TAKAYUKI MORIKAWA, MOSHE BEN-AKIVA, AND KIKUKO YAMADA 

A methodology for incorporating revealed preference (RP) and 
stated preference (SP) data in discrete choice models is presented. 
The methodology is applied to intercity travel mode choice anal­
ysis. New mode shares for each origin-destination pair resulting 
from changes in service levels are predicted. The combined es­
timation technique with RP and SP data is developed to promote 
advantages of the two complementary data sources. The empirical 
study of intercity travel demand demonstrates the practicality of 
the methodology by accurately reproducing observed aggregate 
data and by applying a flexible operational prediction method. 

Travel demand models are usually estimated with observa­
tions of actual behavior, or revealed preference (RP) data, 
using the methods of discrete choice analysis [e.g., Ben-Akiva 
and Lerman (1)]. However, in estimating individual choice 
models RP data may be deficient for the following reasons: 

1. RP data do not provide information on preferences for 
nonexisting services; 

2. The choice set considered by the decision maker may be 
ambiguous; 

3. Some service attributes are measured with error· and 
4. Some attributes are highly correlated or lack vari,ability, 

or both. 

The drawbacks can be alleviated to a great extent in a survey 
with hypothetical choice scenarios and fully controlled alter­
natives. Such experimental data are called stated preference 
(SP) data, and they have been used by a number of travel 
demand researchers [e.g., Louviere et al. (2), Bates (3), and 
Hensher et al. (4)] as well as in marketing research [e.g., 
Green and Srinivasan (5) and Cattin and Wittink (6)]. How­
ever, the applications of SP data in practical transportation 
studies are still limited because of the uncertain reliability 
of elicited preferences under hypothetical scenarios. Advan­
tages and disadvantages of RP and SP data and potential 
biases specific to SP data are discussed in detail by Ben-Akiva 
et al. (7). 

Because RP and SP data have complementary character­
istics, this paper explores the idea of using both types of data 
simultaneously. The methodology includes explicit consid-

T. !"forikawa, Department of Civil Engineering, Nagoya University, 
C?1~usa-k~, N~goya, 464-01, Japan. M. Ben-Akiva, Department of 
Ct~d Engmeermg, Massachusetts Institute of Technology, Cam­
br~dge,. ~ass. 02139. K. Yamada, Social System Department, II, 
M1tsub1sh1 Research Institute, Inc., 2-3-6 Otemachi, Chiyoda-ku, To­
kyo, 100, Japan. 

eration of the unknown reliability of SP data, and its objective 
is to yield more reliable travel demand models than those 
produced by separate or sequential SP and RP analyses. The 
following context explains the main idea of the paper. Trade­
offs among certain attributes often cannot be estimated ac­
curately from available RP data. For instance, high correla­
tion between travel cost and travel time in RP data may yield 
insignificant parameter estimates for their coefficients. How­
ever, an SP survey with a design based on low or zero cor­
relation between these attributes may provide additional in­
formation on their trade-offs. Although the SP responses may 
not be valid for forecasting actual behavior due to their un­
known bias and error properties, they often contain useful 
information on trade-offs among attributes. SP data also add 
critically important information on preferences in the intro­
duction of new services, such as a new type of high-grade 
passenger car in rail service. RP data alone cannot provide 
the information needed to assess the impact of such a new 
service. 

In previous papers the authors have proposed a method­
ology for statistically combining RP and SP data in estimating 
travel demand models (8, 9). The key features of the meth­
odology are 

• Bias correction (explicit response models for SP data that 
include both preference and bias parameters), 

• Efficiency (joint estimation of preference parameters from 
all the available data), and 

• Identification (estimation of trade-offs among attributes 
and the effects of new services that are not identifiable from 
RP data). 

The objective of this paper is to demonstrate the effective­
ness of the combined RP/SP estimation method by an appli­
cation to predict intercity rail ridership in conjunction with 
changes in service quality. The changes in service considered 
include the introduction of a high-grade passenger car, which 
could not be evaluated by analyzing RP data only. 

METHODOLOGY 

Model Specification 

Two different model types are considered: RP and SP models. 
The RP model represents market behavior by some appro­
priate structure (e.g., random utility model with discrete 
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choices) , whereas SP response is modeled by the SP model. 
As discussed earlier, although SP data might not be valid for 
forecasting market behavior due to unknown bias and random 
error properties, they often contain useful information on 
trade-offs among attributes and preferences for nonexistent 
services. Thus, the role of SP data is illustrated by the fol­
lowing framework: 

RP model: 

i = 1, . . . 'n:·P, n = 1, ... ' NRP 

~'(i) = {: 
if Alternative i is chosen by Individual 
n in the RP data 
otherwise 

SP model : 

i = 1, .. , , J~P' n 1, . .. ' NSP 

where 

if Alternative i is chosen by Individual 
n in the SP data 
otherwise 

U;" = utility of Alternative i to Individual n, 
V;" = systematic component of U;"' 

E;" = random component of U;"' 

(1) 

(2) 

(3) 

(4) 

d"(i) = choice indicator of Alternative i for Individ­
ual n, 

X;"' W;"' Z;n = vectors of explanatory variables of Alter­
native i for Individual n, and 

a , f3 , 'Y = vectors -of unknown parameters. 

The superscript RP or SP indicates the data type. 
In this framework , it is assumed that the SP response is a 

"choice" or the most preferred alternative presented to the 
respondent. Even when the SP response is given by other 
formats , such as preference ranking or pairwise comparison 
with categorical response, the SP model can be based on the 
same random utility model. A different response format only 
requires a slightly different estimation method. 

The term represented by 'Y'z is specific to the SP model 
and may include SP biases and effects of hypothetical new 
services that are included only in the SP survey. The ap­
pearance of f3 in both models implies that the trade-offs among 
the attributes in the vector x are the same in both actual 
market behavior and the SP tasks. 

The level of random noise in the data sources is represented 
by the variance of the disturbance term e. If RP and SP data 
have different noise levels, this can be expressed by 
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Vi , n (5) 

If SP data contain more random noise than RP data, µ, will 
lie between 0 and 1. µ, is also known to represent the "scale" 
of the model coefficients. 

Assuming independently and identically distributed (i.i.d.) 
Gumbel disturbance terms in the RP model, a logit model is 
obtained with the choice probability given by 

exp (v~P) 
/~p 

L exp (v~P) 
j - 1 

(6) 

An i.i.d. Gumbel assumption for the SP utility disturbances 
leads to the following SP logit model , which includes the scale 
parameter µ,: 

(7) 

Model Estimation 

The unknown parameter vectors, ex, f3, and 'Y and the scale 
parameter µ,are jointly estimated using both RP and SP data. 
The log-likelihood functions for the RP and SP data sets are 
given by 

NRP 1Jl.P 

£RP(cx, 13) L L cfI;P(i) In p~P(i) (8) 
n - 1 i - 1 

N SP /~p 

UP(~,"/, µ,) = 2: 2: ~P(i) In P~P(i) (9) 
n=l i=l 

Separately maximizing Equations 8 and 9 yields maximum 
likelihood estimators of the RP and SP models, respectively. 
In that case the scale parameter µ, and the coefficients are 
not separable in the SP model. 

By maximizing the sum of Equations 8 and 9 we can force 
the f3 coefficients to be the same in the RP and SP models. 
Thus, the combined RP/SP estimator is obtained by maxi­
mizing the joint log-likelihood function: 

This estimator fully uses the information contained in both 
RP and SP data as discussed above. If the random terms of 
the RP and SP models for the same individual are assumed 
to be statistically independent, maximizing Equation 10 will 
yield the maximum likelihood estimator of all the parameters. 
If the random terms are not independent, this estimator is 
consistent, but the standard errors of the estimates calculated 
in the usual way are incorrect (JO). 

Because the joint log-likelihood function (Equation 10) is 
not linear in parameters due to the introduction of µ, , the 
estimation cannot be carried out using ordinary MNL software 
packages for logit models. If the response format of the SP 
data is choice, a program to estimate a nested logit model 
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may be used. Alternatively, the following sequential esti­
mation method using ordinary software packages may yield 
consistent but less efficient estimates. 

Step 1. Estimate the SP model (Equation 3) by maximizing 
Equation 9 using the SP data to obtain ;13 al}.._d µ; . .Qefine 
y~P = µJ3'x~P and calculate the fitted value y ~P = µJ3'x~P 
for the RP observations. 

Step 2. Estimate the following RP model with the fitted 
value ~P included as a variable to obtain X. and &: 

~ 

u~P = AY~P + cx'w~P + B~P (11) 

where A = 1/µ. Calculate µ = 1/°i.., ~ µ131µ, and .Y = 
µ~'Y/tl. The accuracy of&, ~ and .Y can be improved by Step 
3. 

Step 3. Multiply x5P and zsP by µ to obtain a modified SP 
data set. Pool the RP data and the modified SP data and then 
estimate the two models jointly to obtain&, ~' and~. 

In this paper the joint estimator is employed. It was im­
plemented in a special program written in GAUSS. 

Prediction with the RP/SP Models 

For prediction only the RP model is used because our concern 
is actual behavior, not experimental response. Therefore, the 
systematic utility component used for prediction is given by 

(12) 

Note that ~ in Equation 12 is estimated using both RP and 
SP data. If some hypothetical services presented in the SP 
questions are to be included for predicting demand, the cor­
responding term in the SP model should be added to Equation 
12, as follows: 

(13) 

where Z;n is a subvector of Z;,, representing hypothetical at­
tributes relevant to the policy changes and ~ is an estimate 
of the parameters on Z;,,· 

Terms from the RP and SP utility functions can be com­
bined, as shown in Equation 13, because the scale of the 
utilities is adjusted between the RP and SP models by intro­
ducing the scale parameter µ.. 

CASE STUDY-ESTIMATION OF INTERCITY 
MODE CHOICE MODELS 

Description of Survey Data 

The survey was conducted to assess intercity rail ridership in 
conjunction with a planned replacement of regular cars by 
high-grade cars on trains. The alternative travel modes in the 
study corridor are express bus (or coach) service and private 
cars. The corridor connects two districts between which it 
takes 2 to 3 hr by rail and 4 to 6 hr by bus and car. Currently 
the corridor is covered by 26 daily trains, of which four have 
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high-grade cars. Because there is no difference in rail fare 
between regular and high-grade trains , the high-grade trains 
are always fully booked. The rail operator is considering the 
upgrading of additional trains and would like to know how 
many new rail passengers will be attracted from the competing 
modes. 

A survey of passengers traveling in the corridor was con­
ducted using pure choice-based random sampling for the 
three competing modes. The questionnaire asked for the so­
cioeconomic characteristics of the traveler, the attributes of 
the chosen mode, and availability of alternative modes . Level­
of-service attributes, such as travel time and cost for the chosen 
and unchosen modes, were calculated using network data for 
the reported origin and destination of the trip . 

Each respondent was also asked for a preference ranking 
of the three alternative modes under the following hypothet­
ical scenarios: for rail passengers, Scenario 1 (status quo) and 
Scenario 2 (better access to the bus terminal); and for bus 
and car passengers, Scenario 1 (status quo), Scenario 2 [in­
crease in frequency of high-grade trains (13 services daily)], 
Scenario 3 (reduction in rail line-haul travel time by 10 per­
cent), and Scenario 4 (reduction in rail line-haul travel time 
and increase in frequency of high-grade trains). Respondents 
were asked to rank in order the three travel modes under 
each scenario. 

The numbers of usable responses were 274, 89, and 82 from 
rail, bus, and car passengers, respectively. Those who said 
that they had no available modes other than the chosen one 
are assumed to be "captive" to the chosen mode. One hundred 
thirty-three respondents were captive to rail and 17 and 40 to 
bus and car, respectively. Captives are excluded from the 
calibration data set, but they are included in the prediction 
of aggregate ridership . 

Estimation Results 

Three models were estimated: RP model, SP model , and 
combined RP/SP model, each of which was estimated by max­
imizing the corresponding log-likelihood function (see Equa­
tions 8 through 10). The independent variables include line­
haul travel time for rail and bus and total travel time for car 
(in hours), travel time for access and egress trips for rail and 
bus (in hours), travel cost per person (in thousands of yen) , 
and business trip dummy (1 if the trip is associated with a 
business purpose, 0 otherwise) . The last variable interacts 
with travel time and cost . 

Because pure choice-based sampling was employed , the 
estimates of the alternative specific constants should be ad­
justed by the following correction formula (11 ): 

~b = ~b - log H; 
W; 

where 

(14) 

~b = adjusted estimate of the constant for Alternative i , 

~h = estimate of the constant for Alternative i through the 
exogenous sample maximum likelihood, 

H, = share of Alternative i in the sample (for SP models 
sample share must reflect the repetitions of the SP 
questions for each respondent), and 
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W; = market share of Alternative i in the population. 

The RP model estimated from the RP data is given in the 
first column of Table 1. The value of line-haul travel time 
for a business trip is approximately 1,500 yen per hour, or 
$10/hr. 

Estimation of the SP model used the SP data from the bus 
and car passengers to analyze their intention to switch to rail. 
A choice data set was created by taking the first ranked al­
ternative as the preferred one, or chosen one. Because few 
respondents had the full choice set (i.e., three alternatives) , 
information on the second ranking was not used. A dummy 
variable that indicates the increase in frequency of high-grade 
trains was added to the rail utility. 

The second column of Table 1 gives the estimates of the 
SP model. The high-grade train dummy has a significantly 
positive coefficient. The rail and bus constants are signifi­
cantly different from those of the RP model, which may be 
ascribed to the use of only the bus and car passengers' SP 
data or to some SP biases. The value of line-haul travel time 
for business trips is approximately 400 yen per hour, or $3/ 
hr. 

The third column of Table 1 gives the estimation result of 
the combined RP/SP model. The parameters are calibrated 
through the joint estimation method. Alternative specific con­
stants are estimated separately from the RP and SP data be­
cause the two models show significant differences in those 
constants. This implies that alternative specific constant terms 
belong to a'w and 'Y'z in the framework of Equations 1 
and 3. 

The high-grade train dummy has a significantly positive 
coefficient. The value of line-haul travel time for business 
trips is approximately 560 yen per hour, or $4/hr. The scale 
parameter µ is 1.33, but it is not significantly different from 
1.0, which suggests that the variances of the random terms in 
the RP and SP models are approximately the same. 

PREDICTION FROM ESTIMATED MODELS 

In this section, two types of aggregation techniques, sample 
enumeration and representative individual, are applied to the 
estimated model to predict demand for policy changes. 
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Sample Enumeration Method 

The fitted values of systematic utilities are given by Equation 
13, and then the fitted choice probabilities are calculated by 
substituting these values in the MNL form . 

Aggregated demand in the population can be obtained by 
the sample enumeration method as follows . It is assumed that 
the ratio of captives for each mode in the population is the 
same as in the sample. C(i) is defined as the number of cap­
tives in the population. The predicted aggregate demand of 
Alternative i is calculated by Equation 15: 

N(i) = C(i) + N · S(i) 

I Nsj 

C(i) + 2: E1 L Pni(i) i = l , ... , I (15) 
}=1 n=l 

where 

Ns1 = number of observations choosing Alternative j in 
the estimation sample, 

N1 = observed number of individuals choosing Alter­
native j in the population, 

N = total number of noncaptive individuals in the 
population, 

S(i) = predicted share of Alternative i, 
w1 = observed share of Alternative j in the population, 

/>,,p) = predicted choice probability of Alternative i for 
Individual n sampled on Alternative j, and 

E1 = an expansion factor defined by N/Ns/· 

Table 2 gives predicted aggregate demand by this method 
under the same four scenarios as used in the SP questions. 
Observed aggregate numbers are obtained from on-off counts 

TABLE 1 ESTIMATION RESULTS (t-STATISTICS IN 
PARENTHESES) 

Variables RP Model SP Model RP/SP Model 

Rail conslanl (RP) 1.66 (5.4) 1.40 (5.1) 

Bus conslanl (RP) -1.43 (-5.0) -1.59 (-5.9) 

Rail conslanl (SP) 0.706 (2.4) 0.906 (4.0) 

Bus consl.anl (SP) -3.37 (-1.6) -3.24 (-1.9) 

High-grade Lrain dummy 0.702 (3.1) 0.520 (2.4) 

Line-haul travel lime x business bip -0.458(-1.7) -0.370 (-0.6) -0.270 (-1.4) 

Tcnninal Lravel time x business lrip (Rail and Bus) -0.973 (-1.8) 0.232 (0.3) -0.143 (-0.5) 

TOlal travel cost -0.402 (-5.5) -0.336 (-4.7) -0.294 (-4 .3) 

Business uip dummy x total travel cost 0.102 (0.7) -0.551 (-1.2) -0.187 (-1.6) 

S<:alO l!!!!!!!JC!er !J 1.33 Q.6l 

N 255 434 689 

l(O) -191.35 -332.26 -524.61 

L(M -149.25 -271.18 -427.59 

pl 0.220 0.184 0.185 

r 0.189 0.163 0.166 
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TABLE 2 PREDICTED ANNUAL TRIPS AND MODAL SHARES 
BY SAMPLE ENUMERATION (DIFFERENCE FROM VALUES 
UNDER SCENARIO 1 IN PARENTHESES) 

Rail 

Observed Annual Trips 5,365,865 

Mod>IShnre 73.6'k 

Scenario 1 5,357,431 

!<1n1J1Ja uol 73.S'I> 

Scenario 2 5,646,818 (+289,387) 

/ lncte.iso in hl•b-omde imin•l 71A'l. 1+3.9'X>l 

Scenario 3 5,369,599 (+12,168) 

/reduction OI '1111 timGI 73.7% r+0.2%1 

Scenario 4 5,656,751 (+299,320) 

ISccnanos 2 + 31 77.6'lf. 1+4.1%1 

for rail and bus trips and screen-line counts for car trips. The 
observed and predicted numbers under Scenario 1 (status 
quo) match perfectly because the full set of alternative specific 
constants estimated from the RP data are used in the predicted 
utilities. This desirable property of MNL models is obtained 
by separately estimating alternative specific constants from 
RP and SP data and using the RP constants for prediction. 
The table shows that high-grade trains significantly increase 
rail ridership. 

Representative Individual Method 

Another aggregation technique employed here is the repre­
sentative individual method. This method approximates ag­
gregate shares by the choice probabilities of the "representa­
tive" individual. The representative individual can be created 
by calculating averages of attributes in the sample or assigning 
appropriate attribute values. This method is very operational 
when the model is transferred to places where disaggregate 

Hi•hwavBUJ Cnr 

117,237 1,808,940 

l.li'JI, 24.8% 

113,046 1,821,565 

1,5% 25.0\\ 

80,992 (-32,054) 1,564,232 (-257,333) 

1.1% 1-0.4%1 2.U% 1-3.5%1 

111,719 (-1,327) 1,810,724 (-10,841) 

1.5% (-0.0%1 24.8% 1-0.2%1 

80,112 (-32,934) 1,555,179 (-266,386) 

1.1 % 1-0.4%1 21.3% (-3.7%1 

data are unavailable. However, aggregate predictions by this 
method have an aggregation bias. 

The fitted utility functions are also calculated by Equation 
13 with "representative" attribute values. This case study pre­
dicts prefectural level origin-destination (0-D) trip tables be­
tween the two districts. Each 0-D pair is treated as a market 
segment, and average attribute values for each 0-D pair in 
the sample are used for representative individuals. 

Table 3 gives the observed aggregate 0-D table, and the 
predicted one is given in Table 4. The tables agree fairly well, 
which can be ascribed to good parameter estimates under the 
proposed method. Although not shown in this paper, pre­
dicted 0-D tables under different scenarios were calculated. 

CONCLUDING REMARKS 

The method of combined estimation of discrete choice models 
from RP and SP data was presented. An empirical case study 
of intercity travel demand analysis demonstrated the practi-

TABLE 3 OBSERVED 0-D TABLE (ANNUAL RIDERSHIPS 
AND SHARES) 

Al A2 A3 

Rail Bus Car Rail B"" Car Rail .Bus Car 

Bl 191,768 0 37,230 414,524 2,664 79,570 191,768 1,332 29,565 

83.7% 0,0%) 16.3% 83.4% 0.5% 13.3%\ 

B2 1,349,818 0 527,425 1,265,649 27,980 604,805 567,890 13,320 109,135 

71.9% I0.0% 

B3 475,767 218,635 55,845 

76.4% 

TABLE 4 PREDICTED 0-D TABLE USING REPRESENTATIVE 
INDIVIDUAL METHOD 

Al A2 A3 

Rail Bus Car Rail Bus Car Rail Bus Car 

Bl 181,179 0 45,819 408,038 7,722 81,498 179,301 1,348 42,016 

180.0%1 10.0% \ 120.0% \ 182.1%\ 11.5%\ C16.4%) (80.5%) (0.6%) (18.9%) 

B2 1,453,364 0 417,541 1,366,426 35,672 496,336 592,188 11,131 87,027 

177.7%1 10.0%\ 122.3%\ 172.0%\ 11 .9%\ 126.1%) (85.8%) (1.6%) (12.6%) 

B3 467,374 0 155,122 659,621 58,552 188,154 300,924 6,383 41,466 

175.1%\ 10.0%\ 124,9%\ <72.7%) (6.5%) 120.8%) (86.3%) (1.8%) (11.9%) 
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cality of the method. The case study predicted rail ridership 
under hypothetical scenarios, such as introduction of high­
grade trains. 

When RP and SP data were used simultaneously to estimate 
the mode choice model, alternative specific constants were 
estimated separately from each data set. Using the MNL es­
timates of the constants from the RP data enables us to re­
produce the aggregate shares through the sample enumeration 
method. Aggregation by the representative individual method 
also accurately reproduced the observed 0-D table. This is 
an encouraging result for using the combined estimation method 
and predicting demand under hypothetical scenarios. 

The work presented in this paper and two previous studies 
(8, 9) has shown the effectiveness and practicality of combined 
estimation with RP and SP data. This paper provided further 
evide.nce. However, more empirical work in different contexts 
may be needed to justify the methodology conclusively. In 
addition, the authors are developing more efficient estimators 
that explicitly treat potential correlation between the random 
utilities of RP and SP models for the same individual. 
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Stochastic Process Approach to the 
Estimation of Origin-Destination 
Parameters from Time Series of 
Traffic Counts 

GARY A. DAVIS AND NANCY L. NIHAN 

The origin-destination (OD) matrix gives the volume of traffic 
from each of a region's origins to each of its destinations and is 
a fundamental input to transportation planning and network de­
sign activities. Because the traditional methods of estimating the 
OD matrix-surveys and trip generation/distribution modeling­
tend to be expensive, cumbersome, and inaccurate, researchers 
have sought to develop methods for estimating the OD matrix 
from observations of traffic volumes on the region's road net­
work. For simple linear networks, such as single intersections or 
freeway sections, OD estimators with desirable statistical prop­
erties can be developed using least-squares methods, but for gen­
eral networks it has not yet been possible to produce consistent 
estimators of OD parameters using traffic count data alone. It is 
believed that the link counts on a traffic network are generated 
by a stochastic process that is parameterized by the means and 
variances of the separate OD flows. By using a tractable ap­
proximation to the traffic-generating process, it is possible to 
develop both maximum likelihood and method of moments es­
timators of OD parameters, and the estimators have desirable 
ccinsistency and asymptotic normality properties. Simulation studies 
suggest that the maximum likelihood estimator, though efficient 
in its use of data, is computationally demanding, whereas the 
method of moments estimator is not computationally demanding 
but is statistically inefficient. 

In transportation modeling, the origin-destination (OD) ma­
trix is an array whose rows index the locations on a network 
where trips originate and whose columns index the locations 
where trips terminate. The entry at the intersection of a row 
and a column gives, for some predetermined time interval, 
the number of trips between that particular OD pair. The 
OD matrix is the fundamental summary of a region's demand 
for travel, so it is an important input to any transportation 
planning activity. Historically, OD matrices have been esti­
mated using some combination of survey methods and trip 
generation/distribution modeling, but the data collection needed 
for these approaches tends to be time-consuming and expen­
sive, and the result is often ofunreliable accuracy (J). Because 
the OD matrix can be viewed as an input to a traffic assign­
ment process the outputs of which are the traffic volumes on 
the network's links, an alternative approach to OD matrix 
estimation is to start with observed link volumes and somehow 

G. A. Davis, Department of Civil and Mineral Engineering, Uni­
versity of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minn. 
55455. N. L. Nihan, Department of Civil Engineering, FX-10, Uni­
versity of Washington, Seattle, Wash. 98195. 

"invert" the traffic assignment to obtain the OD matrix. This 
approach appears increasingly attractive as the proliferation 
of automatic traffic surveillance and control systems makes 
automatic traffic count data more readily available. The clear­
est formal statement of this OD estimation problem to date 
has been given by Cascetta and Nguyen (2), although related 
work appears in Maher (3), Bell (4), and Spiess (5). 

Before considering methods of OD estimation based on 
traffic count data, it is useful to review desirable properties 
of parameter estimators. An estimator is said to be consistent 
if the probability of large discrepancies between it and the 
true parameter value approaches zero as the amount of data 
used approaches infinity. Thus for large amounts of data, a 
consistent estimator is likely to be close to the true parameter 
value, and consistency can be regarded as a minimal necessary 
condition for an estimator to be useful. Consistency is a prop­
erty of point estimators, but in addition to generating a point 
estimate of a parameter, it is often desirable to be able to 
compute confidence bounds for the estimate or to test hy­
potheses concerning parameter values. For a large class of 
estimators, including many maximum likelihood (ML) esti­
mators, a useful theory of inference can be developed on the 
basis of the fact that, as the amount of data becomes large, 
the estimator tends to have a normal distribution. This prop­
erty is called asymptotic normality. Because a parameter es­
timator is a random variable, it has a variance, and larger 
variances indicate greater uncertainty concerning the true pa­
rameter value. If the variance of a particular estimator about 
the true parameter value is lower than that of any other es­
timator, that estimator is called efficient. 

PROBLEM FORMULATION 

Imagine indexing the region's OD pairs by the single index 
j = 1, . . . , m, and let dj denote the demand for travel 
between OD Pair j. We can also imagine that counts are 
available from a total of p of the network's links. Define y, 
a p-dimensional vector whose kth element yk denotes the 
traffic count on the kth link containing a traffic counter, and 
qj, a p-dimensional vector whose kth element qjk denotes the 
probability that a trip between OD Pair j uses Link k. The 
link use probabilities qj are assumed to be constant, consistent 
with the assumption that the traffic assignment is in equilib-

-
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rium. Computation of these probabilities thus requires first 
solving an equilibrium assignment problem. Following Cas­
cetta and Nguyen (2), the relation between the link counts y 
and the OD volumes di can then be given as a linear regression 
of the form 

m 

y 2: (diq) + e (1) 
i~l 

where e denotes an error vector accounting for discrepancies 
between the link counts and their expected values. 

If the rank of the matrix [ q 1 , • • • , q ml is greater than or 
equal to m, the preceding regression problem is well posed 
and least-squares estimates of the OD parameters di can be 
readily computed. For networks of realistic size, however, the 
number of OD elements exceeds the number of links in the 
network, so that Equation 1 leaves the di underdetermined. 
A natural solution to this problem is to expand Equation 1 
by collecting a time series of link counts y(l), y(2), ... made 
at times t = 1, 2, ... and replacing Equation 1 by an extended 
version: 

m 

y(l) 2: diqi + e(l) 
i~I 

m 

y(2) = 2: diqi + e(2) (2) 
i~I 

However, for constant qi, it is easy to verify that the rank of 
the extended regression matrix will always equal the rank of 
[q1, ... , qm], and the identifiability problem encountered 
above cannot be solved, even with an infinite sequence of 
observations. Thus in this formulation of the problem, link 
count data cannot provide a method of consistently estimating 
the OD parameters. This difficulty has been well recognized, 
and the focus of research on OD estimation has been on 
combining link count data with other data (such as from sur­
veys) to provide usable procedures (2- 7). 

The situation for general networks contrasts with that for 
linear networks, such as single intersections, freeway sections, 
and transit routes. Here only one route connects each OD 
pair, and it is possible to obtain counts of the total traffic 
departing each origin (input counts) and arriving at each des­
tination (output counts). Several papers have established that, 
given time-series observations of the input and output counts, 
least-squares-based estimators may be used to estimate the 
proportions of an origin's traffic that terminate at the various 
destinations, even when the number of OD parameters ex­
ceeds the number of count locations. This approach is orig­
inally due to Cremer and Keller (8), whereas a recent paper 
by Nihan and Davis (9) gives conditions and a proof for the 
strong consistency of ordinary least-squares in estimating in­
tersection turning-movement proportions. Thus for linear net­
works, consistent estimators of OD parameters are readily 
constructed from least-squares algorithms, whereas for gen­
eral networks, Equation 1 permits consistent estimation only 
if the number of counted links exceeds the number of OD 
pairs. 

The source of this discrepancy lies in how the information 
available in a set of link counts is used. Equation 1 essentially 
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states that the observed traffic counts are equal to the sum 
of a mean value and an error term, where the mean value 
vector is a linear function of the OD parameters. Even though 
the link count mean is consistently estimable from stationary 
observations, the consistency is not inherited by the estimates 
of the OD parameters because of the noninvertibility of the 
function relating the mean link flows to the OD parameters. 
In linear networks, on the other hand, the statistics of interest 
are not the mean values of the counts, but the covariance 
matrix between the input counts and the output counts. This 
matrix is also consistently estimable, and, given certain con­
ditions on the process generating the input counts, an in­
vertible relationship between the OD parameters and the 
covariance matrix elements can be established, permitting 
consistent estimation of the OD parameters. This suggests 
that if not only the mean values but also the covariance prop­
erties of link counts can be expressed as well-behaved func­
tions of the OD parameters, consistent estimators of these 
parameters requiring only link count data can be constructed. 
In fact, it has been known for quite some time that the OD 
flows and the covariance of the link volumes have a well­
defined and plausible connection (10), but it has been difficult 
to find an appropriate use for this knowledge. In large part 
this is because the process that generates traffic counts has 
nontrivial dynamics, so that a time series of link counts must 
be viewed as a realization of a stochastic process rather than 
as the result of random sampling. The temporal dependencies 
among the link counts often invalidate the use of classical 
statistical procedures, whereas attempts to develop dynamic, 
stochastic models of traffic assignment have either been re­
stricted to simple networks (11) or have produced intractable 
models (12). However, recent work has investigated this prob­
lem in some detail (13,14) and established that under con­
ditions similar to those needed to justify the use of stochastic 
user equilibrium (SUE) traffic assignment methods, a sto­
chastic traffic generation model similar to that used by Cas­
cetta (12) can be approximated by a stationary linear sto­
chastic process driven by normally distributed noise as the 
number of travelers in the system becomes large. The param­
eters of this process are in turn well-defined functions of the 
OD parameters, and the approximation can be used to de­
velop both ML and method of moments (MOM) approaches 
to OD parameter estimation. The approximation model is 
first presented in some detail, and the way the model is par­
ameterized by the OD parameters is emphasized. OD esti­
mation based on this model is then described. 

A STOCHASTIC TRAFFIC MODEL 

Before one can develop and validate statistical procedures, 
one must have an explicit model of the probabilistic mecha­
nisms that are assumed to generate the available data. Equa­
tion 1 provides a model for traffic counts, but for the reasons 
described is not sufficiently rich for developing a useful sta­
tistical theory. Fortunately, Equation 1 has been used not so 
much because of its inherent validity, but because more re­
alistic alternatives are lacking. Development of better alter­
natives requires more detailed consideration of how traffic 
counts are generated by the underlying trip generation and 
assignment processes, and these are poorly understood. One 
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could wait until more detailed knowledge is available (pre­
sumably from laboratory studies) and then use it to construct 
models of traffic generation for actual systems, much as well­
established principles of mechanics are used in structural de­
sign. A more direct strategy would be to formulate plausible 
models based on available knowledge with the aim of even­
tually using real-world systems as one's laboratory, and this 
is the strategy followed here. Thus, rather than attempting to 
construct a comprehensive stochastic model of traffic gener­
ation, just enough probabilistic structure will be added to the 
standard assumptions concerning traffic generation so that a 
tractable stochastic process model of traffic counts can be 
derived. These assumptions lead to a simple but, from an 
estimation standpoint, intractable stochastic process model. 
For large traveling populations, however, it is possible to 
approximate this intractable model by a more tractable linear 
time-series model, from which OD estimators are readily con­
structed. The justification for this approximation uses stan­
dard mathematics but is long and technical. Because it is 
described elsewhere (13,14), it is not included here. However, 
familiarity with the structure of the resulting models helps 
one to see the straightforward way in which OD parameter 
estimators are constructed and how the properties of the es­
timators follow from the properties of the models. 

We begin by treating the OD flows not as constants but as 
random variables, and in particular assume that di(t), the flow 
between OD Pair j on Day t is a binomial random variable 
with parameters n1 and Pi· The outcomes for each OD pair 
and for each day are assumed to be independent, and the 
means and variances of the OD flows are thus given by 

d1 = n1P1 

a'J = n1P1(l - P1) (3) 

The values of the OD parameters~ and crJ are what we desire 
to estimate from link count observations. (If the OD flows 
are treated as constants rather than random variables, we 
simply deal with the special case where cr~ = 0, j = 1, .. . , 
m.) Now assume we have a total of n links in our network, 
and let 

x(t) = the n-dimensional vector whose kth element xk(t) 
gives the traffic volume on Link k on Day t; 

ck(x) = a differentiable function that gives the cost of 
traversing Link k as a function of the traffic 
volume vector x; 

gk(t) = the traveling population's anticipated cost of 
traversing Link k on Day t; 

p1,[g(t)] = differentiable functions giving the probability that 
a traveler between OD Pair j uses the rth route 
connecting j, as a function of the current antic­
ipated cost vector g(t); and 

81,k = 1 if Link k lies on Route r connecting j and 0 
otherwise. 

Then the underlying traffic generation model, Model A, 
can be expressed in recursive form as follows: 

0. Given initial anticipated costs g(O) and link volumes x(O), 
let t = 1. 

1. Generate the dif) as binomial outcomes with parameters 
n1 andp1,j = 1, . . . , m. 
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2. Let gk(t) = (1 - cx)git - 1) + cxck[x(t - 1)], 0 
:5cx:51. 

3. Generate the route flows d1,(t) as multinomial outcomes 
with parameters [dit), p1,(g(t)]. 

4. Let xk(t) = Ii 81,k d1,(t), k = 1, . .. , n. 
5. Let t = t + 1 and go to Step 1. 

The process described in Model A is a first-order Markov 
process. The recursion in Step 2 allows the anticipated cost 
to be a weighted average of the actual historical link costs, 
with ex controlling the relative importance of recent costs. 
Adjustment mechanisms of this sort have appeared elsewhere 
(11,12), whereas the idea that route selection is a multinomial 
process appears to date back to Daganzo (10). Model A is 
easy to simulate, at least for small networks, but the convo­
lutional nature of the link volumes expressed in Step 4 makes 
derivation of the probability distribution of the link volumes 
a difficult practical problem. Similar problems have been en­
countered in statistical mechanics, population biology, math­
ematical sociology, and so forth (15,16). They have often been 
successfully dealt with by using tractable approximations that 
become increasingly accurate as the size of the population 
increases. Intuitively, the approximation of Model A can be 
based on the fact that, conditional on what has happened on 
Day t - 1, the link volumes on Day tare the result of a large 
number of independent, individual route choice decisions, so 
that analogs of the Strong Law of Large Numbers and the 
Central Limit Theorem ought to apply. This intuition is given 
formal substance elsewhere (13,14). The result is that for large 
traveling populations, and in the vicinity of a stable user equi­
librium assignment, the link count process generated by Model 
A can be approximated by a vector-valued autoregressive 
moving average process. In many cases the moving average 
component of this approximation can be neglected, giving the 
following first-order, vector autoregressive [VAR(l)) model, 
Model B: 

x(t) - x = F[x(t - 1) - x] + a(t) (4) 

In Model B, x is a stochastic user equilibrium assignment 
satisfying 

'" 
x = 2: d1qi[c(x)] (5) 

i - 1 

F is a weighted Jacobian matrix of the right hand side of 
Equation 5: 

(6) 

The a(t) are independent, identically distributed normal ran­
dom vectors with mean vector equal to 0 and covariance 
matrix Q given by 

(7) 

As defined earlier, the qi appearing in Equation 7 denote the 
vectors of link use probabilities, whose elements are given by 
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qjk = L (ojrk)pAc(i)] (8) 
r 

The matrices Qj appearing in Equation 7 are defined so that 
the kith element Qj,kt gives the probability that a trip between 
OD Pair j uses both Links k and/: 

Qj,kt = L (&1,k)(&1r1)PAc(i)] (9) 
r 

The advantages of replacing Model A with Model B derive 
from the fact that the V AR(l) process is arguably the most 
tractable and well understood of Markov processes. VAR(l) 
processes are parameterized by the quantities i, F, and Q 
and, for a set of observations x(t), t = 1, ... , N, the ML 
estimates of i, F, and Q are easily calculated using Ieast­
squares methods (17). We are not interested in all VAR(l) 
processes, however, hut only those th<it c<in result from under­
lying traffic assignment processes, and thus must restrict our 
attention to VAR(l) processes whose parameters satisfy 
Equations 5 through 7. Because Equation 5 expresses the 
mean vector x as an implicit function of the OD flow means, 
the question arises as to whether the relationship betwe~ the 
VAR parameters i, F, and Q and the OD parameters d1 and 
cr] is well defined. If the VAR parameters are differentiable 
functions of the OD parameters, we can consider taking the 
derivative of the VAR likelihood function with respect to the 
OD parameters and solving for the OD parameter values 
making these derivatives equal to zero, producing ML esti­
mates. If no such functions exist, the estimation task is much 
more difficult. Fortunately, it can be shown (13, chapter 4) 
that if (a) the link cost functions ck(.) and the route choice prob­
ability functions PA.) are continuously differentiable and (b) 
the rank of the matrix I - (l/u)F is n when the d1 are the 
true values of the OD paramet~rs, then at least in a neigh­
borhood of the true values of d1 , cr], the VAR parameters 
are continuously differentiable functions of the OD param­
eters. Although an explicit representation of this function 
cannot be given, implicit differentiation can be used to obtain 
the necessary derivatives. It can also be readily verified that 
when the link cost functions have the BPR form, while the 
route choice probabilities are given by the multinomial logit 
formula, conditions (a) and (b) are satisfied (13). This well­
behaved relationship between the OD parameters and the 
VAR parameters is the basis of OD estimation. 

Essentially Model B claims that if one had time-series data 
consisting of, say, morning peak-period traffic volumes for 
all links in a network collected over several months, the data 
should be accurately modeled as a VAR(l) process. The mean 
of the data set should be equal to the SUE assignment and 
the regression and covariance matrices, respectively, should 
be equal to the F and Q given in Equations 6 and 7. If traffic 
counts are only available from a subset of the network links, 
the time-series model describing these partial counts will no 
longer necessarily be VAR(l) but will still be a stationary 
linear model whose parameters are at least in theory com­
putable from x, F, and Q (18). Thus Model B makes some 
strong claims concerning the nature of traffic count data that 
are, at least in principle, testable from data collected by au­
tomatic surveillance and control systems. A limited amount 
of published empirical work suggests that Model B is not 
implausible. For instance, Cascetta (12) provides evidence · 
that an SUE assignment is as reasonable a forecast of traffic 
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volumes as the more standard DUE assignment, whereas in 
earlier work (19,20) we found that once seasonal trends have 
been accounted for, stationary linear models provide reason­
able representations of freeway volume counts. However, more 
adequate empirical testing of traffic assignment methods re­
quires accurate estimation of OD parameters, because other­
wise one cannot distinguish between poor fit caused by a poor 
model and poor fit caused by ignorance of the actual OD 
patterns (21,22). By treating OD estimation as a problem in 
system identification, these aspects-model estimation and 
model validation-can be integrated. 

ESTIMATION METHODS 

Before turning to the construction of estimators for the OD 
parameters, it is necessary to resolve two technical issues. The 
first concerns the placement of the traffic counters generating 
the available data. In most practical cases, not all network 
links contain traffic counters, although the advent of auto­
matic surveillance and control systems makes the availability 
of traffic counts more widespread. The estimation theory for 
VAR(l) processes, however, assumes that, subject to a lim­
itation to be discussed shortly, observations from all links are 
available. This assumption allows the estimation theory for 
Markov processes developed by Billingsley (23) to be applied 
to this problem, resulting in relatively straightforward esti­
mation methods whose asymptotic properties are readily es­
tablished. On the other hand, when we assume that only a 
subset of the links have counters, it is well known from systems 
theory that the stochastic process describing the observations 
will no longer be Markov, even though the underlying process 
is. Computation of the likelihood function for this case re­
quires employment of the Kalman filter, and establishing the 
asymptotic properties of the resulting estimators is an un­
solved problem. Thus in this paper we concentrate on the 
case where a full set of traffic counts is available, saving the 
partial count case for later research. 

Having made the case for a full set of traffic counts, we 
next note that the link flows on a network contain linear 
dependencies because of conservation of flow requirements. 
This means that the link flow vector x can be partitioned into 
x1 and x2 , with a linear relationship x2 = Bx1 existing between 
x1 and x2 • The linear dependence causes the covariance matrix 
Q to be singular, which in turn causes both practical and 
theoretical problems in OD estimation (13). This is easily 
solved by working with the independent set of link counts x1 

and deleting the appropriate rows and columns from Q. Com­
putation of the corresponding matrix F is readily done using 
the chain rule for vector-values functions. Thus from here on 
it is assumed that we have available a full set of linearly 
independent counts, and the quantities i, F, and Qare com­
puted for this linearly independent set. 

With these cautions noted, let 

x(t) = x + F[x(t - 1) - x] (10) 

denote the predicted value for x(t). ML estimates for the 
model parameters are then obtained by minimizing the scaled 
log-likelihood function 

N 

L = loglQI + (1/N) L [x(t) - x(t)VQ - 1[x(t) - x(t)] (11) 
1~1 
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with respect to the parameters of interest. For the VAR pa­
rameters x, F, and Q, the ML estimates have a closed-form 
solution, which can be readily computed using standard 
regression methods. It is also well known that these estimates 
are consistent, asymptotically normally distributed, aE_d asymp­
totically efficient (17,23). For the OD parameters dj and o-J, 
one can still take derivatives of Equation 11 using the chain 
rule and implicit differentiation, set the derivatives equal to 
zero, and then in principle solve the resulting equations for 
the ML estimates. The likelihood equations will in this case 
not admit a closed-form solution, so that numerical solution 
methods must be employed. However, given some technical 
conditions, it can still be established that Billingsley's results 
on ML estimation for Markov chains apply to this situation 
and that the solutions to the likelihood equations are con­
sistent, asymptotically normally distributed, and asymptoti­
cally efficient (13). Thus the classical results concerning ML 
estimators apply to the ML estimates of the OD parameters, 
though with some numerical difficulties in actually computing 
these estimates. 

Alternatively, Equations 5 through 7 defining the VAR 
parameters can be written in a vectorized form: 

m 

x = 2: d;qj 
j - 1 

v(F) = a i; d;v([aqj]) 
1 ~1 ax 
m 

vh(Q) 2: [d;vh(Qj - Q/I)) + o-Jvh(qjqj)] (12) 
j~1 

where v(.) denotes the vector operator (the stacking of the 
columns of a matrix on top of each other) and vh(.) denotes 
the vector half-operator (the stacking of the columns of the 
lower diagonal of a symmetric matrix on top of each other). 
Given estimates of x, F, and Q and knowledge of the param­
eter a, Equation 12 defines a system of linear equations with 
the OD parameters as the unknowns. When the number of 
individual paramaters in x, F, and Q exceeds the number of 
OD parameters, these equations can be solved using the Moore­
Penrose pseudoinverse (or equivalently, ordinary least-squares) 
to obtain estimates of the OD parameters. Because the ML 
estimates for the VAR parameters are also the MOM esti­
mators, the second approach gives a MOM estimator of the 
OD parameters. Under the conditions that the link cost and 
route choice functions are continuously differentiable, the 
function relating the MOM OD estimates to the MOM VAR 
estimates will also be continuously differentiable, so that the 
consistency and asymptotic normality shown by the VAR es­
timators will be inherited by the MOM OD estimators (24, 
p. 388). The asymptotic efficiency of the VAR estimators, 
however, is not guaranteed to transfer to the MOM OD 
estimators. 

MONTE CARLO EVALUATION OF ESTIMATORS 

Both the ML and the MOM estimators assume the VAR(l) 
Model B is an accurate description of the process generat­
ing the link volumes. Model B is in turn derived as a large-
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population approximation to the Markov process described 
in Model A. With infinite populations and infinite amounts 
of data, the asymptotic theory characterizes the properties of 
these estimators. However, for a given finite population and 
finite data sequences, the asymptotic properties may not be 
operative, and simulation studies are required to verify the 
practical usefulness of the asymptotic results. We have already 
described some asymptotic properties of the ML and MOM 
estimators based on large-population and large-sample ap­
proximations. To gain some appreciation of how the ML and 
MOM estimators would perform on finite data sets generated 
by a Model A process, we conducted the following simulation 
study. A FORTRAN program, SIMFLO, was written that 
could simulate the Model A process for networks small enough 
that enumeration of the network routes was feasible. (This 
was necessary so that the multinomial simulation described 
in Step 3 of Model A could be performed.) SIMFLO assumes 
that the link costs are given by the BPR functions with 
the form 

(13) 

The route choice probabilities are given by the logit formula 

e-0Cjr 

Pjr = L e- a .. 
s 

(14) 

Two FORTRAN estimation programs were also written. Pro­
gram MARKOD computes numerical ML estimates of the 
OD parameters using the quasi-Newton routine E04JBF, ob­
tained from the NAG subroutine library (25). Program 
MOMOD computes MOM estimates using standard least­
squares procedures. Although we conducted tests with several 
hypothetical networks, space limitations permit the descrip­
tion of only one simulation experiment. However, the results 
of all experiments were consistent with the results that we 
now present. Figure 1 shows a 14-link network with three 
origin nodes (01, 02, and 03) and three destination nodes 
(Dl, D2, and D3), for a total of nine OD pairs. lfone imagines 
collecting weekday peak-period volume data for a network, 
a time series of length 150 would correspond to 7 to 8 months 
of observations, and this was considered a reasonable upper 
bound on the duration over which OD patterns might be taken 
as being constant. From such a time series, one could obtain 
one set of estimated OD parameters, so to sample the statis­
tical properties of the OD estimators, 50 separate time series, 
each of length 150, were generated using SIMFLO. The 50 
time-series were then input to MARKOD and MOMOD to 
obtain a sample, of size 50, of the ML and MOM estimates. 
Although in principle it is possible to treat the weight­
ing parameter o: and the logit parameter 8 as unknown 
(MARKOD permits this option), the relationship between 
x, F, and Q and the unknown parameters shown in Equation 
12 is no longer linear, and computation of the MOM esti­
mators will be more difficult. Because the primary goal of 
this study is assessment of the estimates of the OD parameters 
d; and aJ, o: and 8 will be treated as known a priori. Esti­
mation using MARKOD was done on the Cyber 180/855 com­
puter at the University of Washington, and estimation using 
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FIGURE 1 Diagram of 14-link network 
used in simulation study. 
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03 

MOMOD was done on the Cyber 170/845 computer at the 
University of Minnesota. 

Table 1 gives statistical information concerning the prop­
erties of the ML estimator. The column labeled "True" gives 
each OD parameter's true value; the column labeled "Mean" 
gives the average, across the 50 simulations, of the estimated 
values produced by the ML method; and the column labeled 
"S.D." gives the standard deviation of these estimates about 
their average. The column labeled "t" gives a computed 
/-statistic testing the hypothesis that the average estimate equals 
its corresponding true value, which is a test for bias in the 
estimator. The column labeled "r" gives the normal-score 
correlation test for normality (26), which tests the asymptotic 
normality of the estimates. Table 2 gives similar information 
for the MOM estimator. One asterisk indicates statistical sig­
nificance of a test at the .05 level, whereas two asterisks 
indicate statistical significance at the .01 level. 

From the "r" columns, it can be seen that both the ML and 
the MOM methods produce estimates that tend to be normally 
distributed, indicating that a data series of length 150 appears 
sufficient to obtain asymptotic normality. Looking at the "t" 
columns, we see an undeniable tendency for both estimators 
to generate biased estimates, indicating that with data se­
quences of length 150 there is still some gap, on the average, 
between the estimate and the true value. Inspection of the 
"True" and "Mean" columns in both tables indicates that for 
the ML estimator the biases tend to be less than 10 percent 
of the true values, whereas for _MOM the biases are somewhat 
worse. A comparison of the "S.D." columns in Tables 1 and 
2 indicates that the ML estimates have markedly less variance 
than the MOM estimates, a result consistent with the asymp­
totic efficiency property of the ML estimator. The variability 
of the MOM estimates of the OD variances is in fact so large 
that it calls into question the practical value of such estimates. 

TABLE 1 ESTIMATION SUMMARY FOR ML 
METHOD 

eamm'IQt I au:: 

d, 450. 
d1 300. 
d, 301. 
d, 352. 
d, 490. 
d, 150. 
d, 100. 
d, 200. 

<42 
700. 

a, 45. 
a 2 75. 

22 
42.1 a, 

a 2 42.2 
'2 

147. a, 
a 2 37.5 

'2 
50. a, 

a 2 40. 
'2 

210. a, 

Mt-ID s 12 

449.2 2.1 2.76•• 
300.1 23.5 0.03 
301. 23.9 0.00 
362.3 25.4 -2.86•• 
471.7 8.4 15.5•• 
157.8 24.5 -2.23• 
90.9 24.9 2.60• 

217.1 25.1 -4.89•• 
691.9 3.3 11.23•• 
47.0 10.6 -1.33 
75.4 12.8 --0.22 
44.3 9.7 -1.59 
40.1 9.9 1.07 

141.3 22.4 1.78 
38.2 10.9 --0.47 
49.6 10.8 0.27 
39.6 12.0 0.24 

202.0 27.5 2.05• 

CPU seconds/estimation = 2504 
(Cyber 180/855) 

TABLE 2 ESTIMATION SUMMARY FOR MOM 

Paruoc•er 1)uc 

d, 450. 
d1 300. 
d, 301. 
d, 352. 
d, 490. 
d, 150. 
d, 100. 
d, 200. 

<42 
700. 

a, 45. 
a,' 75. 
a 2 42.1 

'2 
42.2 a, 

a,' 147. 
a' 37.5 

'2 
50. a, 

a 2 40. 
'2 210. a, 

Mw s p 

449.99 25.87 
286.07 54.98 
315.54 45.15 
341.97 61.27 
504.80 99.10 
128.00 70.58 
104.95 45.61 
189.44 63.75 
716.89 60.03 
28.31 34.40 
67.63 32.29 
34.41 23.83 
30.80 45.22 

126.23 31.08 
34.47 45.79 
45.38 23.02 
39.77 26.88 

187.56 52.80 

CPU seconds/estimation = 0.89 
(Cyber 170/845) 

0.003 
1.790 

-2.210• 
1.158 

-1.057 
2.204" 

-0.760 
1.170 

-1.989 
3.427 .. 
1.612 
2.280• 
1.781 
4.720•• 
0.467 
1.417 
0.060 
3.ooo•• 
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.991 

.985 

.989 

.996 

.995 

.988 

.994 

.993 

.978 

.994 

.994 

.992 

.989 

.991 

.994 

.990 

.973• 

.988 

I 

.987 

.985 

.973 

.987 

.996 

.986 

.990 

.993 

.994 

.993 

.986 

.988 

.988 

.990 

.993 

.995 

.984 

.988 

Finally, at the bottom of Tables 1 and 2 we display the average 
CPU time required for the two estimation methods. Whereas 
the MOM method is very efficient from a numerical stand­
point, the ML procedure proved to be computationally bur­
densome, suggesting that ML estimation for networks of 
realistic size may prove difficult even on a supercomputer. 

SUMMARY AND CONCLUSION 

We have considered here the problem of estimating the pa­
rameters describing the OD demand on a traffic network from 
time-series observations of the network's link volumes. The 
existence of such methods, coupled with the availability of 
automatic traffic-counting technology, holds the promise of 
being able to obtain timely, inexpensive estimates of existing 
travel demand and of being able to detect and track changes 
in demand over time or in response to transportation initia­
tives. Because the dynamics of the processes generating traffic 
cannot be neglected, we argue that OD estimation is more 
properly seen as statistical inference on stochastic processes 
rather than an example of classical statistical procedures. After 
developing a tractable stochastic process model that is a plaus­
ible approximation of the traffic count process, we use the 
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model to develop both ML and MOM estimators of the pro­
cess's OD parameters. Both estimators have desirable consis­
tency and asymptotic normality properties, but only the ML 
estimator can claim asymptotic statistical efficiency. Simula­
tion studies indicate that the ML estimator is superior from 
a statistical standpoint, but the numerical labor needed to 
compute ML estimates makes application to networks of re­
alistic size problematical. On the other hand, the MOM es­
timates, though clearly inferior statistically, are numerically 
efficient enough to be considered for networks of realistic 
size. At this point, the trade-off between statistical and nu­
merical efficiency is unforgiving. Thus, although it is possible 
to begin developing a statistical theory for making inferences 
about OD parameters from traffic count data, numerical is­
sues stand between the theory and its general usefulness. 

The obvious research need then is to develop methods that 
preserve the statistical efficiency of the ML method but reduce 
its computational burden. The minimization procedure im­
plemented in Program MARKOD can be viewed as a variant 
of the reduced-gradient algorithm, and it has been recently 
reported that reduced-gradient algorithms tend to be numer­
ically slower than competitors such as sequential quadratic 
programming (SQP) (27). A promising line of investigation 
would be to reformulate the ML estimation problem as an 
SQP and use a state-of-the-art SQP code to solve it. We are 
currently pursuing this course. Another need is to develop 
methods that do not require a full set of traffic counts. Nu­
merical computation of ML estimators for this case is rela­
tively straightforward (although some limited numerical ex­
periments indicate that the CPU demands tend to be greater 
than those for the full-count case). What is problematic is 
demonstrating that these estimators have desirable asymptotic 
properties, such as consistency and asymptotic normality. Be­
cause the numerical difficulties shown by the full-count case 
also tend to be shown by the partial count case, the main 
obstacle to practical use is the lack of a numerically efficient 
computation method. 
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Route-Specific and Time-of-Day 
Demand Elasticities 

YUPO CHAN 

In assessing user response to cost and service changes, demand 
elasticities are useful tools. Current compilations of demand elas­
ticities, however, are not helpful to scheduled transportation op­
erators. The reason is that the range of an elasticity is too wide, 
and there is no practical guideline for picking an appropriate value 
within the range. Furthermore, they are often compiled for sys­
temwide and average-day operations, whereas most analyses need 
to be performed on a route-by-route basis during peak or off­
peak periods. A methodology to address this problem is presented 
with the objective of providing demand elasticities that are prac­
tical for patronage analyses in an operating agency. Through 
statistical analyses of spatial and temporal data aggregation, the 
methodology explains the differences among elasticity tabula­
tions, and in so doing, provides insights into the variations among 
elasticity values . The results of this research include (a) guidelines 
for selecting an appropriate value of elasticity among the broad 
range of values (instead of simply taking the average or midpoint 
of the range) and (b) a method for converting the most commonly 
available elasticities (which are usually in aggregate form) to a 
more useful form, such as route-specific and time-of-day elastic­
ities. The results have been demonstrated in a case study of the 
transit system in York, Pennsylvania. 

A common concern expressed by scheduled-transportation 
operators is how a system can become more attuned to user 
preferences by innovation in service changes (J). Clearly, 
addressing such concerns requires knowledge of travelers' 
(shippers') response to changes in such items as user charges, 
schedules, and route coverage. For example, would a user 
still patronize the system if the fare is raised or the frequency 
of service is cut back (2)? Users' decisions clearly affect the 
revenue or well-being of the operator, which in turn leads 
to either success or failure of the scheduled transportation 
system. 

Increasingly, systems are scrutinized on a route-by-route 
basis (3). Schedules and user charges are becoming more and 
more differentiated between peak and off-peak periods be­
cause user responses are widely different among routes and 
time of day. For example, peak-hour travel is typically in­
elastic inasmuch as it is made up largely of work trips on 
routes from suburb to center city. This contrasts with off-peak 
travel, which typically consists of discretionary trips. Unless 
distinctions are made between routes and time of day, fare 
and schedule changes cannot be planned judiciously to cater 
to the user's preferences ( 4). 

A common way to address this issue is to examine demand 
elasticities, which by definition measure patronage responses 
to changes in attributes such as fares and service. Although 

Department of Operational Sciences, School of Engineering, Air 
Force Institute of Technology, Wright-Patterson AFB, Ohio 45433-
6583. 

several tabulations of urban demand elasticities exist (5), the 
use of these tabulations has been limited because of the tre­
mendous variations in reported elasticity values-even for 
the same city or scenario (6). For example, within a given 
commuter rail authority, the time elasticity can vary from 
-0.31 to -0.87-a threefold difference. This is mainly due 
to the different levels of aggregation used in the derivation 
of these elasticities. Whereas there is tremendous need, op­
erators rarely have usable guidelines available for selecting 
an appropriate elasticity for day-to-day operations-from route­
level to peak versus off-peak analyses. There is no reason to 
believe that the midpoint (between -0.31 and -0.87) is the 
number to use (5) or that a uniform scale factor can be applied 
indiscriminately (between -0.31 and -0.87) to arrive at the 
appropriate value for a specific route or time of day. 

Thus there is a knowledge gap to be filled in establishing 
probable variations in elasticities among routes and peak ver­
sus off-peak hours. The provision of these guidelines would 
allow operators to fine-tune elasticities by route and time of 
day on the basis of associated activity-system and level­
of-service characteristics. Thus user responses to service changes 
can be accurately estimated for operational planning 
purposes. 

LITERATURE REVIEW 

Among the various approaches to estimating demand on a 
route-specific level, the elasticity method performs extremely 
well (7,8). In fact it can be argued that as a general method, 
it is most satisfying. Recent work on chain pivot-point analysis 
is merely a variation of the elasticity method (9). The same 
can be said for areawide-equilibration approaches (10). 

Various fare-policy evaluation techniques have been built 
around demand elasticities. Ballou and Mohan (11) gave an 
example of the use of elasticities to analyze differentiated fare 
change on selected routes. Their analyses indicate the diverse 
effects of fare changes among routes and according to time 
of day, trip purpose, trip duration, and schedule frequency. 
Because demand elasticities are the basis of such fare-policy 
evaluations, the need for a reliable set of elasticities becomes 
obvious. To attain this accuracy, we need elasticities disag­
gregated by route, time of day, service level, and the socio­
economic composition of the potential riders (12,13). This 
in turn requires knowledge about how elasticities are derived, 
which is the only way to arrive at such a disaggregation 
procedure. 

Calibrated elasticities are of two types, depending on the 
methodology and data used for their computation. Disaggre-
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gate elasticities are estimated using detailed information (such 
as household data), whereas aggregate elasticities are based 
on coarser data (such as zonal averages). Aggregate elastic­
ities implicitly assume that travel behavior is homogeneous 
within a geographic subdivision, such as a zone or a route. 
Use of aggregate elasticities therefore ignores the high levels 
of variation in travel behavior (particularly modal choice) that 
may exist among users of a route. The use of such aggregate 
data fails to extract much of the variational information from 
the constituent observations used to obtain zonal aggregates. 
In contrast, disaggregate elasticities, which use households as 
the unit of analysis, are able to tap an extremely rich source 
of variation. 

In other words, one potential problem of aggregate-level 
analysis is the risk of ecological fallacy, in which aggregate­
level correlations are mistakenly attributed to individuals. An­
other problem is the loss of variability in the data used for 
estimation. Because a model's coefficients are determined by 
explaining variations in observed travel behavior, the less the 
variation to be explained, the less reliable the model will be. 
The reduced variability in aggregate data also results in a high 
level of collinearity between variables at the aggregate level, 
which does not exist at the disaggregate level. These obser­
vation errors tend to impart downward bias to estimated coef­
ficients. For example, the results of a study (14) show that 
by using disaggregate demand models, disaggregate elastic­
ities-for a given level of service-are usually lower than the 
corresponding aggregate elasticities in algebraic value. Thus, 
a route-specific fare elasticity may be - 0 .4, whereas a sys­
temwide figure may be - 0.3. 

THEORY 

To be able to use the tabulated elasticities meaningfully, the 
relationship between aggregate elasticities and disaggregate 
elasticities needs to be reviewed as a first step. The most 
disaggregate level of demand elasticities is at the household 
level. These elasticities are usually derived from logit models 
of the following form (15): 

p(m, t) = :ixp(R,,,X,,,,) 

L exp(R)(i,) 
j~I 

where 

m 1, 2, . .. , M (1) 

p(m, t) = probability of Mode m being taken by House­
hold t (t = 1, 2, ... , T), 

xmt = vector of level-of-service and activity-system 
characteristics of Mode m for Household t, and 

Rm = estimated vector of coefficients for the level-of­
service and activity-system variables of Modem. 

From this model form, elasticities can be derived as 

(2) 

where 

TJ(m, xm, t) = elasticity for Mode m with respect to attri­
bute xm for Household t given a destination 
and given that a trip will be made; 
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rx = estimated coefficient for level-of-service 
variable xm; and 

xm, = level-of-service attribute of Mode m, by 
Household t for a given destination. 

There are mathematical relationships between disaggregate 
and aggregate elasticities. Recall that the elasticity for House­
hold t, TJ(m, xm, t), is given in Equation 2. The demand elas­
ticity aggregated over T households in a geographic subdi­
vision such as a route is correspondingly 

T 

L TJ(m, Xm, t) 
1• 1 (3) T 

2: p(m, t) 
t=l 

Equation 3 can also be derived in a different way (16). 
Define Pm as the average market share of Mode m for a 
subdivision with a population of T households: 

1 T 

Pm = T ~ p(m, t) (4) 

We proceed to differentiate Pm with respect to xm: 

ap,,. = _a [£ p(m, t)ITJ 
axm axm r-1 

1 T 

= T ~ p(m, t)[l - p(m, t)]rx (5) 

The aggregate elasticity then becomes 

= {~ :f p(m, t)[l - p(m, t)]}rx :m 
r~l Pm 

(6) 

By substituting Pm(l - Pm) for the terms in brackets { }, 
the following is obtained: 

(7) 

This is analogous to the disaggregate elasticity Equation 2. 
The substitution above, however, assumes that 

1 T 

p;;, = - 2: p(m, t)2 

T 1~1 
(8) 

This assumption, when interpreted together with the defini­
tion of Equation 4, implies that individual mode-choice be­
havior is homogeneous within the subdivision. Because the 
individual travel decisions are not likely to be homogeneous 
in actuality, Equation 7 can only be an approximation of 
Equation 6. 

Systemwide transit elasticities-being another level of ag­
gregation-can also be derived from disaggregate elasticities 
calibrated for households (16). Let us write T as Nk to spe-



Chan 

cifically denote the number of households on the kth route 
and to show that there is more than one route systemwide. 
Now let p(m, k) be the average probability of choosing Mode 
min the kth route (where k = 1, 2, 3, ... , K). By definition, 

(9) 

For the study area, using the new notation, and with the 
substitution 

Nkp(m, k)[l - p(m, k)] -

N> 

L p(m, k, t)[l - p(m, k, t)] (10) 
t = 1 

systemwide elasticity can be approximated as 

( k) 
<Jp(m, k) Xmk 

'l']fflX = ·---
' m• dXmk p(m, k) 

{ 
K } X = L Nkp(m, k)[l - p(m, k)Jrx K mk 

k - 1 "' ( - :L, p 111 , k) 
k=l 

(11) 

This relationship is obtained on the basis of the assumption 
of homogeneous household behavior within a route. The vari­
ability in the data is among routes (rather than households) 
in this case. 

IMPLICATIONS 

Now that the relationship between household, route, and sys­
temwide elasticities has been derived, their applications in the 
field can be discussed. Specifically, the numerical values of 
these elasticities when they are applied in scheduled trans­
portation analysis can be compared. In a study consisting of 
K routes, for example, the difference between the approxi­
mation of Equations 7 and 11 and the theoretical elasticity 
(Equations 6 and its route equivalent shown by substitution 
Equation 10) can be computed. The resulting difference be­
tween an aggregate and disaggregate elasticity on Route k is 

'l'J(m,xm,k) - 'l'J(m,xm,t) = ':Vmk{Nkp(m,k)[l - p(m,k)] 
Pm 

- 1~p(m,k,t)[l - p(m,k,t)]} 

= rNx~nk [ ~ p(m,k,t)2 - N.p(m,k)2] 
Pm r=1 

(12) 

where a~ is the variance of p(m, k, t) in Route k . The dif­
ference between an aggregate elasticity and a disaggregate 
elasticity for the kth route is therefore 
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(13) 

If d-2 is defined as the maximum ak over Route k = 1, 2, 3, 
... , K (hence a~ :s 0-2), the inaccuracy of an elasticity 
estimated for a route is bounded by the inequality 

(14) 

Because a2 is the squared deviation of p(m, t)'s from Pm, 
in general, and both p(m, t) and Pm are between 0 and l, it 
appears that a should be very small. However, in a case study 
using a 1955 data sample from Chicago, Warner (16) found 
that rr2 was about 0.04 (or a = 0.2). 

What can be said about the estimation error associated with 
an elasticity? Let us compare the estimated value using Equa­
tion 7 and the following value, which has been corrected by 
such ertor terms as Equations 13 and 14: 

(15) 

By using values of Pm = .824 and a 2 = 0.04 from Warner's 
experiment in Chicago, the following is obtained from 
Equation 7: 

(16) 

and 

ii(m, Xm) = 0.127rxxm (17) 

according to Equation 15. The ratio between the two values 
is 

direct estimation 0.176r,,x.,, 
corrected estimation 0.127r,,.x.,, 

1.386 (18) 

This indicates that a route elasticity, for example, could be 
overestimated by as much as 40 percent by an aggregate figure 
(which assumes homogeneous travel behavior among all users 
in the route). 

Similarly, any individual route elasticity can be overesti­
mated by the ratio 

(19) 

even after corrections of the estimated values are made ac­
cording to Equation 15. 

SITE TESTING 

The theory described in the earlier section was applied to a 
transit line in a medium-sized city: York, Pennsylvania. The 
bus line, called the W. Market/E. Market line, runs between 
York's central city and two suburbs-one to the west and the 
other to the east. The line covers these zones en route: 15 .--. 
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14 ~ 5 ~ 1 ~ 2 ~ 10 ~ 32, with 15 denoting the western 
suburb and 32 the eastern suburb. 

We can obtain the travel times for our model from the 
published time schedule of the transit line. The waiting time 
(usually approximated by half of the headway) has to be added 
to the line-haul times to obtain the user's actual travel time. 
The activity-system and level-of-service data were collected 
for calibrating a logit model. The model specification includes 
the following explanatory variables for the zones the transit 
line goes through: 

• Interzonal travel times by automobile at posted speed; 
•Transit travel times , including wait time and walk time 

(at 5 ft/sec from zone centroid to bus station); 
•Automobile travel costs expressed in perceived costs (at 

5 cents per mile); and 
• Transit travel costs at a uniform fare of 65 cents per trip . 

The data are summarized in Table 1. 
A logit model was calibrated by Chan (17) for the 

city of York, yielding a disutility function (or impedance 
function) of 

R...Xmt = -290.2c'"' - 70.5Tm1 + 1.51 (20) 

Only level-of-service variables such as cost (c) and time (T) 
are explicitly modeled; activity-system variables were all lumped 
under the calibration constant of 1.51, and there are only two 
modes (m = automobile or transit). 

From logit Equations l, a table can be generated consisting 
of the probability of a household t taking bus transit B, p(B, 
t), among the seven zones (i = 1, 2, ... , 7; j = 1, 2, ... , 
7) covered in the transit line. From the 42 (or 7 x 6) nonzero 
values in the table, we can obtain the average market share 
of the bus mode for Route k, Pn, as 

1 42 

- L p(B, t) = 0.0064 
42 1 ~ 1 

(21) 

TABLE 1 INTERZONAL TRAVEL TIME AND COST 

From zone i .5 

0 2.7/68 J.8/28 
(-4. l) (6.0) 

2 27/29 0 5.2/J5 
(4.l) (9. 2) 

5 3.8/Jl 5.2/99 0 
(6.0) ( 9. 2) 

10 6.1/29 4. bf 22 8. 6'/42 
(10.l) (7.5) 05. 2) 

14 5.b/27 7. 1/95 3.7/4 
oo. 7l ( lJ. 8) (7. 0) 

15 b.l/27 7.b/95 6.2/12 
(10. l) (lJ. J) (10.1) 

32 8.3/55 b.8/48 ·10.8/68 
(14. 9) (12. J) (19. 9) 
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and 

<TZ = 0.0001 

Using Equation 7 for Route k, we have 

Similarly, through Equation 15, we have 

The ratio of the two values is 

~ = 1.124 
ii 

(22) 

(23) 

(24) 

(25) 

which means that the route elasticities can be overestimated 
by as much as 12 percent. Notice that we have not ascertained 
the other routes, and hence a, the maximum over <Tk's, is 
not known. For this reason, it is possible to be off by signif­
icantly more than 12 percent in certain routes. 

Even though this is a site testing of limited scope, we have 
obtained a few useful observations. It is clear that care should 
be exercised in the use of elasticities in route-specific transit 
analysis in view of the Chicago and York experiences. If any 
aggregate elasticity is used, adjustments should be made using 
Equation 15. 

Whereas the preceding study illustrates elasticity adjust­
ment for route-specific applications, the same procedure can 
be applied to time-of-day variations. In the latter application, 
the subscript k in Equations 12 through 14 simply takes on 
the meaning "peak period," "off-peak period," and so forth. 
The rest of the procedure follows in a manner similar to the 
disaggregation by route, keeping in mind that we are now 
performing temporal instead of spatial aggregation. 

To Zone 

10 14 15 J2 

6. 1/22 5.6/24 6.1/24 8. J/J5 
(lol (lo. 7l (lo .1) (14. 9) 

4.6/44 7. l/Jl 7. 6/J l 6.8/57 
(7. 5) (lJ. 8) ( lJ. J) (12. J) 

8.6/5J ) • 7 /4 6.2/8 10.8/66 
(15. 2) ( 7. 0) (10. l) (19. 9) 

0 10.5/38 11. 0/38 3.2/28 
(19. 8) (19. 3) (5.8) 

10.5/49 0 4.8/8 lJ. 7/62 
(19. 8) (6.9) (24.5) 

11.0/49 4.8/8 0 14.2/62 
(19.3) ( b. 9) (25.4) 

3. 2/ 41 lJ . 7/64 14.2/64 0 
(5.8) (24.5) (25.4) 

KEY (for each entry): nuto-time-in-min/transit-time-in-min 
(auto-cost-in-cents) 
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A FORMULA FOR PRACTITIONERS 

The foregoing represents a formal development of the elas­
ticity adjustment procedure. The development is necessarily 
predicated on the availability of a disaggregate logit model 
for the study area. In real-world applications, however, a 
calibrated logit model is seldom available. The only available 
information is often a set of demand elasticities-if one is 
fortunate enough to have them. Frequently, elasticity figures 
have to be borrowed from similar cities in the form of a range 
of numbers that are disparate in value (18). Care should be 
exercised in the definition of a "similar" city, which should 
include both size and urban structure to guarantee transfer­
ability (5,10). The problem now is to choose an approximate 
value within this range for the application at hand. 

Suppose maximum and minimum algebraic values are both 
available, representing the two extremes of the range. It is 
possible to work backwards to get an appropriate value through 
the use of an adjustment factor. From Equations 7 and 15, it 
can be assumed that 

,,min(n1 , x,,,) 
Tl rna.x Cn1 , x,,, ) 

(26) 

inasmuch as the two elasticity estimates come from the two 
extreme levels of aggregation with the Tlm;n having the most 
aggregation bias and 'Ylmax the least. Assume further that the 
average modal split pm can be approximated by empirical data 
obtainable locally (meaning the logit model replicates ob­
served data reasonably well). The term cr2, being the only 
unknown in Equation 26, can now be estimated. 

If more than two elasticities are available, we can have even 
better information on the variability of elasticities among routes 
or time of day. Let us say we have a third elasticity for the 
study area. It is clear that a third level of aggregation was 
used in model calibration, different from the previous two. 
Again, we take the ratio according to Equation 19: 

[ (1 - Pm) - ~] 

[ (1 - Pm) - ;:J 
(27) 

which allows erk, the only unknown in the equation, to be 
estimated. 

In general, the availability of more than one calibrated 
elasticity, rather than being confusing, is now an asset. The 
more elasticity tabulations available, the more we can recon­
struct the elasticity variability among routes and time of day. 
Suppose these cr's are obtained: 

(28) 

We can now match each route k (or time of day k) against 
one of the cr's. A rule of thumb may be that the shorter the 
route (or the shorter the time period) the less the er value. A 
shorter route has less variability in such explanatory variables 
as travel time, travel cost, and car ownership, and hence less 
variability in mode choice: 
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= s (29) 

where nk is the number of stops on the route under consid­
eration, and nm;n and nmax are the number of stops on the 
shortest and longest routes. Such a linear scale, s, will place 
the mode-choice variability of route k at 

(30) 

Other rules of thumb can be used if additional information 
on local travel behavior becomes available, thus allowing a 
better match between routes and cr's in Equation 28. 

As an example, suppose the disaggregate fare elasticity 
values are available (19) as a range of values characterized 
by a mean and a standard deviation: -0.35 ± 0.14. In the 
absence of the actual constituent figures that make up the 
range, we take two standard deviations (i.e., 0.28) from the 
mean of -0.35 as the maximum and minimum elasticity value. 
For a normal distribution this would cover 95 percent of the 
12 data points in the sample: 'Ylmax = -0.07 and TJm;n = -0.63. 

Suppose further that the observed modal split in York is 
88.83 percent automobile trips and 11.17 percent transit trips. 
From Equation 26, cJ-2 can be estimated as 0.0882 (or a = 
0.297), which is a higher variance than the data sample col­
lected in Chicago by Warner. 

The W. Market/E. Market line was 1 of 10 bus routes 
operating in York. With its 17 stops, it was among the longer 
routes in the York Area Transit Authority. Only two routes 
were longer, made up of 18 stops, and the remaining seven 
were 14-stop routes. If route length can be a proxy for mode­
choice variability, we can scale the W. Market/E. Market 
route as somewhere between a and crm;n· If a linear scales is 
applied as shown in Equations 29 and 30, the variability as­
sociated with the route concerned is erk = 0.222, correspond­
ing to s = %. According to Equation 27, this translates to a 
route elasticity of -0.314. Compared with the average, -0.35, 
a 10 percent difference is observed in this case. Again, other 
routes can have biases much larger than 10 percent, consid­
ering that the maximum variance a is close to 0.3. 

SUMMARY AND CONCLUSIONS 

In assessing user response to cost and service changes, demand 
elasticities are useful tools. Current compilations of demand 
elasticities, however, are not helpful to scheduled transpor­
tation operators. The range of an elasticity is too wide, and 
there is no practical guideline for picking an appropriate value 
in the range. Furthermore, they are often calibrated on the 
basis of different levels of aggregation, rendering them in­
compatible with route-by-route or peak versus off-peak anal­
yses, which are critical to current operational concerns. 

A methodology providing elasticities that are practical for 
patronage analyses in an operating agency was presented to 
address this problem. Through statistical analyses of spatial/ 
temporal data aggregation, the methodology explains the dif­
ferences among elasticity tabulations, and in so doing, pro­
vides insights into the variations that exist among elasticity 
values. 

The results of this research include (a) guidelines for scaling 
an appropriate value of elasticity among its broad range of 
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values (instead of simply taking the average or midpoint of 
the range) and (b) a method for converting the most com­
monly available elasticities, which are usually calibrated in 
different levels of aggregation, to a more useful form, such 
as route-specific and time-of-day elasticities. 

Rigorous yet simple statistical developments were followed 
in deriving the adjustment procedure. The results were 
demonstrated in a case study of a transit line in York, Penn­
sylvania, including a step-by-step calculation procedure for 
practitioners. 

Additional work can obviously be carried out to extend this 
research. It is recommended that more case studies be per­
formed, particularly studies geared toward time-of-day rather 
than route-specific applications. One such case study could 
include before-and-after validation (20). 
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Trip Characteristics and Travel Patterns of 
Suburban Residents 

p ANOS 0. PREVEDOUROS AND JOSEPH L. SCH OFER 

Increasing traffic congestion in U.S. suburbs can be explained to 
a large degree by their rapid growth. Much is still to be learned, 
however, about the causes of and variations in traffic congestion. 
The results of investigations of variations in travel behavior across 
social groups and between locations are presented. The investi­
gations were based on a mid-1989 mail-back survey of individuals 
residing in selected Chicago suburbs. Four prominent factors as­
sociated with traffic congestion are residence location, population 
aging, working women, and fixed work hours. Residence location 
in outer-ring, low-density, growing suburbs implies longer trips 
and more local trips because of low density and more employment 
opportunities, respectively. The average travel speed by auto­
mobile is higher for residents of growing suburbs, but because of 
longer commutes they still stay in traffic 25 percent longer than 
residents of stable suburbs. Population aging may offer some 
relief to suburban traffic congestion, not because older people 
travel less, but because they make better use of off-peak periods 
and shorter trips. Hence, their travel behavior may equalize use 
of the roadway infrastructure over the day. The increasing num­
ber of working women and mothers further contributes to conges­
tion because Jong work trips are added to the large number of 
household maintenance trips made by women. The morning and 
evening peak periods remain short in duration. It would make a 
tremendous difference in peak loads and network performance 
if the observed lY2-hr peak were spread over 2Y2 to 3 hr. 

Increasing traffic congestion in U.S. suburbs can be explained 
to a large degree by their rapid growth. Much is still to be 
learned, however, about the causes of and variations in traffic 
congestion. The resulting knowledge may be helpful in iden­
tifying promising solutions to these problems. 

To expand our understanding of contemporary suburban 
travel, we explored the trip characteristics of individuals re­
siding in selected Chicago suburbs using a mail-back survey 
conducted in the spring of 1989. The variations of several 
characteristics of individual travel behavior across social groups 
and between locations (i.e., outer-ring, low density, growing 
suburbs and inner-ring, high density, stable suburbs) were 
investigated. 

Initial analysis using aggregate census data enabled us to 
classify suburbs into growing and stable (1,2). From the orig­
inal sample of 30 suburbs, we selected four, two growing 
(Naperville and Schaumburg) and two stable (Park Ridge and 
Wilmette). 

We collected a sample of 1,420 responses; the response rate 
approached 25 percent. One member of the household re­
sponded. The responding member was requested to be an 

P. D. Prevedouros, Department of Civil Engineering, University of 
Hawaii at Manoa, Honolulu, Hawaii 96822. J. L. Schofer, Depart­
ment of Civil Engineering, Northwestern University, Evanston, Ill . 
60208. 

adult and preferably a worker. The respondent supplied full 
demographic and socioeconomic information on the house­
hold, work trip destinations, and a list of automobiles avail­
able to the household. 

Most respondents filled out a 1-weekday travel diary. Thus, 
trip statistics are based on responses from individuals. An 
initial plan to request household travel diaries was abandoned 
because the questionnaire was becoming too long. The final 
version was 10 pages. 

WORK LOCATIONS 

First, some of the most important differences between outer­
ring, low-density, growing suburbs and inner-ring, high­
density, stable suburbs are reviewed. Table 1 gives basic in­
formation for these two types of suburbs. The statistics are 
from a sample of 30 suburbs, 13 stable and 17 growing. The 
data were taken from census reports (1,2). 

Outer-ring, low-density, growing suburbs are different in 
important ways from stable suburbs. Growing suburbs are far 
from Chicago's central business district (CBD) and have both 
a low population density and a high population growth rate. 
Furthermore, they are populated by larger and younger 
households, which have a higher automobile ownership com­
pared with households of stable suburbs. 

Table 2 presents the work locations of employed residents 
in the four suburbs examined, broken down by employment 
status. 

The overwhelming majority (78 percent) of full-time­
employed residents of growing suburbs are employed in the 
suburb where they live or in another suburb, and less than 
20 percent are employed in the central city (Chicago). In 
contrast, 45 percent of residents of stable suburbs work in the 
central city. The statistics clearly support the hypothesis that 
part-time workers tend to work closer to home than full-time 
workers (68 and 44 percent work in the suburb of residence 
for growing and stable suburbs, respectively). 

Only 16 percent of full-time-employed residents of stable 
suburbs work in the suburb of residence. In contrast, about 
29 percent of full-time-employed residents of growing suburbs 
are employed in their home suburb. This difference may con­
tribute to local traffic congestion in growing suburbs (i .e., 
more commuting on arterials and local streets than on ex­
pressways). 

This pattern may be attributed to the fact that suburbs 
experiencing recent growth spurts have been willing and able 
to accommodate employment as well as residential develop­
ment. On the other hand, older, inner-ring communities were 
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TABLE 1 CHARACTERISTICS OF GROWING AND STABLE 
SUBURBS 

QOMMUNITI QHARACTIRISIICS GROWING STABLI 
DISTANCE FROM CBD (mi) 27 15 

POPULATION DENSITY 2900 5200 
(residents/square mile) 

POP. GROWTH (1970-80) 142\ -2\ 

AVG. HOUSEHOLD SIZE 2.89 2.81 

AVG. POPULATION AGE 31. 7 37.8 

AVG. AUTOS/HOUSEHOLD 2.07 1.96 

All differences significant at 95\ [~) 

TABLE 2 WORK DESTINATION BY TYPE OF SUBURB 

RESIDENCE LOCATION AND EMPLOYMENT STATUS 

GROWING SUBURBS STABLE SUBURBS 
DESTINATION FULL-TIME PART-TIME FULL-TIME PART-TIME 

SAME SUBURB 29.3 
OTHER SUBURB 48.6 
suburb total 77.9 
CENTRAL CITY 19.3 
MULTI-PLACE 2.8 

100\ 

designed primarily as residential communities. Therefore, there 
are fewer employment opportunities for their residents. The 
employment-to-residents ratio is higher in the growing sub­
urbs of our sample: Schaumburg's is 1.31; Naperville's is 0.93. 
Both are likely to be much higher now, because the pace of 
development in these areas between 1980and1990 was higher 
than ever before, whereas it is lower in the stable suburbs­
Evanston (0.99) and Park Ridge (0.79). Evanston is atypical 
in this respect because it has a CBD of considerable size and 
a major university (Northwestern University). Aggregate cen­
sus data indicate that stable suburbs tend to be consistent with 
respect to the employment-to-residents ratio. Most average 
about 0.85 with a standard deviation of 0.30. On the other 
hand, growing suburbs appear to form two extreme clusters: 
one with strong employment orientation (average ratio 1.30) 
and one with strong residential orientation (average ratio 0.50). 
The overall average for growing suburbs is 0.91 and the stan­
dard deviation is 0.60. These statistics are based on the 17 
growing and 13 stable suburbs. 

TRIP STATISTICS 

This section presents an overview of the trip characteristics 
of respondents for various combinations of locations and so­
ciodemographic groups. Analysis of the factors affecting trip 
characteristics is presented later. All trip statistics are from 

68.1 16.4 44.0 
28.4 37.9 33.3 
96.5 54.3 77 .3 
2.8 44.6 18.4 
0.7 1.1 4.3 

100\ 100\ 100\ 

weekday travel diaries of individual respondents (1-day travel 
activity; the day was chosen by the respondent). 

Table 3 presents mode shares for the primary work trip 
(i.e., the line-haul trip). Statistics do not include the char­
acteristics of access trips at the ends of the primary trip; this 
explains why the share of bus, walk, and bicycle modes are 
not included. None of these modes was used for the primary 
trip by the surveyed respondents. 

The automobile mode dominates by far. However, the share 
varies substantially: 81.0 and 87.6 percent for stable and grow­
ing suburbs, respectively. [In the growing suburb of Schaum­
burg the automobile share is as high as 95.0 percent because 
of the lesser public transportation service and the fewer work­
ers who are employed in the central city (3).] The rest of the 
market share is picked up by public transportation, mostly 
commuter rail (Metra). Most residents of Naperville (one of 
the two growing communities surveyed) who work in Chicago 
commute by Metra (17.8 percent of full-time workers work 
in the central city and 17.4 percent of all workers commute 
by rail to Chicago's CBD). Rapid transit is not available to 
any outer-ring suburb, including the two growing suburbs in 
the sample; it is available to residents of both stable suburbs 
(Park Ridge and Wilmette). 

Table 4 presents average distances and speeds for com­
muters with respect to the geography of their work trips. The 
presentation is separate for automobile and transit. 
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TABLE 3 MODE SHARES FOR PRIMARY TRIP TO WORK (PERCENT) 

M 0 DE 
DRIVE ALONE 
DRIVER AND PASSENGER(S) 
PASSENGER IN CAR 

TOTAL AUTO 

COMMUTER RAIL (METRA) 
RAPID TRANSIT (CTA 'EL') 

TOTAL TRANSIT 

GROWING 
SUBURBS 
<n•776> 
82.7 
4.3 
0.6 

87.6\ 

12.4 
o.o 

12.4' 

STABLE 
SUBURBS 
(0""'644> 
77.0 
3.6 
0.4 

81.0\ 

11. 7 
7.3 

19.0\ 

TABLE 4 PRIMARY WORK TRIP MODE STATISTICS 

Part (a): auto mode 
F 
R 
0 TO---> SAME OTHER CENTRAL 
M v SUBURB SUBURB CITY 

GROWING avg.distance 6.3 * 15.5 * 28.4 * 
SUBURB avg.speed 19.5 N 26.0 N 31.5 * 

cases 152 314 69 

STABLE avg.diatance 4.5 10.9 12.9 
SUBURB avg.speed 20.3 25.1 22.3 

case a 56 198 56 

Part lb>: public transit 
F 
R 
0 TO---> SAME OTHER CENTRAL 
M v SUBURB SUBURB CITY 

GROWING avg.distance 31.2 
SUBURB avg.speed no observations 49.6 

cases due to minimal 62 
or non-existent 

STABLE avg.distance public transit 17.0 
SUBURB avg.speed 28.7 

cases 73 

NOTES: 1) distance in miles; speed in miles/hour is 
derived from respondents' reports of time 
and distance · 

2) * = t-test between growing and stable: 
significant at 95\ 

N • t-test between growing and stable: 
not aignificant 
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Average automobile speeds for trips within the same suburb 
and to other suburbs are similar for growing and stable sub­
urbs; they are also remarkably low (i.e., approximately half 
the typical 35- to 45-mph speed limit on suburban arterials). 
However, the data do not support the hypothesis that conges­
tion in growing suburbs is worse (average speed is higher for 
residents of growing suburbs). Furthermore, things look bet­
ter for growing-suburb residents who commute to Chicago; 
these are mostly trips on expressways. 

On the other hand, growing-suburb residents who work in 
the city are exposed to traffic and congestion for longer times. 
Residents of growing suburbs sit in their cars for 54 min for 
a typical commute to Chicago's CBD during the rush period, 
whereas residents of stable suburbs do the same for 35 min. 
In addition, because of low densities, commutes of growing­
suburb residents to the same or another suburb are longer 
(see Table 4); therefore they are again exposed to more traffic 
and congestion than residents of stable suburbs. For trips to 
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the CBD, commutes by public transportation are substantially 
faster than by automobile. That is because most CBD trips 
are made on the commuter rail system. 

Conceivably, the uproar about traffic congestion in growing 
suburbs may be because growing-suburb residents are ex­
posed to traffic over longer times. As a result, they are more 
inconvenienced and tend to be more critical of the perfor­
mance of the roadway system. Another reason may be that 
10 years ago the traffic conditions in most outer-ring suburbs 
were acceptable if not really good; these conditions have 
worsened dramatically over the past few years, which may 
have created the impression of a crisis to residents. In con­
trast, worsening of traffic in inner-ring suburbs came much 
more gradually, so people had more time to adapt to and 
accept them. 

Analysis of variance indicated that residence location has 
an insignificant effect on the daily number of trips made by 
individuals. It has, however, a significant effect on the dis­
tance traveled, as will be discussed later. Sex and employment 
status have a significant effect on the daily number of trips 
of suburban residents (3); their effect is explored in Table 5, 
which presents a breakdown of trip statistics by purpose for 
each sex and employment status combination. 

The trip rates in Table 5 indicate the following: 

• Females consistently make more trips than males in each 
employment status category, whereas not-employed people 
make roughly 0.5 more trips in a day than individuals em­
ployed full time. 

• Females employed part time indicate a remarkably high 
trip activity. This may be partly because they have the burden 
of both household maintenance trips and work-related trips. 

•Not-employed people make up for their minimal trips to 
and from work by making more trips for errands, groceries, 
personal business , and recreation. 

• Employed females make nearly twice as many trips as 
males for errands, groceries, and shopping. Also, females 
make more trips than males to serve passengers (i.e., drive 
children, day-care person, husband to station, etc.). Full-time-
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employed males make slightly more work-related trips (i .e., 
more men are in travel-intensive jobs) than full-time­
employed females. (Of all the occupations listed by our re­
spondents, we considered as travel-intensive the following: 
managerial/business owner, sales, and professional/technical. 
Eighty percent of male respondents have a travel-intensive 
occupation; the corresponding number for females is 58 per­
cent.) 

These trip rates represent the trip activity of adult house­
hold members, most of whom are employed. This may explain 
the seemingly high numbers. The total household trip activity 
per person (number of trips per person) is ·expected to be 
lower because some household members cannot travel on 
their own or may not need to travel regularly . 

Analysis of trip purposes separately for each weekday in­
dicated that Thursday is the most representative day because 
it closely matches the average distribution of trips by purpose 
for the five weekdays (3) . On the basis of the data, Thursday 
may be the best day for representative traffic measurements. 

TIME-OF-DAY TRIP PROFILES 

Figure 1 shows time-of-day trip profiles for selected groups 
of respondents. The plots show the distribution of trips in 
each hourly period for each population group analyzed (for 
example, the portion of trips between 8 and 9 a.m. is the ratio 
of the number of trips between 8 and 9 a.m. to the total 
number of trips for each population group between 6 a.m. 
and 9 p.m.) . Figure la shows an interesting difference be­
tween workers residing in growing and stable suburbs: full­
time-employed residents of growing suburbs depart from home 
earlier in the morning (and from work in the evening), pre­
sumably to compensate for their longer commutes. 

The lowest line represents the difference between growing 
and stable suburbs in the portion of trips per hour of full­
time workers. The difference again indicates that growing­
suburb workers make a larger portion of their daily trips 

TABLE 5 TRIPS PER DAY BY PURPOSE, EMPLOYMENT STATUS, AND SEX 

ALL FULL-TIME PART-TIME NOT-EMPL'D 
T R I P MALE FEMALE MALE FEMALE MALE FEMALE 

p U R P 0 S E (n=l420) (781) (301) (47) (91) (93) (107) 

WORK 1.53 1.91 1. 74 1.18 1.02 0.10 0.05 
RETURN HOME 1. 76 1.65 1.68 1.68 2.42 2.00 2.05 
ERRANDS/GROCERIES 0.54 0.30 0.55 0.55 1.08 1.12 1.31 
SHOPPING 0.09 0.04 0.09 0.02 0.13 0.23 0.25 
PERSONAL 0.17 0.09 0.14 0.20 0.27 0.47 0.52 
SERVE PASSENGERS 0.34 0.22 0.31 0.36 0.90 0.29 0.81 
EXERCISE/SPORTS 0.12 0.10 0.11 0.09 0.21 0.14 0.17 
RECREATION/SOCIAL 0.35 0.29 0.33 0.27 0.42 0.74 0.48 

TOTAL TRIPS PER DAY 4.90 4.60 4.95 4.35 6.45 5.09 5.64 .,, 
* N 

NOTE: (*) = difference significant at 95%; (N) = not significant 
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FIGURE 1 Trip profiles by time of day for selected population groups. 

during the traditional three peaks of a weekday (morning, 
noon, and evening) than stable-suburb residents. The dense 
dashed line in this graph represents the trip profile of respon­
dents from all the sample's senior households (single-person 
or couple households without children; at least one of the 
members age 65 or older). It can be inferred that they tend 
to avoid the morning, noon, and evening rush periods. These 
findings provide indications and inferences only. The averages 
cannot, at this point, be subjected to meaningful statistical 
significance testing because they are the results of trip aggre­
gation per time slot, not per individual. 

Full-time-employed people make the bulk of their trips 
during the morning and evening rush hours, whereas not­
employed people travel mostly during the valleys in traffic 
demand (Figure 1 b) . The bulk of their trips take place after 
the morning and before the evening rush periods. Figure lb 
also shows that part-time-employed people make the bulk of 
their morning trips 1 hr after the full-time workers, and they 

tend to spread the rest of their traveling uniformly over the 
hours between 9 a.m. and 9 p.m. 

The resulting figures confirm the speculation that substan­
tial traffic is observed on suburban road networks during off­
peak periods. For example , excluding senior and not­
employed people, the portion of trips made at 7 or 8 p.m. is 
higher than the portion made at 1 or 2 p.m. for all the other 
population groups examined. This finding applies to growing 
as well as to stable suburbs. 

Figure 2 categorizes rush-hour automobile trips by purpose. 
No distinction is made between growing and stable suburbs 
because the differences in the profiles are not statistically 
significant. The figure shows that in the morning peak the 
destination of 77.5 percent of trips is work, whereas the des­
tination of 62.6 percent of trips in the evening peak is home. 
The share of secondary purposes (other than work and return 
home) increases substantially in the evening peak, with the 
exception of trips to serve passengers, which is higher in the 
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FIGURE 2 Breakdown of rush-hour trips by purpose 
(automobile mode only). 

morning peak. It is important to realize that in the evening 
peak nearly 35 percent of trips are destined to places other 
than home or work. Part of this phenomenon is due to trip 
chaining (some people stop at intermediate destinations be­
fore returning home) . A substantial proportion of people (12.0 
percent) return home late in the evening (after 8 p.m.). 

The fact that more evening rush-hour trips are for purposes 
other than return to home may be partly because of additional 
congestion-people stay in the system longer in terms of time 
and distance-and many persons drive to multiple destina­
tions that may not be on the route from work to home. 

Figure 3 shows the temporal pattern of the primary trip to 
work (the primary trip is the line-haul trip without the access 
trips at the ends, if such trips exist). The bulk of departures 
are observed between 6:30 and 7:30 a.m., so if commuting 
time range between 30 and 60 min , the road network is ex­
pected to carry peak loads between 6:30 and 8:30 a.m. These 
results prompt us to suggest that the time interval for morning 
traffic counts in suburban residential areas should be between 
6:30 and 8:30 a.m., and for employment centers the interval 
for morning traffic counts should be from 7:00 to 9:00 a.m. 

The figures from the morning peak period indicate little 
evidence of substantial peak spreading, partly because stag­
gered and flextime work schedules do not appear to be pop­
ular among employers in the Chicago metropolitan area (4). 

Similar analysis for the late afternoon and evening hours 
indicates that the bulk of departures occur between 4:30 and 
6:00 p.m., whereas the bulk of arrivals-at all destinations­
occur between 5:00 and 6:30 p.m. Thus, the transportation 
network carries peak loads between 4:30 and 6:30 p.m., which 
is the recommended interval for evening peak-period traffic 
counts. 
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FIGURE 3 Pattern of morning departures from 
home for trip to work (all modes). 

FACTORS AFFECTING TRAVEL BEHAVIOR 

This section presents results of analyses of factors that affect 
or explain travel behavior characteristics of individual respon­
dents . The characteristics analyzed are number of trips (all 
trips, work trips, and nonwork trips), automobile share for 
the total number of trips reported by the individual respon­
dent, and distance traveled by automobile. 

Several potentially explanatory variables were tried using 
an analysis of variance procedure. Variables that have a sig­
nificant effect on at least one of the trip characteristics ex­
amined are presented in Table 6, which gives the percentage 
of the contribution of each independent variable to the ex­
plained variance of the trip characteristics examined. 

The independent variables listed on the left-hand side of 
Table 6 are defined as follows: EMPL.STA TUS is the em­
ployment status of the respondent (full-time, part-time, or 
not employed) . RES.LOCAT. is the residence location 
(growing or stable suburb). CAR AV AIL. is the availability 
of automobiles to each eligible-to-drive member of the house­
hold , specified for three categories: less than 0.5, 0.5 to 0.9, 
and more than 0.9 automobiles per driver. TRANSIT is the 
utilization (and familiarity) with public transportation by the 
respondent (1 if the respondent listed at least one trip by 
public transportation in his or her travel diary, 0 otherwise). 
AGE includes four groups for the age of the respondent: 34 
or younger , 35 to 49, 50 to 64, and 65 or older . 

A substantial portion of variance is explained by the vari­
ables available for the number of trips for work purposes and 
the distance traveled by automobile for all purposes. Obser­
vations from Table 6 are as follows. 

Employment status explains much of the variation in the 
number of trips (particularly work trips) a respondent makes 
each day (see also Table 5). Part-time-employed females make 
more but shorter trips (6.45 trips with average distance equal 
to 5.6 mi) than their male counterparts (4.35 trips with average 
distance equal to 7 .8 mi). 

Sex plays an important role for the trip purposes of errands, 
groceries, and shopping, which are dominated by females . 
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TABLE 6 CONTRIBUTION OF EACH INDEPENDENT VARIABLE 
TO THE EXPLAINED VARIAN CE OF TRIP CHARACTERISTICS 
(PERCENT) 

Dependent-> # of TRIPS ' TOTAL 
AUTO DIST. 

Independent ALL WORK SHARE by AUTO 

EMPL.STATUS 36.8* 32.6* 11.9@ l.4N 
GENDER 0.9N O.SN 10.2* 0.4N 
RES.LOCAT. 0.2N O.ON 15.SN 3.4@ 
CAR AVAIL. 0.7N O.lN 5.7@ l.2N 
TRANSIT 21.3* 22.9* - - 78.7* 
AGE 40.l* 1.0* 7.6N 6.0@ 
Interactns o.o 42.9 49.1 8.9 

100\ 100\ 100\ 100\ 

\ Explained 7.7 49.6 14.S 46.7 

NOTE: ( *) = significant at 95\ or higher 
(@) = significant at 85\ 
(N) = not significant 

The difference in automobile share between males and fe­
males is significant. Suburban females exhibit a behavior op­
posite to that of central city females-suburban females use 
automobiles more than do males (93.7 versus 88.7 percent). 
In contrast, old and recent studies (5) both suggest that central 
city females use public transportation more than do males. 

This may partly be an outcome of work destinations . A 
larger proportion of suburban females work in the suburbs 
than males (78 versus 67 percent). People traveling to the 
central city have the option of using public transportation. 
This option hardly exists for intra- or intersuburban travel. 
As expected, more males and females of growing suburbs 
work in the suburbs: growing = 73 percent of males and 85 
percent of females; stable = 54 percent of males and 67 
percent of females. 

The contribution of the residence location suburb in the 
portion of the variance explained for the total distance trav­
eled by automobile in 1 day is marginally significant in the 
particular specification tested in Table 6. However, a speci­
fication without the TRANSIT variable as well as a t-test 
between the means indicated that the contribution and the 
difference, respectively, are statistically significant at the 95 
percent level (i.e., the total distance traveled by automobile 
for growing-suburb residents is significantly higher than for 
stable-suburb residents). Nonwork distance is significantly 
different for residents of growing and stable suburbs as well. 

Transit usage reduces the number of trips and increases the 
number of work trips. It greatly reduces total distance by 
automobile. These results are logical, because most transit 
users in the sample are daily work trip commuters going to 
the Chicago CBD by commuter rail. 

Poor results were obtained from analysis of variance specific 
to each trip purpose (3). This may be an outcome of a lack 
of comprehensive information on a complex process, the in­
trahousehold trip-trading process (i.e. , we have information 
from one household member only) . This is also true for the 
total number of trips, given in Table 6. Trip trading among 

adult household members is largely defined by their role in 
the household and by their personal needs and constraints. 

Trip trading is an underlying process of great importance. 
Ignoring this process by considering individual members only 
is bound to result in limited understanding of the trip-making 
behavior of individuals. Household travel diaries must be 
gathered to assess this household process. 

We employed linear regression modeling to assess the effect 
of each contributing (or causal) factor on the travel behavior 
of individuals. Table 7 gives four models of trip characteristics. 

The independent variables are SEX (0 = female, 1 = 
male) , AGE (the exact age of the respondent), FULL TIME 
(1 if employed full-time, 0 otherwise) , NOT EMPL (1 if not 
employed, 0 otherwise) , RES .LOCAT. (1 if residence in 
growing suburb, 0 if residence in stable suburb), and TRAN­
SIT (1 if at least one trip in diary made by public transpor­
tation, 0 otherwise). 

The overall fit of the number of total trips model is poor, 
but all parameters are significant and correct in sign. Much 
better results were obtained with separate estimates for work 
and nonwork trips. 

The number of work trips appears to be affected to a large 
extent by the employment status of the respondent. Males 
tend to make fewer nonwork trips compared with the sample 
average. 

The role of a person's age in travel behavior in terms of 
total number of trips, work trips, and nonwork trips made in 
a day is fascinating, particularly for nonwork trips. The re­
lationship between the number of trips and age is known to 
be nonlinear. The nonlinear effect plotted in Figure 4 is the 
combined effect of the AGE + AGE2 specification, which 
resulted in better model performance than specifications with 
the AGE variable alone. 

The age of a person, up to 80, is positively correlated with 
the number of trips made in 1 day . The number of trips 
contributed by the person's age to the total number of trips 
is highest at 40 [i.e., most people at age 40 are at the stage 
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TABLE 7 MODELS OF TRIP CHARACTERISTICS 

TOTAL NONWORK WORK DISTANCE 
Dependent TRIPS TRIPS TRIPS by AUTO 
R-aquared 0.08 0.28 0.33 0.14 
Caaea 1296 1303 989 1311 

Con at ant 3.52 3.44 0.11@ 37.60 
SEX (male) -0.30 -0.44 0.14 -
AGE 0.15 0.12 0.04 -
AGE-aq'd -0.002 -0.0015 -0.0005 
PULL TIME -1.59 -3.41 1.82 -
NOT EMPL. - - - -13.70 
RES.LOCAT. - - - 6.30 
TRANSIT - - - -33.90 

UQII: all parameter• aignificant at 95\, except 
(@) • parametera not aignificant 
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FIGURE 4 Contribution of age to travel 
behavior (number of trips by purpose). 

of the life cycle with young, dependent children, whose needs 
induce a substantial number of trips among the adults in the 
household (6)). Clearly, age has a much larger effect on non­
work trips. This is intuitive, because the number of work­
related trips is largely affected by the type and hours of work 
and transportation alternatives and costs. 

The underlying age distributions are different in growing 
and stable suburbs. The average population age is 31.7 and 
37.8 years in growing and stable suburbs , respectively, which 
suggests a higher trip activity in stable than in growing suburbs 
(Figure 4). This is an aggregate estimate that tends to ignore 
the real age distribution in our sample. Disaggregate esti­
mation suggests that the correlation between the number of 
trips and age alone results in 449 and 534 trips in growing and 
stable suburbs, respectively, for every 100 residents in each 
type of community. 

Given the U.S. population aging projections (7) , it is likely 
that overall stable suburbs will progress toward higher age 
cohorts (i.e., beyond 40), which may result in reduced trip 
activity. Growing suburbs will progress closer to 40 years of 
average age, which will put them at the highest trip activity 

age cohort. Precise estimation of the effect of aging cannot 
be obtained with our data because important information on 
in- and out-migration rates is not available . Projections rely 
on the assumption that behaviors do not change over time. 
We may wonder, though, whether it is safe to assume that 
the baby-boom generation (the old generation of tomorrow) 
will have a travel behavior similar to that of today's old gen­
eration. 

The distance traveled in 1 day by automobile is greatly 
affected by the use of public transportation. Commuting to 
work by public transportation saves the average respondent 
34 mi of driving. This result is largely due to suburban resi­
dents employed in the Chicago CBD who commute by public 
transportation (commuter rail or rail rapid transit). Most of 
these people make few other trips by automobile during week­
days (i.e., they have little time left for such travel), and most 
of their daily mileage is picked up by public transportation. 

Residence in a growing suburb adds, on the average, 6 mi 
to the daily distance traveled by automobile. This estimate 
translates into roughly 15 more min of exposure to traffic, 
plus added fuel consumption and pollution. [For each auto­
mobile user, 6 more mi a day translates into 80 gal of fuel a 
year additional (assuming 250 workdays and 20 mi/gal average 
fuel efficiency) . This estimate does not include weekend travel; 
conceivably, weekend travel distances are also longer for 
growing-suburb residents.] Not-employed people travel on 
the average 14 mi less by automobile compared with the sam­
ple average. 

CONCLUSIONS AND IMPLICATIONS 

Findings from an analysis of contemporary transport behavior 
survey data collected from selected Chicago suburbs were 
presented. Two classes of suburbs were used in the analysis: 
inner-ring, high-density, stable suburbs and outer-ring, low­
density, growing suburbs. The presentation focused on em­
pirical findings of trip characteristics of individual respondents 
and on the factors affecting or explaining them. 

Key findings are summarized as follows: 

• More than 40 percent of stable-suburb full-time workers 
are employed in the central city , but less than 20 percent of 
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growing-suburb full-time workers are employed in the central 
city. The majority of part-time workers work in the suburb 
where they reside. 

•Average speeds for the trip to work by automobile are 
similar for growing- and stable-suburb residents, but growing­
suburb residents stay in traffic at least 25 percent longer be­
cause of their longer commuting distances. 

• Full-time-employed people make the bulk of their trips 
during the morning, noon, and evening rush periods, part­
time-employed people spread their trip activity almost uni­
formly, and not-employed people use mostly off-peak time 
periods. 

• A substantial number of trips are made during off-peak 
times, including late-evening hours, which supports the 
impression of around-the-clock traffic (and congestion). 

• The number of trips made in 1 day hy individual respon­
dents is significantly different across employment status cat­
egories: full-time-employed people make 4. 7 trips, part-time­
employed people make 5.9 trips, and not-employed people 
make 5.3 trips . 

•Males make more work-related trips, but females make 
more trips to run errands, buy groceries, and shop. 

• Suburban females depend more on automobiles for their 
transportation (93. 7 percent automobile share) than do males 
(88.7 percent automobile share). 

Most of the findings have clear associations with and im­
plications for traffic growth and congestion in the suburbs. 
The four most prominent factors are residence location, pop­
ulation aging, working women, and fixed work hours. 

Residence location in growing suburbs implies longer trips 
and more local trips because of low density and more local 
employment opportunities, respectively. Specifically, growing­
suburb residents travel a 40 percent longer total daily distance 
compared with stable-suburb residents. The average travel 
speed by automobile is higher for growing-suburb residents, 
but they stay in traffic 25 percent longer than stable-suburb 
residents because of longer commutes. The longer exposure 
to traffic (and the consequent waste of time) may have caused 
the uproar against congestion in growing suburbs. Despite the 
fact that the number of daily trips does not differ significantly 
between residents of growing and stable suburbs, growing­
suburb residents make 80 percent of their trips in the suburbs, 
whereas stable-suburb residents make less than 60 percent of 
their trips in the suhurbs. The result is more traffic (and 
congestion) in growing suburbs. 

The U.S. population will be increasingly moving to higher 
age cohorts until about 2020 (7). This natural phenomenon 
may offer some relief of traffic congestion, not because older 
people travel Jess, but because they use off-peak periods and 
make shorter trips. Hence, their travel behavior may equalize 
use of the roadway infrastructure over the day and thus may 
be less wasteful and polluting. The data suggest that older 
people now reside in stable suburbs to a greater extent than 
in growing suburbs; thus, in the short term (i .e. , the next 5 
to 10 years) some relief may come to places where public 
discomfort due to congestion is less pronounced. Worse, nat-
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ural aging alone can be expected to contribute to increasing 
trip rates in growing suburbs, at least for the next decade. 

The increasing number of workers, working women and 
mothers in particular, further contributes to congestion be­
cause long work trips are added to the traditionally large 
number of household maintenance trips by women. Equal 
employment rights and the independence gained from earning 
an income are incentives for women to work. In addition, the 
increasing cost of living and opportunities for consumption 
may be forcing households to have multiple workers, first to 
make ends meet, and then to improve their standard of living 
by spending on education, entertainment, fitness, and pos­
sessions. 

Finally, there is room for spreading peak-period demand 
over longer periods. It is disappointing that flextime or stag­
gered work hours has not appealed to company executives. 
Recall that the overwhelming majority of the workers in our 
sample start their trips between 6:30 and 8:00 a.m. (Figure 
3). It is clear that it would make a tremendous difference in 
peak loads and network performance if this 1 Yz-hr peak were 
spread over 2 Yz to 3 hr. 
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Socioeconomics of the Individual and the 
Costs of Driving: New Evidence for Travel 
Demand Modeler 

A. P. TALVITIE AND MARIA KOSKENOJA 

Automobile travel costs have long been neglected in travel be­
havior analyses and travel demand models. The socioeconomic 
determinants of automobile travel cost choices are explored as 
part of a study into the effects of quality of work on work-related 
travel conducted in the Road and Traffic Laboratory, Technical 
Research Center of Finland. The study was motivated by the 
need to assess driving cost estimates for the mode choice model. 
It was approached through separate functions for fixed, variable, 
and total driving costs of the respondent. Within-household ef­
fects were examined through driving cost regressions of the house­
hold members of the respondent. The within-household regres­
sions indicate that there are within-household work life effects 
on driving costs. The effects take place on a detailed level, which 
is not captured in a variable describing the household member's 
employment status. Rather, it appears that the quality of occu­
pations of the household members has more effect on driving 
costs than the number or share of employed persons in the house­
hold. Automobile operating costs are not equal for everybody. 
They are an outcome of a choice and are influenced by the char­
acteristics of the individual and his activities and the other house­
hold members and their activities . The same applies for auto­
mobile capital costs . The operating costs of automobiles had a 
low statistical significance on mode choice, and high capital costs 
were associated with automobile choice. These findings are not 
surprising but ones not believed nor a part of present travel de­
mand model systems. But it is believable that automobile oper­
ating costs do not influence mode choice, or, that once automobile 
is chosen, it is an expensive one-comfort costs-by choice. The 
driving cost models indicate that travel choices are a part of 
complex behavioral interplay within a household in which the 
costs of transport have a major role. 

Analyses of automobile travel costs have long been neglected 
in travel behavior studies and in developing travel demand 
models, with some exceptions (1-4). Models for automobile 
travel costs are developed and the socioeconomic determi­
nants of automobile travel cost choices are explored as part 
of a study into the effects of type of work on work-related 
travel conducted in the Road and Traffic Laboratory , Tech­
nical Research Center of Finland. 

In the present study rigid ex ante hypotheses are avoided . 
Rather, it is generally hypothesized that work arrangements 
in their entirety influence work-related travel choices and that 
these decisions interact with non-work-related transport de­
cisions (5). In a similar vein , the models developed may not 
satisfy all the technical, statistical assumptions . The emphasis 
has been on exploring behavior, not mathematics. 

A. P. Talvitie, Viatek Consulting Engineers and Architects , Pohjantie 
3, Espoo, 02100 Finland. M. Koskenoja, University of California , 
Irvine, Calif. 

The data for the study come from Finland, where both men 
and women work . In 1984, 49 percent of all employed people 
in Finland were women, of whom 88 percent work more than 
30 hr per week; for men the figure is 98 percent. The per­
centage of the work force at the working ages is 79 for men 
and 72 for women. Work histories of employed men are only 
2 years longer than those of employed women for persons 
aged 35 to 45. The difference gradually increases, but only to 
7 years for persons aged 55 to 64. Thus, work and the working 
environment are influential factors for both sexes in the for­
mation of preferences for everyday choices (6-8) . 

The contents , tools , and procedures of work are also chang­
ing because of changes in market structure and technology. 
Besides, work conditions are an object of planning by man­
agement and institutions. If there is a link between work 
arrangements and travel behavior, there is a need to under­
stand the effects of such arrangements in order to respond to 
the changing transportation needs of different groups of work­
ing individuals . 

DATA 

Sampling 

The sample was drawn by systematic sampling using the Pop­
ulation Register of Finland. The population was divided into 
two classes by age: adults (over 15 years) and children (7 to 
14 years). Of the adults , persons were selected who are in 
the active work force and reported the travel diary day to be 
a normal workday. There were 1,518 such adult , working 
persons in the survey, which the diary cleaning reduced to 
the final sample size of 1,333 persons . 

Data Collection 

The transportation data were collected by the Central Statis­
tical Office of Finland between September 1985 and February 
1986. The collection procedure was as follows: 

1. Persons in the sample received a letter from the Statis­
tical Center explaining the purpose of the survey and the 
expectations concerning the respondent. 

2. Three questionnaires to be filled out by the respondent 
were attached to the letter, including a note pad for the daily 
travel pattern, called the travel diary. 
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3. The interviewer contacted the respondent before the in­
tended day of the study and made an interview appointment. 

4. The data were gathered in the interview. The travel diary 
was translated from the note pad to the questionnaire form 
with help from the interviewer to avoid misperceptions. 

The collected data are representative of the population, but 
the process of selecting diaries may bias accepted travel diaries 
toward young, male, transportationally active people. This 
was just a feeling that came when choosing the usable data 
diaries from the original sample. 

Occupational Characteristics 

Occupational characteristics come from a study conducted by 
the Central Statistical Office of Finland (7), in which 4,502 
wage earners were interviewed about their conditions of work. 
The interviews took place in 1984, just 1 year before the 
transportation data collection, ensuring the compatibility of 
the two data sets. 

In the occupational data survey the respondents gave sub­
jective ratings about different dimensions of occupational re­
quirements. The occupations were classified into 34 groups 
on the basis of similarities in activities; this, however, is not 
the official occupational grouping used in government statis­
tics. The grouping of occupations causes some aggregation 
error, but the grouped data still include more of the variance 
than the normally used, single-dimension, class description of 
organizational status classes (blue collar, white collar, etc.). 

Occupational groups were described by detailed questions. 
For example, the physical demands of an occupation were 
scaled through deviations from normal temperature, draft, 
dustiness of air, heavy lifts, extreme stretching, and so forth; 
from these an index of physical demands of work was formed. 
The chosen occupational dimensions are mental demands, 
physical demands, monotonousness, and the power to influ­
ence work rhythm. 

The subjective nature of occupational ratings, together with 
technological and market structure changes, could soon cause 
the description of occupations to be outmoded if the char­
acteristics of occupations are not updated. Fortunately, it is 
in the interest of labor unions and employer associations as 
well as university and statistical bureaucracies to produce these 
kinds of data. Therefore, the usage of occupational charac­
teristics offers a possibility to use more disaggregated data, 
which are updated by existing institutions. 

The occupational data were connected with the transpor­
tation questionnaire data by using the occupation reported in 
the questionnaire . 

In the transportation questionnaire the respondents were 
also asked about weekly working hours, whether they had a 
shift schedule or irregular working hours, whether flextime 
was used, and whether they worked at home or at several 
locations. These variables are truly disaggregate in the com­
bined data base. 

Household Structure Variables 

The age, gender, and employment status of the household 
members are known. Also, the personal income class and the 
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income class of the household were asked. These data were 
used to form the life cycle variable and an indicator of whether 
the person was self-sustaining, the spouse of the primary earner, 
or a dependent. Intrafamily effects are not well covered, be­
cause there are virtually no transportation data from other 
household members. The relationships of daily tour combi­
nations of household members remains to be investigated. 

There was no clear indicator of the main wage earner of 
the household. This would have been desirable for determin­
ing the economic power positions of the respondents inside 
the household and for deducing the life cycle of that house­
hold. The decision rule used for selecting the main wage earner 
was the following: the respondent was classified as the main 
earner if she or he earned at least half of the total income of 
the household. If that was not the case, the presence of other 
working household members between ages 19 and 64 was 
determined. If they existed, the main earner was deemed to 
be the other in-law, mother, father, or a spouse, in that order. 
For example, if there were both a father and a spouse present, 
the spouse was classified as the main earner. This information 
was condensed to identify the respondent's position in the 
household: self-sustaining, spouse, or dependent. 

The household life cycle has five classes. The first life cycle 
class contains childless households in which the main earner 
is younger than 35. Households are classified in the second 
class if the youngest child is less than 7 years old, irrespective 
of the age of the main earner. The third life cycle class has a 
youngest child between 7 and 16 (the school age), again re­
gardless of the age of the main earner. A household without 
children under 17 is classified in the fourth class if the main 
earner is between 35 and 54. The fifth class contains house­
holds in which the main earner is 55 or older and there are 
no children under 17. 

The classification of life cycles based on the age of the 
youngest child was selected because it was thought that the 
youngest person restricts mobility the most. This assumption 
is commonly made when forming life cycle variables. Zim­
merman (9) discusses alternative ways to select life cycle var­
iables. 

Diary Data Cleaning 

The following information concerning starting place and des­
tination was collected in the diary: addresses, place codes, 
and times of day. The purpose of the trip, travel mode, and 
waiting time for public transportation were also asked. 

The checking of the data had to be done manually, case by 
case, to ensure the right corrections. It took almost 1 year to 
clean the data. Distances were checked for illogical or not 
reported entries and, when necessary, measured from maps. 
In addition, starting places were corrected to be the same as 
previous destinations. Diaries that contained intractable ob­
scurities in the paths were deleted. Diaries were also deleted 
if any work trip was done on an unusual mode (plane, boat, 
or "other"). The modes included in the analyses were auto­
mobile driver, automobile passenger, bus, tram, train, bicy­
cle, and walk. 

The data contained diaries that were otherwise tractable 
but in which the distance of a home-based walk round-trip 
(with purpose sport or unspecified) was unreported. These 
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diaries were accepted with a change of distance of 1.0 km for 
the walking trip. Most of these walks were the last trips in 
the diary, so they are "evening walks" (taking the dog out, 
window shopping). Finally, a diary was deleted from the data 
if the respondent's travel day started from an implausible 
place, such as school, shop, other place of errands, or a day­
care center. 

Even though numerous judgments had to be made in pre­
paring the data for model estimation, they are believed to be 
no worse or less accurate than data normally used in trans­
portation models. That references to data-cleaning work are 
rarely made in the literature or, worse, that the analyst is not 
aware of how data were prepared, does not improve data 
quality. The view taken is that a thorough knowledge of data 
improves the appraisal of model results. 

DRIVING COSTS 

In developing a mode choice model, the time and money costs 
of driving must be approximated for the sampled individuals. 
The driving costs of cars are normally obtained first, then the 
driving costs of trips are estimated using the information about 
the cars available to the person in question. This figure is an 
estimate of the realized driving costs for persons who had a 
car available that day. 

The method just described can also be used to approximate 
the driving costs for a person who at the moment did not have 
a car. The question to be answered in that case is, If the 
person had a car, what kind of driving costs would he or she 
have incurred per driven kilometer? This approximation to 
driving cost is different from the one customarily used in travel 
model studies, where driving costs are assumed to be constant 
regardless of the car driven and, indeed, regardless of whether 
or not a car is available. 

Driving Costs per Car-Assumptions and 
Initial Values 

The cost approximations that appear in this section are based 
on research conducted in the Technical Research Center of 
Finland about car prices and factors affecting driving costs. 
To calculate driving costs , cars are divided into five size groups 
and three age groups: 

Purchase 
Size Price, Age Class 
Class Size (cc) New (FIM) (years) 

I x < 1300 40,000 0-3 
II 1300 < x < 1600 55 ,000 4-9 
III 1600 < x < 2000 75,000 > 10 
IV 2000 < x < 2500 120,000 
v 2500 < x 150,000 

For simplicity it is assumed that all cars are driven 17 000 
km/year. This was the average annual mileage in Finland in 
1985. It is casually believed that most kilometers are driven 
with new cars. If this is true, their driving costs will be esti­
mated high and the driving cost for old cars low. Unfortu­
nately, the yearly mileage figures were not available. This 
lack of better data is regrettable but not unusual in trans­
portation studies as the analogous example by Train (JO) , 
reported later, illustrates. 
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Fixed costs include depreciation, interest, mandatory traffic 
and car insurance, anticorrosion treatment, storage, and park­
ing at home. Variable costs include tires, repair and main­
tenance , and fuel. 

Depreciation of capital during the first 3 years is set at 15 
percent of the remaining capital. The rest is depreciated over 
the following 6 years. When the car reaches the age of 10 
years, all the original capital is depreciated. Whatever value 
the car may have thereafter is considered to be because of 
spare parts and repair and maintenance put into it. The in­
terest rate used is 6 percent per the average capital of the 
year in question . The rate is lower than the market rate be­
cause interest costs are partly tax deductible; 6 percent is 
estimated to be the part of interest the owner really has 
to pay. 

Anticorrosion treatment is calculated to be 450 FIM/year 
regardless of car size or age. The costs of tires and insurance 
rise with car size class as follows : 

Size Class Tires (FIM) Insurance (FIM) 

I 650 2,014 
II 700 2,362 
III 800 2,709 
IV 900 3,057 
v 900 3,751 

Storage and parking costs depend on the respondent's living 
environment. In the central city they are 150 FIM/month, in 
the suburbs they are 75 FIM/month, and in towns and rural 
areas storage and parking costs are assumed to be nil. 

Repair and maintenance costs are calculated as a percent­
age of the purchase price of the car. The percentage is lower 
for new cars , reflecting their better condition , and also lower 
for bigger cars due to their better quality. The following per­
centages apply in each age and size group; fuel consumption 
is also given: 

New Cars 4-9 Fuel 
Size (Age 0-3 years) year-old-cars co11s11mption 
Class (percent) (percent) (L/100 km) 

I 2 4 8 
II 2 4 9 
III 1.75 3.5 10 
IV 1.5 3 12 
v 1.5 3 14 

For cars more than 10 years old, the repair percentage is a 
flat 10 percent in every size class. The fuel price is 3.54 FIM/ 
L, which was the price of regular gasoline in October 1985. 

Fixed and variable costs are summed and divided by 17 ,000. 
The results are shown in Table 1. The three different costs 
for each car size class are due to the different storage and 
parking costs in city centers (c), suburbs (s), and villages or 
rural areas (r). 

After the driving costs per car are approximated, the cost 
per driven kilometer for different persons can be estimated. 

Driving Costs of Respondents with Cars at 
Their Disposal 

The data indicate the number and makes of vehicles in the 
household and their primary users. One of the many alter-
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TABLE 1 VARIABLE AND 
FIXED COSTS OF DRIVING 
IN FINLAND (FIN/km) ($1 
U.S. = 4.0 FIM) 

Size Ous n m IV v 

• CAR AGE D-3 yean 

fixed c: 0.64 0.80 1.02 0.47 1.80 

" O.SB 0.7S 0.96 1.42 1.7S 
r: O.S3 0.70 0.91 1.36 1.69 

vuiable : 0.36 0.42 0.48 O.S8 0.68 

tot.COit c: 1.00 1.22 I.SO 2.0S 2.48 
s: 0.94 1.17 1.44 2.00 2.44 
r: 0.89 1.12 1.37 1.94 2.37 

• CAR AGE 4-9 yean 

fixed c: 0.S2 0.6S 0.80 1.12 1.38 
s: 0.47 O.S9 0.7S 1.07 1.33 
r: 0.42 0.S4 0.70 1.01 1.27 

vuiable : 0.41 0.49 O.S6 0.69 0.81 

tot.cost c: 0.93 1.14 1.36 1.81 2.19 
s: 0.88 1.08 1,31 1.76 2.14 
r: 0.83 1.03 1.26 1.70 2.08 

• Car AGE I()+ yean 

fixed c: 0.25 0.27 0.29 0.31 0.3S 
s: 0.20 0.22 0.24 0.26 0.30 
r: 0.14 0.17 0.19 0.21 0.2S 

vuiable : O.S8 0.68 0.84 1.18 1.43 

tot.COii c: 0.83 0.95 1.13 1.49 1.79 

" 0.78 0.90 1.08 1.44 1.73 
r: 0.72 0.85 1,03 1.39 1.68 

natives was that use of the car was shared. A small proportion 
of the respondents indicated this to be the case. The most 
common case was that the car belonged to a certain person 
in the household. Often one person was the main user of 
several cars . 

The cost allocation problem arises because the diary data 
do not indicate which car the person was driving or got a lift 
on. The following rules are used to approximate the personal 
driving cost of the respondent: 

1. If the person reports one or more cars to be at his per­
sonal disposal and there are no cars in common use, the fixed 
costs are the sum of the cars that the person has. 

2. If no one else can use the cars, the fixed costs are all 
summed, because the owner can drive only one car at a time, 
but the time runs on all of the cars. The variable costs are 
estimated to be a mean of the variable costs of those cars. 

3. If the household has one or more cars in shared use, the 
fixed cost is the sum of all those cars divided by the number 
of driving licenses in the household. The variable costs in 
shared use are again a mean of the variable costs of the cars. 

4. If the person has some cars at his or her personal disposal 
and some in shared use, only the cars at personal disposal are 
counted in estimating costs. This is a simplifying assumption , 
but in most cases the vehicle in shared use was a van and the 
vehicles in personal use were cars. Thus the vans drop off 
when the mode of travel is driving a car, because in the ques­
tionnaire there is another mode for driving a truck or van. 

5. Total driving costs are the sum of fixed and variable 
costs. 

Driving Costs for Respondent's Household 
Members with Access to a Car 
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Because cars are allocated to certain household members, it 
is possible to formulate models describing the effect of the 
respondent's characteristics on the chosen driving cost level 
of some other household member, provided he or she has 
access to a car. To gain this understanding of the effects of a 
person on another person's driving cost choices, the data were 
used in reverse order: the cost choices of the respondent's 
household members were regressed on the characteristics of 
the respondent. 

Of interest here are the respondent's work type or socio­
economic characteristics that may cause changes in the house­
hold members' driving costs . For example, the young age of 
a respondent could induce someone else in the household to 
change driving costs. For example, a British study (11,12) 
reports higher values of time when there are small children 
in the car . It is plausible that this affects the driver's choice 
of driving costs, that is, the choice of car type. 

In the data there is much information about the personal 
characteristics of the respondent. However, there is not much 
information about the other household members. In the linear 
regression model all variables are introduced to account for 
both the effect of those household characteristics that are 
common to all of the household members (e.g. , location of 
the household) and those that vary among individuals (an 
example of this type of variable is "main earner of the house­
hold"). As in the previous section, three cost variables were 
created: others' fixed costs (OFC), others' variable costs (OVC), 
and others' total costs (OTC). They refer not to the respon­
dent , but to another household member with access to cars. 
The following rules were adopted for calculating OFC, OVC, 
and OTC: OFC is the mean of the fixed costs of the cars 
belonging to the other household members. OVC is the mean 
of the variable costs of these cars. OTC is simply OFC plus 
ovc. 

Correction for Self-Selectivity Bias in Modeling 
Driving Costs for Persons Who Do Not Have a Car 

Marketing science suggests that different persons drive dif­
ferent kinds of cars. There may be combinations of driving 
costs a particular person would not even consider as an al­
ternative. 

In estimating potential driving costs for persons who at 
present are nondrivers, it is important to know what deter­
mines the chosen costs of driving for those who are drivers. 
This information can then be applied to the nondrivers to 
produce a realistic driving cost alternative for them. 

If this calculation is done simply on the basis of the observed 
characteristics of the drivers, it will yield biased estimates. 
This is because the variables that affect the chosen driving 
cost level also affect the choice to be or not to be a driver. 
This bias is called the self-selectivity bias. The correction for 
this bias is presented next. 

The decision to have a car and the decision of driving cost 
level are made jointly. According to Train (10), models of 
car ownership and driving quantity should be linked to avoid 
the self-selectivity bias. He proposes an instrumental variable 
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estimation, where the probability of car ownership is esti­
mated first and this estimate is used to form the correction 
term in the driving quantity regression. In Train's model the 
driving cost was fixed and the amount of driving was esti­
mated. In the model here, the amount of driving is fixed and 
the cost of driving varies. The logic of the correction term is 
not violated by this change. 

Following Train, if the choice probabilities are logit and 
the error term of the driving cost function is normal, the 
correction term is 

where 

ec = error term in the driving cost equation; 
E(ec) = ec - T, selectivity correction term, which equals 

the error term in the driving cost function-nor­
mally distributed; 

P
4 

probability of owning one or more cars; 
Pc probability of owning no cars; 
a standard deviation of e in the entire population 

(not conditional on the choice of the number of 
cars); and 

Pc = correlation of e with the unobserved utility asso­
ciated with owning no cars. 

When this correction term is added to the driving cost regres­
sion, the rest of the parameters are unbiased: 

VC = ps + rec + T 

fc = as + rec + T 

where 

vc = variable cost conditional upon being a driver, 
p vector of parameters to be estimated, 
s = vector of characteristics of the person and other ex­

planatory variables, 
T a normally distributed error term, 

Cc [Pq In P,,1(1 - Pq) + In Pc], and 
r -(Y6ahr) *Pc· 

Because the value of Cc can be calculated, the value of Pc 
comes from the estimation. 

Train also proposes that the utility of choosing the car (make 
or model and vintage) from the varying number of alternatives 
inside each class should be accounted for by a correction term. 
This reflects the assumption that if a car is selected from a 
class containing several alternatives, the choice will be closer 
to the optimum than when there are only a few makes or 
models to choose from. Because this kind of correction is not 
done here, the estimates may be biased. Because each class 
is likely to contain a large number of alternatives, the bias is 
small. 

Train estimated the models for the probability of having 
no car, one car, and two cars and used these estimates in the 
correction term of the equation for operating costs. In his 
model the exogenous variables for predicting the operating 
costs of households' cars were gas price in the area of resi­
dence, household income, household size, type of housing 
unit, number of adults and adolescents, number of workers, 
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age of household head, education level of household head, 
sex of household head, distance to work, population of house­
hold's area of residence, and number of transit trips in the 
area of residence. 

The variables in this study are expected to be different 
because the equations are estimated not for a household but 
for an individual in the household. An important variable, 
distance to work, does not exist in the present data. 

Logit Model for Respondent's Car Availability 

To obtain an estimate for the correction term to avoid the 
self-selectivity bias, a binomial logit model was estimated. The 
alternatives were no cars available (nondriver) and one or 
more cars available (driver). If the person shared the use of 
at least one car, he or she was classified as a driver. The set 
of variables that were considered important is given in Table 
2, and a "best" model estimated using these variables is given 
in Table 3. 

The model predicts the probability that the respondent is 
a driver, that is to say, is the primary user or shares the use 
of at least one car. The automobile availability model is needed 

TABLE 2 EXPLANATORY VARIABLES IN CAR 
AVAILABILITY MODELS 

Biological Varieblos: 
family lifo cycle 
year of binh of tho rospondont 

Time connected Varieblos: 
worb ouuidc home 
oevcnl places of employment 
worb roguler houn 
worb imguler hours (-deadline) 

Or1aolzational Variebles: 
Canner 
upper white coller 
blue collu wotkcr 

Indusiry VariablCJ: 
primary production 
energy and utilities 
commerce, restaurant and horel 
lrUUpCll'lltion, and communications 

Occupational Variebles: 
mentally domanding 
much/little irnpect on lho work rhythm 

ago of tho youngest hh member 
aox (fomalo=l, male.=()) 

worb flexible hoon 
houn worked in a wool< 
worb in shift 

self-employed 
lower white collar 

manufacturing 
construction 
finance and insurance 
services 

phy1lcally domanding 
monotonous 

Reladvc Economic Power of lho Household Mombc": 
monthly pommel income monthly household income 
ma.in wage earner 1pouse of the main earner 
dopendont (=Neither of the above) 

Household S1n1cturo: 
number of persons in lhe household number of working pe"°"' 
number of persons not active in wodt life 

Dl.11ances: 
dl11anee to the neercst bus stop dlstanee to the food store 
dl11anee to a bank distance to a post office 

Localional variables: 
nffic volume of home street home in the central city 
home in a subwb home in runl1 area 
home in a small town or village 

House type: 
•inslo family or a detached house townhouse apanment 
own1 a 1wnmer cottage can use somebody's summer cottage 

Driving variables: 
r(espondont) has a car avallablc r's household member hiS a car available r has a 
driven licence no. of driver licenses in the household 
othtn' driving costs 
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TABLE 3 LOGIT MODEL FOR 
RESPONDENT'S CAR 
AVAILABILITY (DEPENDENT 
VARIABLE: RESPONDENT HAS A 
CAR AVAILABLE= 1) 

Independent Estimated 
Variable Coefficient t-Siatistic 

constant 
female 
self-employed 
wads outside home 
several employments 
hOUll worked 
log of pers income 
log of hh income 
dependent 
others drive 
# of other licenses 
rural area 
one family house 
row house 

auxiliary statistics 
log likelihood 

-13.997 
-1.89S 
l.6S9 
0.619 
0.499 
0.000 
0.883 
0.621 

-0.785 
-2.743 
0.939 
0.963 
0.930 
0.817 

number of obJcrVatlons 
percent correctly predicted 

-6.907 
-11.076 

3.749 
1.870 
1.882 
2.300 
3.020 
2.289 

-2.321 
-11.194 

e.t convergence 
-461.674 
1124 

82.2 

5.831 
3.722 
4.177 
2.986 

initial 
-779.007 

in estimating car driving costs. A few comments on the model 
follow . 

Females have a smaller probability of being drivers than 
do males . Self-employment, workplace outside home, several 
employers, and the hours worked during a week all increase 
the probability of being a driver. The work location variables 
are statistically significant at one-sided 0.05 level, and they 
were included in the model because of their expected sign 
and because the effect of work type on travel behavior is the 
subject of this study. 

The occupational variables (mentally demanding, physi­
cally demanding, monotonous, and possibility of influencing 
work rhythm) all lost their significance when other variables 
were introduced. Both physically demanding and monotonous 
occupations are correlated with not being a driver. Contrary 
to expectations, flexible working hours, shift, or variable 
(deadline) working hours did not have a statistically significant 
impact on car availability. 

Both the logarithm of personal income and the logarithm 
of household income are positive and statistically significant. 
Personal income would have been statistically significant also 
without the logarithmic transformation , but the logarithmic 
transformation was preferred, to reflect the declining mar­
ginal utility of income. 

The variables describing the person's relative economic 
strength in the household-main wage earner, spouse, and 
dependent-are mutually exclusive dummy variables. "De­
pendent" receives a value of 1 when the person in question 
is not the head of the household (is not the main wage earner) 
and is not the spouse of the head. "Spouse" marks all persons 
whose spouse is the main wage earner . 

"Dependent" receives a statistically significant negative value 
indicating that, in spite of income, this social standing works 
toward not having a car at one's disposal. If "dependent" and 
"spouse" are both included in the model, they both get a 
negative coefficient , but for "spouse" it is smaller and not 
statistically significant (t = 1.3). 

Car availability in the household by persons other than the 
respondent has a strong negative effect on the respondent's 
car availability and suggests transferability of driving tasks. 
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Converse! y, when the number of driving licenses in the house­
hold increases, so does the respondent's probability of ac­
quiring a car. The explanation for this could be a possibility 
of more efficient car usage, learning the way of life from other 
household members, or both. 

Finally, living in a rural area and in a one-family detached 
house or a town house is positively correlated with the respon­
dent 's car availability. 

Logit Model for Car Availability of the Household 
Members of the Respondent 

The estimated logit model for the respondent's household 
members to have a car available is given in Table 4. The 
variables, which all describe the respondent, were chosen with 
three primary concerns in mind: they should be statistically 
significant, interpretable, and preferably the same variables 
as in the respondent's car availability model, to see their effect 
inside the household and in relation to the outside of the 
household. 

The other (nonrespondent) members of the household tended 
to have a car available if the respondent was female . The 
nonavailability of the respondent for household tasks (much 
employment and large number of hours worked weekly) is 
one inducement for the other members of the household to 
acquire a car. Self-employment of the respondent works in 
the same direction. The explanation could be lack of time for 
household tasks or, just as well, a learned way of life. Again, 
flexible working hours, shift, or variable (deadline) working 
hours did not have any impact. 

The probability that a household member has a car available 
increases with household income, as expected . However, the 
probability diminishes with increasing income of the respon­
dent. This is not totally explained by the income differentials , 
because those are captured in the dummy variables "main 
wage earner" and "dependent." This characteristic is statis-

TABLE 4 LOGIT MODEL FOR CAR 
AVAILABILITY OF HOUSEHOLD 
MEMBERS OF RESPONDENT 
(DEPENDENT VARIABLE: 
RESPONDENT'S HOUSEHOLD 
MEMBER HAS A CAR AVAILABLE 
= 1) 

Independent Estimated 
Variable Coefficient t - Srati1tic 

constant 
female 
sevrl employments 
houn worked 
self-employed 
log of hh income 
log of pers inc 
main earner 
dependent 
ttaffic volume 
rural area 
summer cottage 
one family house 
townhouse 
r has a car avail 
has a licence 

auxiliary slatistics 
log likelihood 

-11.485 
0.841 
0.365 
0.000 
0.657 
3.110 

-2.216 
0.603 
0.793 

-0.173 
0.173 
0.827 
1.493 
I.OS? 

-2.611 
0.874 

number of observations 
percent correctly predicted 

-5.540 
4.116 
1.446 
2.521 
2.015 
9.163 

-6.241 
1.939 
2.046 

-2.683 
0.739 
4.262 
6.753 
4.009 

-10.334 

at convergence 
-483.621 
1104 

79.9 

3.S44 

initial 
-765.234 
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tically significant and does not change when other variables 
are changed. It needs further investigation. 

Car availability is negatively correlated with the traffic vol­
ume on the street of residence, perhaps reflecting the level 
of service of public transportation. Curiously enough, the 
distance to the nearest bus stop, which was thought to indicate 
the level of service, did not have any significance. The same 
locational variables that were significant in driver model es­
timation are significant here: living in a rural area and in a 
one-family house or a townhouse are all associated with an 
increased probability that the household member has a car 
available. 

Another similarity to the driver model is that the driver 
status of the respondent reduces the probability that other 
household members are drivers, but the driving license of the 
respondent increases it. This again could be interpreted as 
indicating the transferring of travel-related tasks inside the 
household. 

Driving Cost Models for Respondents 

The driving cost models were estimated by standard least 
squares estimation with the previously discussed correction 
term included in the model. The correction term's logic is 
briefly presented here; see Figure 1. The term corrects the 
regression for "unobserved observations," that is, for the would­
be-chosen cost levels that are not possible because of technical 
or market reasons such as one shown in Figure 1. 

If income were the only factor influencing the chosen driv­
ing cost level, and the threshold amount of income were the 
one marked with the horizontal line, then the observed driving 
cost level and income pairs would be the ones above the line. 
If a regression were run on these pairs only, the estimated 
line would not be steep enough and the intercept would be 
higher than in the true regression. The reason for this is the 
double influence of income: it affects the decision to have or 
not have a car and the level-of-cost decision. If totally dif­
ferent variables affected the automobile and the cost-level 
choice, the correction term would be unnecessary. 

The cost regressions were estimated separately for fixed 
costs, variable costs, and total costs. The division between 
these costs is interesting because decisions about these costs 
are supposedly made on different time horizons-fixed costs 
for longer horizons and variable costs for shorter. This as-

• 
income • • 

I 
• • • 

• • • • 
• • • • 

I • • • • • 

I 
• • • • 

• • • 
• • • • 

• • • • 
• • • • • 
• • • • • • • driving cost level 

L___.___.__.,~~~~~~~~~~~-~~~~~~ 

FIGURE 1 Rationale for correction term due to "unobserved" 
observations in driving cost regression. 
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sumption is supported in the empirical findings from longi­
tudinal studies that the transfer cost of selling the old car and 
buying a new one is considered high (10). This means that 
people do not buy and sell their cars to adjust to the optimal 
combination of costs, but rather decide the fixed-cost level 
and Jet the variable costs have their impact on the amount of 
driving. 

Model for Fixed Costs of Driving a Car 

The fixed-cost model is discussed first (see Table 5). The 
correction term, which carries the effect of presently having/ 
not having access to a car, has the expected sign; the prob­
ability of having a car available increases the fixed costs. The 
coefficient has a low significance, but the term was left in the 
regression on theoretical grounds. 

The life cycle dummy ( cycle2) marks households in which 
the youngest child is under school age. People living in house­
holds with small children are driving cars with lower fixed 
costs. (Fixed costs are lower for smaller and older cars.) Fe­
male drivers have lower fixed cost. 

The following occupational attributes are statistically sig­
nificant: irregular working hours (deadline), self-employed, 
working in the energy and utility industry, and mentally de­
manding occupation. These attributes increased the chosen 
fixed driving costs. 

Working irregular hours increases the person's scope for 
planning the day's activities and the number of alternatives 
from which to choose. It is consistent with the theory that if 
the person can choose an alternative closer to the optimum, 
the value of time is higher . This also implies that the chosen 
monetary cost is higher. The MY A Consultancy (11) found 
that the value of time was higher for people working irregular 
hours. 

The occupational variable concerning impact on work rhythm 
did not have significance. The effect of self-employment may 
explain that variation. It is usual for entrepreneurs to describe 
the positive sides of their work as independence and flexibility 
in the sense that the person can agree about the deadlines. 

TABLE 5 MODEL FOR 
FIXED COSTS OF 
DRIVING A CAR 
(DEPENDENT VARIABLE: 
FIXED DRIVING COSTS 
OF RESPONDENT) 

Independent Estima!N 
Variable Coefficient 

c~ti.ontenn 0.023 
constant 0.358 
cycle2 -0.072 
female -0.101 
deadline 0.113 
aelf-employcd 0.166 
energy industry 0.131 
mentally demanding 0.002 
penonal income 0.000 
summer cottage 0.071 

Number of Observations 
R-squaml 
Sum of Squaml Residuals 
Standard Err0< of the Re~Hion 
Mean of Dependent Variable 

t-Statistic 

1.016 
7.(1.11 

-2.640 
-2.459 
3.290 
3.803 
1.961 
2.685 
2.731 
2.480 

604 
0.16 

50.570 
0.292 
0.566 
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Working in the energy and utility industry may increase 
fixed costs simply because the locations visited during the day 
may be hard to reach by other modes; for example, distant 
farmhouses, voltage leveling stations, or power lines are 
rarely served by public transit. Mental and physical demands 
of occupations have a strong negative correlation with each 
other. Of the two, mental demands had a clearer effect on 
driving cost. 

Higher personal income increased the chosen fixed-cost 
level, as expected. Income segmentation was also tried by 
dividing the sample into three income classes and estimating 
separate coefficients for all of them. The nonsegmented and 
segmented incomes were also transformed to see which would 
best reflect the true effect on income. None of the combi­
nations was significantly better. The same procedure was ex­
t:culed on household income. No form was statistically sig­
nificant. Household income was left out of this regression, 
and personal income was used unsegmented and untrans­
formed. 

Owning a summer cottage increased the chosen fixed-cost 
level. The possibility of using a summer cottage of a relative 
or a friend did not have any effect on the chosen fixed-cost 
level. 

Model for Variable Costs of Driving a Car 

The model is given in Table 6. Even though the R2 is very 
low, the model has statistical significance. The variable costs 
are nearly the same, captured by the constant term of the 
regression; however, many other factors influence the vari­
able costs in a statistically significant way. 

The correction term is right-signed and significant; owning 
a car increases variable costs. Cyclel, marking childless house­
holds with a young head; working in the transportation, stor­
age, or communications industry; and the number of persons 
in the household are all associated with higher variable costs. 
The only variable associated with lower than "constant" var­
iable costs is living in a town house. 

Because maintenance costs are included in variable costs, 
the accepted level of variable costs could be connected with 
the accepted level of risking the car trip. Thus, young and 
childless adults may find it acceptable to change mode and 

TABLE 6 MODEL FOR 
VARIABLE COSTS OF 
DRIVING A CAR 
(DEPENDENT VARIABLE: 
VARIABLE DRIVING 
COSTS OF RESPONDENT) 

Independent 
Variable 

correction tenn 
constant 
cycle! 
cransp industry 
# of pen;ons in hh 
townhouse 

Estimated 
Coefficient 

0,018 
O.S09 

0.0'1 
0.048 
0.011 

-0.047 

Number of Observations 
R-squared 
Sum of Squared Residuals 
Standard Error of the Regn:ssion 
Mean of Dependent Variable 

t-SIS.tistic 

2.064 
22.60S 
2.SS3 
2.214 
2.008 

-2.613 

614 
0.04 

14.946 
O.IS1 
O.S36 
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timetables; working in the transportation or communication 
industry may be connected with the ability to perform un­
expected repairs, and so forth. 

The number of persons in the household may work its way 
through the effect that accepting higher variable costs may 
be the only way to acquire a big enough car. On the other 
hand, households with small children had lower-than-average 
fixed driving costs. It may be that the increase in family size 
causes a change to bigger but older cars . Living in a town 
house may be a proxy for a certain way of life, or for traffic 
environment; at this point no other possible explanation was 
found. 

Model for Total Costs of Driving a Car 

Total cost, the sum of fixed and variable costs, is given in 
Tables 7 and 8. For easier interpretation, the union of vari­
ables in fixed-cost and variable-cost regressions was first in­
troduced for regression. After dropping the statistically non­
significant variables the model in Table 7 was obtained. 

To determine whether there are some different factors that 
influence the choice of total driving cost level, all the available 
variables were introduced to the model and then dropped if 
proven insignificant. The resulting model is given in Table 8. 

TABLE 7 MODEL FOR TOTAL 
COSTS OF DRIVING A CAR, 
RESTRICTED SET OF 
VARIABLES (DEPENDENT 
VARIABLE: TOTAL DRIVING 
COSTS OF RESPONDENT) 

Independent 
Variable 

correction tenn 
con slant 
female 
dcadlinc 
self-employed 
penonal inc 
summer cottage 

Estimated 
Coefficient 

0.019 
0.9S4 

-0.132 
0.092 
0.213 
0.000 
0.079 

I-Statistic 

0.822 
21.047 
-3.142 
2.SW 
4.694 
3.747 
2.64S 

Number of Observations 611 
R-squared O.IS 
Sum of Squared Residuals S7 .693 
Standard Error of the Regn:ssion 0.309 
Mean of Dependent Variable 1.103 

TABLE 8 MODEL FOR TOTAL 
COSTS OF DRIVING A CAR, 
ALL VARIABLES POSSIBLE 
(DEPENDENT VARIABLE: 
TOTAL DRIVING COSTS OF 
RESPONDENT) 

Independent 
Variable 

contK:tion lenn 
constant 
female 
self-employed 
manufact industry 
physic demanding 
personal income 
summer cottage 

Estimated 
Coefficient 

0.021 
1.076 

-0.ISO 
0.229 

-0.071 
-0.001 
0.000 
0.072 

Number of Observations 
R-squucd 
Sum of Squared Residuals 
Standard Error of the Regn:uion 
Mean of Dependent Variable 

I-Statistic 

604 
O.IS 

S6.0SS 
0.307 
1.103 

0.883 
18.116 
-3.S29 
S.123 

-2.379 
-2.172 
2.287 
2.396 
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The variable "deadline" drops off and the new variables 
"working in manufacturing industry" and "physically de­
manding occupation" appear as significant. The coefficients 
of the two models are similar, which may indicate that the 
mentioned variables measure the same variance. Because the 
purpose of these regressions is to assign estimated driving 
costs to persons who are not drivers currently, the model with 
fewer variables is preferred. The first model is selected. 

These regressions will be used for assessing the driving costs 
for persons who do not have cars available but who in principle 
could have one and, thus, choose a car alternative in a mode 
choice situation (model). 

Driving Cost Models for Household Members 

This section discusses relationships inside the household that 
may affect travel behavior. The internal dependency is ana­
lyzed through the variables OFC, OVC, and OTC. The 
regressions are run on the characteristics of the respondent 
to determine their connections with driving cost levels of the 
other household members. 

OFC of Driving a Car 

The model is presented in Table 9. It was created by the same 
procedure as the previous models. All the variables were 
introduced and their significance investigated. 

The sample was segmented by the person's own income 
and the household's income. These segmentations did not 
prove to be worthwhile, and it was deemed best to keep the 
income variable as simple as possible. The logarithmic trans­
formation of income did not improve the regression. 

Among the occupational characteristics, monotonousness, 
physical demand level, and "little possibility to influence work 
rhythm" first showed strong negative impact in the regression. 
When the organizational and location variables were later 
introduced, the occupational variables lost their statistical sig­
nificance. In the regression the organizational "blue/white 
collar" dummy variable effectively captured the variation, 

TABLE 9 MODEL FOR 
OFC OF DRIVING A CAR 
(DEPENDENT VARIABLE: 
FIXED DRIVING COSTS OF 
THE HOUSEHOLD 
MEMBERS OF THE 
RESPONDENT) 

Estimated Independent 
Variable Coefficient t-Statistic 

c~tion term 
constant 
female 
shift 
blue-collar 
hh income 
distance to 
grocery 

0.021 
0.423 
0.103 

-0.061 
-0.074 
0.000 

-0.000 

Number of Observations 
R-squarcd 
Sum of Squared Residual 
Standard Error of the Regression 
Mean of Dependent Variable 

1.396 
7.073 
3.727 

-1.927 
-3.074 
2.675 

-2.485 

473 
0.13 

26.843 
0.240 
0.494 
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even though occupation and organization hardly measure the 
same things. It may be noted here that Cubukgil and Miller 
(13) found, in a Toronto study, that persons from different 
organizational status groups have different journey patterns. 

As an aside, Cubukgil and Miller divided the blue collar 
worker group into two according to skill level and found the 
groups to be located and to behave differently. The location 
variables may, thus, "eat up" the effects of occupation. It is 
an interesting chicken-and-egg proposition to ask whether 
people live where their occupation leads them or choose the 
kind of occupation that is common in the neighborhood. 

The other household members tended to have higher fixed 
driving costs if the respondent was a woman. This is true even 
when the correction for the probability of having or not having 
a car is taken into account. Household income has the ex­
pected sign, and the respondent's income is not significant in 
the model. 

The only locational variable that kept its significance was 
the distance between home and the nearest grocery store. The 
negative sign of it is unexpected, implying that the further 
away the nearest store, the less people spend on the fixed 
cost of driving. The only interpretation at this moment is that 
the correction term really works here as it should work: it 
accounts for the probability of having a car (which is presum­
ably higher in a place far away from shops). When this effect 
is accounted for, the net effect of a long distance to shop may 
indeed be connected with a lower fixed driving cost. 

OVC of Driving a Car 

Again, as with variable costs regression for the respondent, 
the R2 is very low. The correction term is kept in the regression 
for theoretical reasons (see Table 10). 

The significant variables are "respondent works in manu­
facturing industry," "house in area of high traffic volume," 
and "the respondent has high variable driving costs." The last 
variable correlates with the same phenomenon as "living in 
a one-family house." Either of these variables gets a statis­
tically significant coefficient. Living in a one-family house 
enables maintenance work on and storing of cars that in other 
living arrangements would simply be sold. That the respon­
dent has higher variable costs implies that mechanics may be 
a hobby or at least that there is some car repair know-how 

TABLE 10 MODEL FOR OVC 
OF DRIVING A CAR 
(DEPENDENT VARIABLE: 
VARIABLE DRIVING COSTS OF 
THE HOUSEHOLD MEMBERS 
OF THE RESPONDENT) 

Independent Estimated 
Variable Coefficient 

correction tenn 0.004 
one 0.477 
manufac ind 0.040 
traffic volume 0.017 
variobl driv costs 0.071 

Number of Observations 
R-squarcd 
Sum of Squared Residuals 
Standard Error of the Regression 
Mean of Dependent Variable 

t-Statistic 

0.430 
25.720 

474 
0.04 

11.201 
0.155 
0.539 

2.172 
2.884 
2.340 



Talvitie and Koskenoja 

in the household, which can be relied on in case of need. 
These two states appear to coincide. 

OTC of Driving a Car 

Finally, the total driving cost regression of the respondent's 
household members is presented. 

In the model (Table 11), household characteristics, inner 
city location, and household income increase the total driving 
costs. This is expected, because parking and storage costs are 
higher in a city, and household income is the classical expla­
nation for owning expensive cars. 

Physically demanding occupation decreases the respon­
dent's household members' chosen level of driving costs. The 
physically demanding occupation was also significant in the 
"total driving costs of the respondent" regression. This char­
acteristic "spills over" its influence to the other members of 
the household, too. 

The other occupational characteristic, little influence on 
work rhythm, was also significant in the fixed driving costs of 
the household members' regression. There it covaried with 
the shift work dummy and was replaced by it. In the total 
driving cost regression, however, the occupational character­
istic is stronger. 

CONCLUSIONS 

This study started from the need to assess driving cost esti­
mates for the mode choice model. It was approached through 
separate functions for fixed, variable , and total driving costs 
of the respondent. More insight was gained by examining 
within-household effects, which was done by estimating the 
driving cost regressions of the household members of the 
respondent. 

It is not known which of the costs should be entered in the 
mode choice logit model. Should one use only the fixed, the 
variable, the total, or both fixed and variable costs, or perhaps 
a combination of total and variable costs? Every alternative 
has a plausible explanation for having a best fit and a reason 
to it. 

TABLE 11 MODEL FOR 
OTC OF DRIVING A CAR 
(DEPENDENT VARIABLE: 
TOTAL DRIVING COSTS OF 
THE HOUSEHOLD 
MEMBERS OF THE 
RESPONDENT) 

Estimated Independent 
Variable Coefficient !-Statistic 

correction tenn 0.013 
constant 0.974 
female 0.095 
phys dem work -0.001 
little influence -0.004 
hh income 0.000 
home in city 0.085 

Nwnber of Observations 
R-squared 
Sum of Squared Residuals 
Standard Error of the Regression 
Mean of Dependent Variable 

0.808 
.15.185 
3.469 

-2.501 
-2.462 
2.904 
2.379 

470 
0.12 

26.846 
0.240 
1.033 
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The within-household regressions indicate that there are 
within-household work life effects on driving costs. These 
effects take place on a detailed level, which is not captured 
in a variable describing the household member's employment 
status. On the basis of these regressions, it appears that the 
types of occupations of the household members have more 
effect on the driving costs than the number or share of the 
employed persons in the household as such. 

It remains to be seen whether this information can be used 
to improve the mode choice, automobile ownership and avail­
ability, and daily tour combination models. The estimated 
cost models provide, however, an explanation for the poor 
performance of cost variables in situations where the cost is 
a priori regarded as "the" explanation but approximated to 
be the same for all drivers. The operating costs are not a flat 
figure, equal for everybody. They are an outcome of a choice, 
influenced by the characteristics and activities of the individ­
ual and those of other household members. The same applies 
to capital costs. Capital costs are not equal for everyone, for 
drivers and nondrivers, or for persons in different occupa­
tions, household situations, or stages of life. 

It may be mentioned as an aside that the mode choice model 
developed using the concepts and models presented here pro­
vided some surprises. The coefficient of the variable (oper­
ating) costs of automobiles was near zero and had a very low 
statistical significance on mode choice; high capital costs were 
associated with automobile choice. These findings are not 
really surprising, but ones not believed nor a part of present 
travel demand model systems. But it is believable that au­
tomobile variable costs do not influence mode choice, or, that 
once automobile is chosen it is an expensive one-comfort 
costs-by choice. 

Other demand models of the nested system, automobile 
driver status and travel diary (pattern) choice, are not yet 
ready. It is known from the mode choice model, however, 
that the daily travel pattern, travel diary, affects mode choice. 
That is, mode choices of daily trips of travelers are interde­
pendent. 

The main determinants of the other two travel choices in 
the model system are still unknown. The driving cost models 
indicate that all travel choices, including the cost of travel, 
are a part of complex behavioral decisions within a household. 
Because the market offers a wide variety of transportation 
choices in terms of costs, there is no surprise involved in 
finding that the chosen cost level is a part of the mode choice, 
that is, it belongs to the left-hand side of the equation, and, 
therefore, is not significant in the right-hand side of a marginal 
mode choice model. And conversely, assigning equal-but 
fundamentally arbitrary-automobile costs to all users cap­
tures, with that variable and its parameter, effects that, in 
fact, are behavioral functions and not parameters. 
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Convergent Algorithm for Dynamic 
Traffic Assignment 

BRUCE N. }ANSON 

A link flow formulation and a convergent solution algorithm for 
the dynamic user equilibrium (DUE) traffic assignment problem 
for road networks with multiple trip origins and destinations are 
presented. The link flow formulation does not implicitly assume 
co~plete enumeration of all origin-destination paths as does the 
eq~1vaJenl path flow form ulation. DUE is a temporal generali· 
z~t1on o~ ~he static use_r equilibrium (SUE) assignment problem 
with add1t1onal constramts to ensure temporally eontinuous-pa.ths 
o~ fl~w . Whereas SUE can be solved by methods of linear com­
?matlo~s, these methods can create temporally discontinuous flows 
1f applied to DUE. This convergent dynamic algorithm (CDA) 
uses the Frank-Wolfe method of linear combinations to find 
successive solutions to DUE while holding node time intervals 
fi xed from each origin. In DUE, the full assignment period of 
several hours is discretized into shorter time intervals of 10 to 
15 min each, for which trip departure matrices are assumed to 
be known. The performance of CDA is compared with that of a 
heuristic solution procedure called DTA. CDA can be applied 
to solving DUE on large networks, and the examples presented 
sho_w that CDA consistently converges ·to solutions that· closely 
sa t1s[y the DU E op timality conditions . With computational 
adva~ces such as parallel computing, CDA can be run in near 
real-time on large-scale networks and used with in-vehicle route 
advisory systems for traffic management during evacuations and 
special events. 

Dynamic traffic assignment procedures are needed to evaluate 
the impacts of alternative travel demand management strat­
egies during peak periods in urban areas and will play a key 
role in the development of real-time traffic management and 
in-vehicle route guidance systems. Merchant and Nemhauser 
(1) formulated a system-optimal version of the dynamic as­
signment problem in which there can be multiple origins but 
only one destination. A global optimum is difficult to obtain 
because of the nonconvexity of that formulation (2,3). Carey 
(4) shows that the Merchant and Nemhauser formulation sat­
isfies a certain constraint qualification needed for Kuhn-Tucker 
optimality conditions to exist at the optimum. Carey (5) pres­
ents an alternative formulation of the Merchant and Nem­
hauser problem with only one destination that is convex and 
can be made piecewise linear for solution purposes. 

The dynamic user equilibrium (DUE) assignment problem 
is defined in this paper as follows: Given a set of zone-to­
zone trip tables containing the number of vehicle trips de­
parting from and headed toward each zone in successive time 
intervals of 10 to 15 min each, determine the volume of ve­
hicles on each link in each time interval of a network con­
necting these zones that satisfy the following two conditions: 

Department of Civil Engineering, University of Colorado, Denver, 
Colo. 80217-3364. 

1. All paths between a given pair of zones used by trips 
departing in a given time interval must have equal travel 
impedances. 

2. All paths between a given pair of zones not used by trips 
departing in a given time interval cannot have lower travel 
impedances. 

These two conditions for DUE given fixed trip departure 
times, which will be derived later from the link flow formu­
lation of DUE presented herein, are temporal generalizations 
ofWardrop's conditions (6) for static user equilibrium (SUE). 
Other authors have defined DUE to include variable trip 
departure times, which are assumed to be fixed in this paper. 
Janson (7) formulates and presents a convergent solution al­
gorithm for the combined problem of dynamic traffic assign­
ment and trip distribution with variable trip departure or ar­
rival times. 

Friesz et al. (8) present an optimal control theory formu­
lation of dynamic traffic assignment in continuous time for 
which the equilibrium conditions are a variation of the fore­
going conditions. The optimality conditions of their model 
are that all used paths between any two nodes must have 
equal impedances at any given instant and unused paths can­
not have lower impedances. These conditions allow complete 
origin-to-destination paths used by trips to have unequal 
impedances for any given departure time. These conditions 
are not user optimal, because travelers can switch to paths 
with lower impedances. Once trips depart on separate paths 
from a given origin, these paths need not have equal imped­
ances for the remainders of their journeys. 

DUE is a temporal generalization of the SUE assignment 
problem of which SUE is the special case with one long as­
signment period. In DUE, the full assignment period of sev­
eral hours is discretized into shorter time intervals of 10 to 
15 min each, for which trip departure matrices are assumed 
to be known. With multiple time intervals, DUE requires 
nonlinear mixed-integer constraints with "node time inter­
vals" that ensure temporally continuous paths of flow. Al­
though DUE is nonconvex over the domain of feasible node 
time intervals for trip paths from each origin, DUE is convex 
with a unique global optimum for any given set of fixed node 
time intervals. The optimality conditions of DUE are later 
derived from a qualified statement of DUE in which only 
temporally continuous paths can be used in the optimum so­
lution according to prespecified node time intervals. 

The steady-state flow assumption of SUE allows it to be 
formulated with all linear constraints. Whereas SUE can be 
solved efficiently by methods of linear combinations, these 
methods create temporally discontinuous flows if applied to 
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DUE. Janson (9) formulated DUE as a nonlinear mixed­
integer program in terms of path flows and described a dy­
namic traffic assignment (DT A) heuristic that generates ap­
proximate solutions to DUE for large networks. DTA is not 
a convergent solution algorithm for DUE, but instead was 
designed to produce traffic assignments that tend to satisfy 
the DUE optimality conditions stated earlier. In test appli­
cations, DTA produced both static and dynamic assignments 
that approximately satisfied the user equilibrium conditions 
of those problems. 

Both SUE and DUE can be formulated equivalently in 
terms of either path or link flows, but the link flow formu­
lations of these problems do not implicitly assume complete 
enumeration of all possible paths between zone pairs. More 
important, the link flow formulation of DUE decomposes 
directly into two subproblems solved successively by the con­
vergent dynamic algorithm (CDA) presented herein. CDA 
solves DUE with fixed node time intervals by the Frank-Wolfe 
(F-W) method of linear combinations and then updates the 
node time intervals with which to generate the next F-W 
solution. The procedure terminates when the number of node 
time interval changes (or other measure of convergence tol­
erance) is acceptable . Several examples indicate that CDA 
consistently converges toward optimal DUE solutions. CDA 
can be applied to large planning networks, and convergence 
difficulties that might occur on small, specially configured 
networks are less likely to occur on larger networks in which 
paths from many origins share common links. 

DUE ASSIGNMENT PROBLEM 

A temporal generalization of SUE in terms of path or link 
flows requires that a time interval superscript be added to 
each link flow variable and impedance function. A departure 
time superscript must also be added to each origin-specific 
link flow variable and to each element of the trip matrix Q. 
Superscripts representing time intervals of link use and trip 
departure must also be added to each node time interval 
variable to indicate whether trips departing from origin zone 
r in Time Interval d reach Node i in Time Interval t. Denoting 
a link as a node pair ij instead of with an arc subscript k is 
necessary for the derivation of optimality conditions from 
this link flow formulation of DUE given by Equations 1 
through 10. 

DUE Minimize L L rx:; f;j (w) dw 
ij EA JED Jo 

L: L: L: b~ (1) 
rEZiENdED 

subject to 

x~; = L L v~ij o.~f for all ij E A, t E D (2) 
r E Z d s. t 

for all r E Z, n E N, d E D (3) 
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for all r E Z, ij E A, d E D, t E D (4) 

a.~: = (0, 1) for all r E Z, i E N, d E D, t E D (5) 

"" a.dt = 1 
L.,, " for all r E Z, i E N, d E D (6) 

IE D 

for all r E Z, ij EA, d ED, t ED (7) 

[b~ - (t - d + l)~t]a.~/ ::::; 0 

for all r E Z, i EN, d E D, t ED (8) 

[b~ - (t - d)M]a~/ 2: 0 

for all r E Z, i E N, d E D, t E D (9) 

b~, = 0 for all r E Z, d E D (10) 

where 

N = set of all nodes, 
Z = set of all zones (i.e., trip-end nodes), 
A = set of all links (directed arcs), 
~t = duration of each time interval (same for all t), 
D = set of all time intervals in the full analysis period 

(e.g., eighteen 10-min intervals for a 3-hr peak­
period assignment), 

x;j = number of vehicle trips between all zone pairs 
assigned to Link ij in Time Interval t (variable), 

v~ij = number of vehicle trips departing from origin zone 
r in Time Interval d assigned to Link ij in Time 
Interval t (variable), 

f;j (x:j) = travel impedance on Link k in Time Interval t 
(variable), 

q~" = number of vehicle trips from Zone r to Node n 
departing in Time Interval d via any path (zero 
for any node n E Z) (fixed), 

b~; = travel time along any path used from origin zone 
r to Node i by trips departing in Time Interval d 
(variable), and 

a.~f = zero-one variable indicating whether trips de­
parting from origin zone r in Time Interval d 
reach Node i in Time Interval t (henceforth called 
a "node time interval") (0 = no, 1 = yes) (var­
iable) . 

This formulation of DUE assumes that a directed network 
G(N, A) is given, where N is the set of nodes and A is the 
set of directed arcs or links. Zones (denoted by the set Z) are 
nodes at which trips originate or terminate. Equation 2 defines 
the total flow on Link ij in Time Interval t to be the sum of 
flows departing from any origin r in any time interval d that 
use Link ij in Time Interval t in order to formulate the ob­
jective function as given by Equation 1. It is not necessary to 
multiply v~ij by a.~f in Equation 2, because flows departing 
from origin r in Time Interval d will only be assigned to Link 
ij in Time Interval t allowed by the a.~! term equal to 1 in the 
nodal conservation-of-flow Equation 3. Equation 3 constrains 
inflow minus outflow at each node and zone in each time 
interval to sum to the proper trip departure totals in each 
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time interval between each 0-D pair , and Equation 4 requires 
all link volumes to be nonnegative. 

The second part of the DUE objective function is not re­
quired in SUE because origin-to-node travel times are not 
needed to calculate steady-state link volumes. In DUE, 
origin-to-node travel times are used to determine the node 
time intervals {u~f} in Equations 5 through 10. In DUE, each 
node time interval u~f cannot be prespecified with a fixed value 
because node time intervals are affected by travel times, which 
are affected by link loadings. The node time intervals are 
endogenous variables in DUE, creating nonlinear flow con­
servation constraints and requiring DUE to have additional 
constraints (Equations 5 through 10) to ensure temporally 
continuous paths. 

Equation 5 defines each node time interval to indicate whether 
trips departing from origin zone r in Time Interval d reach 
Node i in Time Interval t. (Strictly speaking, each node time 
interval value u~f can only be 0 or 1, which then indicates the 
node time interval index t.) Equation 6 requires that there be 
only one time interval t in which trips departing from a given 
origin r in a given time interval d can reach a node. The 
assumption here is that any Link ij incident from Node i can 
only be used (if used at all) in the time interval t in which 
Node i is reached by trips departing from origin r in time 
interval d. Equation 7 determines the origin-to-node travel 
times, which could be any arbitrary values that optimize the 
objective function if these times were not maximized by the 
DUE objective function. Equations 8 and 9 then use the node 
time interval values to identify time interval indices that are 
compatible with the path travel times to each node. 

Each intrazonal travel time b~, must be set to zero or to 
some other fixed value as shown by Equation 10 to prevent 
the maximization of origin-to-node travel times (or the min­
imization of negative times) in the DUE objective function 
from having an infinite solution . Though counterintuitive, the 
maximization of travel times as given by Equation 1 subject 
to Constraints 5 through 10 is the correct objective for de­
termining shortest travel time paths in this formulation. The 
shortest path problem is often formulated to find unit link 
flows that minimize the use of arc lengths. The second part 
of Equation 1 plus Equations 5 through 10 constitute the dual 
of that formulation, which is to maximize zone-to-node path 
lengths subject to fixed arc lengths. Because many hundreds 
of vehicles travel each path, the first part of the objective 
function will dominate the assignment process , whereas the 
second part causes the correct shortest path travel times to 
be found . If vehicle units are small , the second part of the 
objective function can be multiplied by any small constant 
and it will still achieve its desired result. 

According to Equations 7 through 9, links are traversed 
within the time intervals that trip paths reach their tail nodes. 
For 10-min intervals, Interval 1 begins at 0 min, Interval 2 
begins at 10 min, Interval 3 begins at 20 min, and so forth. 
If a path reaches a node at the exact beginning of a time 
interval (to the degree of floating point precision being used), 
the solution algorithm can be coded to have the path use the 
link in that time interval rather than in the previous interval. 
Note that Equations 7 through 9 also work for the static case, 
albeit unnecessary, so long as the duration t::..t of the single 
time interval exceeds the longest trip length in the network 
(measured in time). Equations 1 through 10 exactly define 
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SUE if there is only one long time interval and all node time 
intervals given by array {u,;} (disregarding time) are set to 1. 
Thus, Equations 1 through 10 are a complete formulation of 
both the static and dynamic assignment problems, with the 
static problem being a special case. 

Figure 1 shows how a node time interval depends on the 
time at which a path reaches the tail node of a link. The link 
number is indicated by k, and the time interval of link use is 
indicated by t. Link 1 is used by this path in Interval 1, al­
though it overlaps into Interval 2. Links 2 and 3 are used in 
Interval 2, but Link 4 is used in Interval 3, because it begins 
exactly at the beginning of Interval 3. The portion of Link 1 
that overlaps into Interval 2 is discussed next. 

If link lengths are generally much shorter than the time 
interval duration (e.g. , less than 20 percent), fractions of paths 
overlapping time intervals may not be significant. Suppose 
that a dynamic assignment has a mean link length of M min 
and a time interval duration of N min. The probability is Ml 
N that a link of M min will overlap time intervals in any path 
that uses it. When overlap does occur , the average amount 
of overlap into the next time interval is one-half the average 
link length , or Ml2 min. Thus, the average amount that used 
links overlap time intervals is M21(2N) , which is one-half the 
average link length (Ml2) times the probability that an overlap 
occurs (MIN). For example, links of 2 min in time intervals 
of 10 min will, on the average , overlap intervals by 0.2 min , 
or 10 percent of the link length. The overlapping percentage 
of total trip length, which accounts for trip volumes on the 
links, was computed for the examples given later and was 
always found to fall below this formula's estimate. 

Whereas the impedance functions in the SUE objective 
function are not restricted to travel time alone, inconsistencies 
could develop between path travel times and node time in­
tervals in DUE if the impedance functions are not strictly 
measures of time. Equal paths according to a composite cost 
could reach nodes in different time intervals. The path flow 
formulation of DUE given by Janson (9) avoids this compli­
cation by explicitly computing the travel times along every 
possible 0-D path. In the path flow formulation, the imped­
ance functions in Equation 1 can include travel cost factors 
other than travel time that affect route choice. The path flow 
formulation only gains that advantage by requiring complete 
path enumeration. 

The derivation of user equilibrium optimality conditions 
from the preceding formulation is complicated by the nonlin­
ear mixed-integer constraints and integer node time intervals . 
Although optimality conditions cannot be derived from the 
general formulation with integer unknowns, they can be de­
rived for a given set of node time intervals to which all tem­
porally continuous paths in the optimal solution to the general 
problem must conform. Because node time intervals can be 
uniquely determined from a given set of link volumes, they 

t•l 
k•I 

~~~~ -~~-+·~~~~ 

~~~~~b~t~~~~~I 
FIGURE 1 Example of time interval overlap at 
node. 
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can be assumed to be known in the derivation of optimality 
conditions for the global optimum. 

Equation 11 is the Lagrangian of Equations 1 through 4 
with linear constraints and only the first part of the objective 
function because of fixed node time intervals. Over the do­
main of variable integer values, Equation 11 is nonconvex, 
and there are many local optima that are inferior to the global 
optimum. For a set of fixed node time intervals, the bordered 
Hessian matrix of Equation 11 is positive definite, which means 
that there is a unique global optimum with no local optima 
(10). The Hessian matrix is only positive definite so long as 
each impedance function is a monotonically nondecreasing 
function of flow on Link ij in Time Interval t alone, which is 
assumed to be true in the foregoing formulation of DUE. 

L(X, V, A.,µ., 1) = L L t;f:Jw)dw 
ijEA JED 0 

+ L: L: L: L: "'~h(-v~D 
r E Z ij EA d E D t E D (11) 

The optimality conditions are given by Equations 12 through 
14. 

for all ij E A, t E D (12) 

for all r E Z, ij EA, d E D, t ED (13) 

for all r E Z, ij E A, d E D, t E D (14) 

where T~ij = 0 if v~ij > 0, positive otherwise; impedance dif­
ference from Node i to Node j via used path versus by Link 
ij if used or unused in Time Interval t for trips departing from 
Zoner in Time Interval d. 

The last part of Equation 11 ensures nonnegative link flows 
and results in a third optimality condition given by Equation 
14, which requires T~ij to be zero if any trips departing from 
origin zone r in Time Interval d are assigned to Link ij in 
Time Interval t, and nonnegative otherwise. According to 
Equation 12, the optimal solution has a unique equilibrium 
impedance for each link in each time interval. According to 
Equations 13 and 14, for any given pair of nodes, all used 
paths from a given origin for a given departure time have the 
same travel impedance, and any unused path between these 
nodes cannot have a lower impedance. 

The optimality conditions for DUE can be stated similarly 
to Wardrop's statement of necessary conditions for SUE (6). 
For trips from Zone r departing in Time Interval d, let µ.~;be 
the equilibrium travel impedance of used paths to Node i. 
Also, let A.l1 be the equilibrium travel impedance of Link ij 
equal to the right side of Equation 13, and v~:1 be 1the equi­
librium flow on Link ij in Time Interval t of trips from Zone 
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r that depart in Time Interval d. At equilibrium, all paths 
from Zone r to Node j used by trips departing in Time Interval 
d have impedance µ.~1 , and no unused path from Zone r to 
Node n for this departure time can have a lower impedance. 
These two conditions are given by Equations 15 and 16. 

for all r E Z, ij EA, d ED, t ED (15) 

for all r E Z, ij E A, d E D, t E D (16) 

Equations 15 and 16 and equivalent to SUE conditions if 
there is only one time interval for the full analysis period so 
that the time interval superscripts can be removed from all 
terms. When SUE is solved by a method of linear combina­
tions, one measure of how close a solution is to equilibrium 
is the sum of trip impedance differences from shortest path 
impedances between all zone pairs in each iteration. This 
measure of convergence is often referred to as the duality gap 
or impedance gap. In solving DUE, this gap is the sum of 
trip impedance differences from shortest path impedances 
between all zone pairs for trips departing in each time interval, 
which is one way in which the example results presented later 
are evaluated. 

EXAMPLE OF TEMPORALLY DISCONTINUOUS 
TRIP PATHS 

Methods of linear combinations (e.g., F-W and PARTAN), 
which apply to nonlinear programs with all linear constraints, 
are used to solve SUE by combining link volumes without 
regard to when they occur because they are assumed to occur 
continuously. The difficulty of ensuring temporally continu­
ous flows arises because the proper time interval superscript 
at each node n is unknown with respect to flows departing 
from origin r in different time intervals. Although conser­
vation of flow at each node and zone is stated in terms of link 
flows, Equation 3 would not ensure temporally continuous 
flows without Equations 5 through 10 defining the values of 
the integer node time intervals. The summation over intervals 
t ~ din Equation 3 only prevents trips from using links earlier 
than their trip departure times. 

In Figure 2, Link k' incident to Node n in Time Interval t 
may have a short travel time so that its flow also passes onto 
Link k in Time Interval t. However, the travel time of Link 
k' or links before it may grow longer because of congestion 
such that its flow passes onto Link k in Time Interval t + 1. 
As a result, flows that satisfy Constraint Equation 3, but not 
Equations 7 through 9, can skip over time intervals at any 
node or even enter nodes later than they exit. 

A simple example is given to demonstrate the difference 
in solving DUE with and without Equations 5 through 10. 
Figure 2 shows a path from Zoner to Zones taken by 3,000 
vehicles departing in Time Interval 1 between 7:00 and 7:10 
a.m., and no trips depart in the only other time interval from 
7:10 to 7:20 a.m. Using the BPR impedance function with 
free-flow travel times and capacities shown for the links, and 
without Equations 5 through 10 to ensure temporally contin-
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free-flow time • 8 min. 
veh. capacity • 2000 /hr. 

link k' 

3000 vehicles in 
time interval I. 

n 

Cree-flow time • 6 min. 
veh. capacity • 2000 /hr. 

link k 

1500 vehicles each in 
time intervals I & 2. 

FIGURE 2 Example of temporally discontinuous flows. 

uous flows, the optimal solution is to subdivide the flow at 
Node n into two parts of 1,500 vehicles each. One part is 
assigned to Link k in Time Interval 1, and the other part is 
assigned to Link kin Time Interval 2. The F-W method will 
assign these invalid flows, and once created in the solution, 
they are never eliminated as the algorithm proceeds. Other 
examples with two or more routes also show that methods of 
linear combinations create temporally discontinuous flows when 
used to solve DUE. 

CDA PROCEDURE 

In the CDA procedure, DUE is decomposed into two sub­
problems. The preceding derivation of DUE optimality con­
ditions from Equations 1 through 4 with fixed node time in­
tervals corresponds to the first subproblem, Pl, in which the 
first part of the DUE objective function and Equations 1 
through 4 are solved with a fixed set of node time intervals 
using the standard F-W algorithm or another method of linear 
combinations. The second part of the DUE objective function 
and Equations 5 through 10 are then solved in Subproblem 
P2 to obtain a new set of node time intervals that form tem­
porally continuous shortest paths given the link travel times 
obtained from solving Pl. The iterative process of solving Pl 
and then P2 terminates when the convergence criterion is 
satisfied, such as when changes in assigned link flows or node 
time intervals are acceptably low. Cycling may occur in the 
node time interval values between successive solutions of the 
F-W algorithm, but such cycling can be detected and avoided 
if it occurs. Moreover, such cycling is unlikely to prevent 
reasonable convergence in larger networks where trips from 
many origins share common links. An acceptable degree of 
convergence was obtained in each of the examples given later. 

To clarify the explanation of CDA, Subproblems Pl and 
P2 are formulated below as Equations 17 and 2 through 4, 
and as Equations 18 and 5 through 10, respectively. 

Pl l ' x;; 

Minimize L L f:i (w) dw 
ijEA tED 0 

(17) 

subject to Equations 2 through 4, where all x:i are variable 
and all o.~/ are fixed in solving Pl, and all other values are 
fixed or variable as they were defined in Equations 1 through 
10. 

P2 Maximize L L L b1, (18) 
rEZ I ENdED 

subject to Equations 5 through 10, where all x:i are fixed and 
all o.~! are variable in solving P2, and all other values are fixed 
or variable as they were defined in Equations 1 through 10. 
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With fixed node time intervals, Subproblem Pl is solved 
without fixing which links are used but only fixing the time 
intervals in which links are used by trips depending on their 
origins and departure times. Subproblem P2 is solved with a 
label-setting or label-correcting shortest path algorithm adapted 
for temporally dependent arc lengths. Both types of shortest 
path algorithms will correctly find temporally continuous 
shortest paths given dynamic arc lengths with the restriction 
that vehicles do not pass each other along any link. An equiv­
alent assumption when dealing with aggregate vehicle flows 
is that vehicles make only one-for-one (or zero-sum) ex­
changes of places in traffic along any link. This assumption 
is acceptable and even expected in aggregate traffic models. 

CDA converges toward a DUE solution for the following 
reasons. First, if node time intervals corresponding to a true 
equilibrium are known, the F-W algorithm will reproduce the 
equilibrium link volumes from which these node time intervals 
can be calculated. That convergence proof is equivalent to 
the convergence proof of the F-W algorithm for SUE. Second, 
given node time intervals that do not correspond to a true 
dynamic equilibrium, the F-W algorithm will produce link 
volumes that shift the node time intervals toward their correct 
values. For example, if a particular node time interval is too 
early, then paths to that link will be assigned more traffic by 
the F-W algorithm such that the node time interval becomes 
later when recalculated. Oppositely, if a node time interval 
is too late, paths to that link will be assigned less traffic by 
the F-W algorithm such that the node time interval becomes 
earlier when recalculated. Hence, CDA converges toward a 
set of node time intervals that, when used to assign trips to 
the network, result in temporal link volumes that give rise to 
the same node time intervals. A similar case is the conver­
gence proof given by Evans for combined distribution and 
assignment (11) in which a trip distribution is found that when 
assigned to the network reproduces 0-D impedances that give 
rise to the same distribution. 

DTA PROCEDURE 

Janson (9) developed and evaluated the performance of a 
heuristic solution procedure for DT A that requires much less 
memory and computational effort than the just-mentioned 
approach of successively solving constrained specifications of 
DUE to which methods of linear combinations can be applied. 
In example applications, DTA was shown to produce good 
approximate solutions to DUE for both static and dynamic 
travel demands. Thus, DTA can serve as an effective means 
of providing an initial starting solution to the convergent 
algorithm. The remainder of this section reviews the DTA 
procedure. 

A key assumption of the DT A procedure described here is 
that route choice decisions are made at the time of trip de­
parture on the basis of projected link impedances that account 
for changes in travel demand over future time intervals. This 
assumption offers a great deal of computational efficiency, 
because the trip departure matrix assigned in each time in­
terval is only a zone-to-zone trip matrix, not a node-to-zone 
trip matrix as would be required to track trips at nodes through 
the network by their destinations so that trip paths could be 
revised en route. 
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The way in which current link volumes are projected into 
future time intervals for the purpose of finding trip assignment 
paths in DTA requires a brief preview. The reason for pro­
jecting current link volumes into future time intervals is that 
some trips departing in later intervals from other origins will 
use the links concurrently with trips from the present origin 
for which paths are being found. A premise of DTA is that 
future link volumes can be adequately estimated from current 
link volumes on the basis of relative levels of travel demand 
in future time intervals. These projections are made only for 
path-finding purposes and are not factored into the actual 
assignment of link volumes. 

The following notation is used to describe the DT A pro­
cedure: 

x~ = assigned volume on Link kin the current Time 
Interval t after trips departing in Time Inter­
vals 1 through t - 1 have been assigned, and 
while trips departing in Time Interval t are 
being assigned; 

x~- 1 = assigned volume on Link kin Time Interval t 
- 1 (i.e., just before the current time interval) 
after all trips departing in Time Intervals 1 
through t - 1 have been assigned; 

y~+n = projected volume on Link k in interval t + n 
(where n 2: 0 and t + n E D) after trips de­
parting in Time Intervals 1 through t - 1 have 
been assigned and while trips departing in In­
terval t are being assigned; 

f~+"(y~+n) = projected impedance of Link kin the current 
or future Time Interval t + n computed di­
rectly as a function of the projected volume 
y~+", where n 2: 0 and t + n ED; and 

Q' = total number of trips departing from all zones 
in Time Interval t (i.e., total inflow to the net­
work in Time Interval t). 

The superscript of each link volume term always indicates 
the time interval of link use, whereas the superscript of each 
trip matrix term always indicates the time interval of trip 
departure. The DTA procedure assumes that all trip depar­
tures are known and fixed for all time intervals and 0-D pairs. 
However, only the trip departure matrix of the current time 
interval must be stored in random access memory during each 
iteration of the DTA procedure. The other trip departure 
matrices can reside in permanent memory until needed. 

The steps of the DTA procedure are as follows: 

1. Read network data (link-node incidences, free-flow 
impedances, and practical capacities adjusted to the time in­
terval duration !!1t for the link impedance functions). Initialize 
the link volumes in each time interval to 0, or read in a set 
of starting volumes if known. Specify as NTREES the number 
of shortest path trees to be assigned trips from each origin 
zone in each time interval. Initialize the current time interval 
t to 0. 

2. Increment the current time interval counter t to t = t + 
1. Read in matrix of trip departures between each 0-D pair 
in Time Interval t. 

3. Randomly select an origin zone for which all trips de­
parting in the current time interval t have not yet been as­
signed. Find a shortest path tree from this origin zone to all 
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other zones on the basis of the projected link impedances in 
the current and future time intervals. The path search routine 
finds shortest paths based on link impedances as they are 
projected to exist during the time intervals in which they are 
traversed. To minimize array space allocation, each projected 
link volume and link impedance can be calculated as it is 
needed in the shortest path routine. The projected link vol­
umes are calculated according to Equation 19, where 0' is the 
percentage of Q1 that has not yet been assigned to the network. 
Define w::+:~ = Q1+"/Q1

-
1 as a measure of systemwide travel 

demand and projected traffic volumes in interval t + n relative 
to t - 1, and similarly for t + n versus t. The projected 
volume on Link k in Time Interval t + n is equal to 

for all k E A, n 2: 0, t + n E D (19) 

Hence, for each link, the current and projected link volumes 
are estimated as weighted combinations of the final volume 
assigned to that link in the previous interval t - 1 and the 
volume assigned thus far in the current interval t, weighted 
by ratios of total trip departures from all origins in intervals 
t - 1, t, and t + n. Each projected link impedance is com­
puted directly from its projected volume using its impedance 
function. 

4. Assign l/NTREES of the trips departing in Interval t 
from the current origin to the shortest path tree found in Step 
3. Store the assigned link volumes x~+n by time of link use 
for all n 2: 0 and t + n E D. If all trips departing from all 
zones in Time Interval t have been assigned, go to Step 5. 
Otherwise, return to Step 3 to process the next origin zone. 

5. If all departure time intervals in the analysis period have 
been processed, STOP the program. Otherwise, write out the 
assigned link volumes for the current time interval t to a disk 
file and copy the link volumes of each future time interval 
into the link volume array space of the preceding interval to 
economize on array space. Return to Step 2. 

Trips are assigned from origins chosen in a geographically 
random order to randomize the order of link loadings. A 
strategy that reduces random variability in the link volumes 
from one time interval to the next (as opposed to variations 
between intervals caused by changes in travel demand) is to 
find NTREES shortest path trees from each origin in each 
time interval and to assign 1/NTREES of the trip departures 
from each origin to each tree. In each time interval, Steps 3 
and 4 are repeated NTREES times for all origins chosen 
randomly without replacement until all trips from all origins 
in that time interval have been assigned in random order. 

The DT A procedure was tested on two networks described 
later with NTREES values of 2, 3, and 4. As expected, the 
DT A assignments always improved in terms of satisfying the 
desired user equilibrium conditions as NTREES was in­
creased. For these networks, loading three trees from each 
origin in each time interval produced significantly better re­
sults than loading only two. However, increasing NTREES 
from 3 to 4 achieved a much smaller improvement, which 
indicates a decreasing marginal rate of improvement for the 
additional burden of finding more trees from each origin for 
each departure interval. All of the DT A assignments pre­
sented later were generated with NTREES equal to 3. 
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In assigning trips from each origin zone during the tree-by­
tree assignment process in DTA, it is unknown how current 
and future link volumes will be affected by trips assigned from 
other zones . After each incremental assignment of trips from 
a given origin in the current time interval, projections must 
be made of currently assigned link volumes into future time 
intervals. The technique used in DTA to project current link 
volumes into future time intervals is to use a weighted com­
bination of current link volumes assigned thus far and final 
link volumes from the previous interval. This combination is 
weighted 100 percent toward the just-previous link volumes 
when assigning the first fraction of trips from the first ran­
domly selected origin and changes to 100 percent of the cur­
rent link volumes when assigning the last fraction of trips from 
the last origin. In between, the weight given to current link 
volumes equals the percentage of total trip departures that 
have been assigned thus far. 

Janson (9) evaluated the performance of DT A in several 
test applications, including comparisons with steady-state 
equilibrium assignment. When applied to the Pittsburgh net­
work used by Janson et al. (12) in a validation of equilibrium 
assignment, DTA was found to generate link volumes and 
travel times that compared favorably with both equilibrium 
assignment and observed link counts and travel times. DTA 
can also be used to generate a good starting solution for CDA. 

COMPARISON OF DTA AND CDA 
PERFORMANCE RESULTS 

DTA and CDA results for steady-state travel demands are 
first compared with equilibrium assignment for the well-known 
Sioux Falls network having 76 one-way links, 24 nodes, and 
24 origin-destination zones (13). Equilibrium assignment re­
sults for this network using the standard F-W algorithm have 
been described by numerous authors, including Fukushima 
(14), LeBlanc et al. (15), and Rose et al. (16). The standard 
F-W algorithm was also used to generate the equilibrium as­
signments with which CDA results are compared in this paper. 

Even for cases of steady-state travel demands, the incre­
mental loading of trips causes DT A link volumes to vary from 
one time interval to the next, and unless perfectly converged, 
CDA link volumes will also exhibit some variation between 
time intervals. Thus, for static assignments , it is important (a) 
to examine the degree to which DTA and CDA link volumes 
vary between time intervals and (b) to compare DTA and 
CDA link volumes over the assignment period with final 
F-W link volumes. Two measures of variation in DTA or 
CDA link volumes (called APVl and APV2) are defined for 
this purpose. The degree to which DTA or CDA link volumes 
vary between time intervals is measured by their average 
percent variation (APVl) from their means as given by 
Equation 20. 

APVl = (100/TX) L L lxk - mkl (20) 

where 

APVl 

kEAtED 

the average percent variation between time in­
tervals of DT A or CDA link volumes from their 
means, 
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xk = DT A or CDA volume on Link k in Time 
Interval t, 

mk = mean DT A or CDA volume on Link k over the 
time intervals in D, and 

TX= total DTA or CDA link volumes in all time in­
tervals = L L xk. 

kEAt E D 

A second measure of DT A or CDA link volume variation 
(APV2) is used to evaluate the disparity between DTA or 
CDA and F-W link volumes. APV2 is the average percent 
variation or absolute difference between DT A or CDA link 
volumes and final F-W link volumes. APV2 is computed in 
the same way as APVl, except that (a) mk in APVl is replaced 
in APV2 by the final F-W volume on Link k, where each 
F-W link volume is divided by the number of time intervals 
in D to represent the same time units as mk and (b) TX in 
APVl is replaced in APV2 by the sum of F-W link volumes 
for the full assignment period. 

APV2 is expected to exceed APVl, because APV2 indi­
cates variation from values not derived from the DT A or CDA 
link volumes. APV2 is affected by both the between-interval 
variation of the DTA or CDA link volumes and the differ­
ences between DTA or CDA mean volumes and F-W vol­
umes. Both APVl and APV2 are reported for each DT A or 
CDA static assignment. 

How well these assignments satisfy the desired SUE or 
DUE conditions must also be assessed. One measure of user 
equilibrium is the size of the SUE or DUE objective function, 
which is Equation 1 summed over one time interval in the 
static case. Equation 1 is applied to final F-W link volumes, 
whereas Equation 1 is computed with the link volumes as­
signed by DTA or CDA in each time interval. For static 
assignments, Equation 1 could be applied to average DTA or 
CDA link volumes over all time intervals, but that would 
produce a falsely lower objective function and make the DTA 
or CDA results appear too favorable . 

Another standard measure of user equilibrium for an as­
signment is the duality gap (DG), which is the difference 
between the sum of assigned trip impedances and the sum of 
shortest path trip impedances based on the assigned link load­
ings (16). The time dimension of DG, defined by Equation 
21 for a dynamic assignment, can be disregarded in computing 
this measure for a static assignment with only one time period. 

DG = (100/TC) [ L L xkfk (xk)] 
k EAIED 

- [ 2: 2: 2: q~ c~,J 
rE ZsEZdED 

(21) 

where 

DG = the duality gap of a dynamic assignment, 
q~ = number of trips from Zone r to Zone s departing 

in Time Interval d via any path, 
c~ = shortest path impedance from Zone r to Zone s for 

trips departing in Time Interval d through a network 
of assigned link loadings, and 

TC = total trip impedance if all trips were to use their 
shortest paths through a network of assigned link 
loadings = L L L q~, ~s· 

rEZ sE ZdED 
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The left-most bracketed term of Equation 21 is the system­
optimal objective function of DUE or SUE. The right-most 
bracketed term, which equals TC, is a strict lower bound on 
the optimal value of the DUE or SUE objective function for 
a given feasible solution with no temporally discontinuous 
paths. The duality gap decreases toward zero, although not 
strictly monotonically, as the F-W algorithm converges. The 
duality gap equals zero for a true equilibrium solution in which 
the impedance of every used path between each pair of zones 
equals the shortest path impedance. TC is not a strict lower 
bound on the optimal value of the DUE objective function 
if it is based on an infeasible solution with temporally dis­
continuous paths. The percentage of temporally discontinuous 
node time intervals (called temporal node violations) is re­
ported later for each final solution as one qualification of this 
lower bound. 

Although the convergence rate of the standard F-W algo­
rithm can be improved, these improvements would not affect 
the comparisons in this paper because the F-W algorithm was 
run to a high degree of convergence in each case. When 
applied to the Sioux Falls network to generate assignment 
results for this paper, the F-W algorithm was halted when the 
greatest single link volume change was less than 1 percent 
between iterations. This degree of convergence for the Sioux 
Falls network required 76 iterations of the standard F-W al­
gorithm starting from free-flow impedances. Comparisons of 
F-W, DTA, and CDA results can also depend on the initial 
link volumes or impedances used in the F-W algorithm. The 
outcomes reported in this paper would not be significantly 
affected by different F-W starting solutions because of the 
high degree of F-W convergence required in each case. Rose 
et al. (16) found that final link volumes for the Sioux Falls 
network had less than a 0.5 percent coefficient of variation 
between solutions when they applied the 1 percent link vol­
ume change stopping criterion to the F-W algorithm with 
different starting solutions. 

An important consideration in developing test problems for 
OT A and COA is the time interval duration, or the number 
of time intervals in the analysis period. An interval duration 
of 10 min was used in all of the following test cases. This 
duration was chosen after observing that the mean F-W link 
impedance for the Sioux Falls network was 6 min. OT A and 
COA link volumes show less variation between intervals when 
the time interval duration is at least four to five multiples of 
the mean link impedance. The time interval duration would 
have to be 24 to 30 min to achieve this multiple for the Sioux 
Falls network. However, most transportation planning net­
works used in practice generally have shorter links, such as 
the Pittsburgh network used later in which the mean F-W link 
impedance is only 0.6 min. 

To obtain initial link loadings on the network prior to the 
first time interval of the analysis period, both DTA and COA 
were run to include 1/2 hr (or three 10-min intervals) of average 
travel demand in direct proportion to the full trip matrix, but 
at a lower departure rate than for the peak-hour intervals. 
Because the majority of trips in both the Sioux Falls and 
Pittsburgh networks have trip impedances within Y2 hr, both 
OT A and COA needed roughly Y2 hr of initial trip departures 
for initial link loadings to be obtained. Likewise, each OTA 
or COA assignment assigned six time intervals of average 
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travel demand after the six peak-hour time intervals to allow 
the peak-hour trips to clear the network. 

To obtain steady-state assignments from DTA or CDA, a 
uniform fraction of the 1-hr trip matrix was assumed to depart 
in each time interval of the analysis period. In OTA, each 
interval of trip departures was assigned incrementally to three 
shortest path trees (corresponding to an NTREES value of 
3) by executing successive tree-by-tree assignments in each 
interval and loading one-third of each zone's origins to each 
tree. Hence, OT A could assign no more than three different 
paths between each pair of zones in each time interval. For 
this reason, fewer paths are assigned trips by DT A than by 
either the F-W or CDA algorithms. 

Table 1 presents a comparison of the F-W, DT A, and CDA 
static assignments for the Sioux Falls network. The total 1-hr 
link volumes of the F-W, DTA, and COA assignments were 
969, 960, and 972, respectively, which are essentially equal. 
Trips departing in the six time intervals of the 1-hr analysis 
period have mean trip impedances of 14.96, 15.84, and 14.91 
min for the F-W, DTA, and CDA assignments, respectively. 
The objective function values of the F-W, DTA, and COA 
assignments, which are directly comparable, are 50.05, 50.74, 
and 50.22, respectively. 

The F-W and CDA objective function values are nearly 
equal, and the F-W algorithm required 23 iterations to achieve 
a lower objective function value than the DTA procedure. 
However, the F-W algorithm requires less computational ef­
fort than either DT A or CDA. Using the Sioux Falls network 
and executing all procedures on the same 80486-based mi­
crocomputer with all output suppressed, DT A required 12 
sec to perform 15 time intervals of dynamic assignment, whereas 
the F-W algorithm required only 5 sec to execute 23 iterations 
of equilibrium assignment. CDA required 40 sec to converge 
to less than a 3 percent maximum link volume change between 
iterations, which required 57 iterations. Thus, DTA and CDA 
required 2.4 times and 8 times as much computational effort, 
respectively, as the F-W algorithm to generate a comparable 
1-hr static assignment for the Sioux Falls network. All pro­
grams were coded by the author in FORTRAN using many 
of the same subroutines and compiled with the same compiler. 

In order to assess the degree of steady-state equilibrium 
obtained by DT A and CDA, Table 1 gives the values of 
APVl, APV2, and DG as defined earlier. The average per­
cent link volume variations between time intervals of the DTA 
and CDA assignments from their own link volumes means 

TABLE 1 SUMMARY OF SIOUX FALLS STATIC 
ASSIGNMENT RESULTS 

Evaluation Measure F-W 

Total Link Volume (TX) 969 

Mean Trip Impedance (min) 14.96 

SUE or DUE Objective Fune. 50.05 

Volume Variation I (APVI) 

Volume Variation 2 (APV2) 

Duality Gap (DG) 

Temporal Node Violations 

80486 Computation Time 5 sec 

OTA 

960 

15.84 

50.74 

3.00% 

5.88% 

1.51% 

7.3% 

12 sec 

CDA 

972 

14.91 

50.22 

2.34% 

2.84% 

0.426% 

7.6% 

40 sec 
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(APVl) were 3.00 and 2.34 percent, respectively. The average 
percent link volume variations of the DTA and CDA assign­
ments from the final F-W link volumes were 5.88 and 2.85 
percent, respectively. The duality gaps of the DTA and CDA 
assignments are 1.51 and 0.426 percent, respectively. The 
duality gap of the F-W assignment from its own final shortest 
path impedances after 76 iterations was 0.2 percent. Temporal 
node violations are the number of times that shortest paths 
traverse nodes in incorrect time intervals in the final solution 
(as a percentage of total node time intervals). DTA had 7.3 
percent violations, whereas CDA had 7 .6 percent. 

Overall, both DTA and CDA produced static assignments 
for the Sioux Falls network that compared favorably with 
F-W results. A network of the Pittsburgh eastern travel cor­
ridor was used next to examine the performances of DT A 
and CDA with both static and dynamic travel demands. This 
network contains 807 one-way links, 372 nodes, and 30 origin­
destination zones. Both DT A and CDA were applied to 
the Pittsburgh network using 10-min intervals, with three ini­
tial intervals, six analysis period intervals, and six network­
clearing intervals. Both F-W and CDA were run until no 
single link volume varied by more than 3 percent between 
iterations. F-W required 33 iterations, but CDA required only 
16. However, CDA again used eight times as much CPU time 
as the F-W algorithm, whereas DTA used only two times as 
much. 

Table 2 compares the F-W, DTA, and CDA static assign­
ment results for the Pittsburgh network. Total 1-hr link vol­
umes in the F-W, DTA, and CDA assignments were 411,178, 
408,482, and 410,355, respectively. The objective function 
values and the mean trip impedances of the three assignments 
are nearly equal. Although the mean DTA and CDA trip 
impedances are not much greater than one time interval, many 
of the routes assigned by DTA and CDA were between 40 
and 50 min in length. Table 2 also gives the link volume 
variations and duality gap measures for the DTA and CDA 
assignments. The link volume variations are slightly greater 
in this case than for the Sioux Falls network, whereas the 
duality gaps are much lower. The duality gap of the F-W 
assignment from its own final shortest path impedances after 
33 iterations was less than 0.1 percent. As far as temporal 
node violations in the final solutions, DT A had 4.3 percent 
violations, whereas CDA had only 1.9 percent. 

As explained in the previous section, link volumes from an 
earlier run of DT A can be used as the projected link volumes 

TABLE 2 SUMMARY OF PITTSBURGH STATIC 
ASSIGNMENT RES UL TS 

Evaluation Measure 

Total Link Volume (TX) 

Mean Trip Impedance (min) 

SUE or DUE Objective Fune. 

Volume Variation 1 (APVI) 

Volume Variation 2 (APV2) 

Duality Gap (DG) 

Temporal Node Violations 

80486 Computation Time 

F-W 

411178 

11.25 

3884 

25 sec 

OTA 

408482 

11.23 

3873 

3.84% 

7.28% 

0.354% 

4.3% 

SO sec 

CDA 

410355 

10.91 

3885 

0.473% 

3.61% 

0.126% 

1.9% 

200 sec 
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in future time intervals instead of projecting link volumes on 
the basis of the current assignment. If the network's structure 
or travel demands have been altered, link volumes from a 
previous run may not be usable, depending on the extent of 
the changes. However, it is instructive to see whether the 
duality gap of dynamic assignment route impedance differ­
ences can be improved by using link volumes from a previous 
run as prior information. DTA was applied 10 more times to 
the Sioux Falls static assignment problem, with the link vol­
umes from each run used in the next. Values of DG for these 
next 10 runs were 1.778, 1.732, 1.478, 1.632, 1.545, 1.419, 
1.660, 1.419, 1.718, and 1.502 percent, respectively, with a 
mean of 1.588 percent. Compared with a value of 1.511 per­
cent for the initial run of DT A described previously for which 
there were no previous link volumes, using link volumes from 
previous runs did not significantly affect DG for the Sioux 
Falls static assignment. This insignificant effect was to be 
expected for a static assignment, because previous link vol­
umes add no information to the projection formula given by 
Equation 19 if travel demands are constant. 

To test whether previous link volumes improved the duality 
gap of the DTA assignment with time-varying travel demands, 
a Sioux Falls assignment was run for six 10-min intervals using 
trip departure percentages of 12.5, 16.5, 21, 21, 16.5, and 
12.5. These percentages were estimated for the Pittsburgh 
network examples as explained later and used here for ex­
ample purposes. DTA was applied 10 more times to the Sioux 
Falls dynamic assignment, with the final link volumes from 
each run used in the next. Values of DG for these next 10 
runs were 3.666, 3.089, 2.722, 2.461, 2.767, 2.214, 2.226, 
2.181, 2.564, and 2.652 percent, respectively, with a mean of 
2.654 percent. Compared with a value of 3.425 percent for 
the initial DT A run for which there were no previous link 
volumes, using link volumes from previous runs improved the 
duality gap for the Sioux Falls dynamic assignment. However, 
a low DG value had already been achieved by DT A in the 
initial run. 

The DTA and CDA procedures were also applied to the 
Sioux Falls and Pittsburgh networks using 6-min time inter­
vals. As expected, both DTA and CDA did not perform as 
well with 6-min intervals on the Sioux Falls network because 
the average F-W link length was also 6 min, and both pro­
cedures produce better assignments when the time interval 
duration is at least four to five times greater than the average 
link length. DTA and CDA produced similar static assign­
ments with both 6-min and 10-min intervals on the Pittsburgh 
network in which the average F-W link length was only 0.6 
min. Thus, these few tests may indicate that DTA and CDA 
results are not greatly affected by moderate changes in the 
time interval duration so long as it remains several magnitudes 
greater than the average link length. 

Next, DTA and CDA were applied to the Pittsburgh net­
work with dynamic travel demands over the peak hour. In­
stead of assigning one-sixth of the peak-hour trip matrix to 
the network every 10 min, the matrix was assigned in six 
successive trip departure percentages equal to 12.5, 16.5, 21.0, 
21.0, 16.5, and 12.5 percent of the trip matrix. These trip 
departure percentages are based on travel data collected for 
a study of highway reconstruction impacts in the Pittsburgh 
eastern corridor (17) and compared with percentages re-
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ported by Hendrickson and Plank (18) for work trips com­
muting to Pittsburgh from the south. These percentages are 
used in the following example, but they may not be represen­
tative of the entire study region or any particular zone within 
it , because they are based on limited data. 

Total 1-hr link volumes assigned in the dynamic case by 
DT A and CDA to the Pittsburgh network were 404,845 and 
401,854, respectively, which are slightly below the total 1-hr 
link volume assigned by any of the procedures in the static 
case. However , the mean travel impedances of the DT A and 
CDA dynamic assignments are 12.3 and 12.1 min, respec­
tively, which are 1 min greater than the mean travel imped­
ances of the static assignments due to nonlinear link imped­
ance functions causing greater than linear increases in trip 
impedances with increasing travel demands . The objective 
function values are 3,922 and 3,724 for the DTA and CDA 
dynamic assignments, respectively. 

Additional comparisons between the Pittsburgh dynamic 
and static assignments are limited to a few of the evaluation 
measures. Neither of the two link volume variations (APVl 
and APV2) is meaningful with time-varying travel demands. 
The duality gaps of the DTA and CDA dynamic assignments 
are 0.483 and 0.138 percent, respectively, which are only slightly 
greater than their respective duality gaps of 0.354 and 0.126 
percent for the DT A and CDA static assignments . Concerning 
temporal node violations in the final solutions, DTA had 6.7 
percent violations , whereas CDA had only 4.2 percent. Over­
all , CDA performed slightly better that DTA in achieving a 
lower duality gap , but CDA required roughly six times as 
much CPU time as DTA for the dynamic assignment to con­
verge on this size network. 

Table 3 indicates how the total link volumes and mean 
travel impedances varied over the six time intervals of the 
Pittsburgh DTA and CDA dynamic assignments . The third 
and fourth columns give the trip departures in each interval, 
both in numbers of vehicle trips and as percentages of total 
1-hr trip departures . The remaining columns give the mean 
trip impedances and 10-min link volumes at 10 screenline 
locations for DTA and CDA, respectively. The screenline 
locations are on freeways and major arterials along a radius 
approximately 3 mi from the central business district and es­
sentially capture all significant volumes of traffic approaching 
downtown Pittsburgh from the eastern communities. 
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In a previous study using this network, Janson et al. (12) 
found that equilibrium assignment produced reasonable es­
timates of link volumes but underestimated link impedances , 
both before and during a major freeway project. That study 
found the equilibrium assignment link volumes to differ from 
observed morning peak-hour link volumes at the 10 screenline 
locations by an APV of 16.2 percent. The level of convergence 
obtained in the Pittsburgh F-W assignment for this paper is 
greater than that obtained by Janson et al. (12). As a result, 
the F-W link volumes found here differ from the observed 
morning peak-hour link volumes at the 10 screenline locations 
by an APV of 15.1 percent. 

By comparison, the DTA static assignment link volumes 
for the full 1-hr period differed along the screenline from 
observed traffic counts by an APV of 20.4 percent and from 
F-W link volumes by an APV2 of 6.0 percent. The CDA static 
assignment link volumes for the full 1-hr period differed along 
the screenline from observed traffic counts by an APV of 17 .1 
percent and from F-W link volumes by an APV2 of 2.5 per­
cent. Thus, CDA produced 1-hr link volumes that are very 
slightly different from F-W link volumes and only slightly less 
accurate when compared with actual counts . The average 
1-hr screenline crossings from each assignment was exactly 
1,000, which is 10 percent different from the observed value 
of 1,112. 

One additional comparison is the extent to which these two 
procedures achieve similar impedances for alternative routes 
used between a given origin-destination pair of zones. An 
examination of used trip paths indicated that four alternative 
routes connecting a residential zone east of Pittsburgh with 
the downtown central business district were assigned trips by 
the F-W algorithm . Routes A and B use all arterial streets, 
whereas Routes C and D use arterials and portions of a major 
freeway called the Parkway East. Each route is roughly 8 mi 
and contains between 19 and 24 links in the coded network. 
As expected of a highly converged F-W solution, all four 
routes had the same impedance of 12.3 min (to one decimal 
place accuracy) . The DTA static assignment resulted in av­
erage impedances of 12.1 , 12.1 , 12.5, and 12.2 min for Routes 
A , B, C, and D, respectively, over the 1-hr assignment period. 
The CDA static assignment resulted in average impedances 
of 12.3, 12.1, 12.0, and 12.3 min for Routes A , B, C, and D, 
respectively, over the 1-hr assignment period. However, the 

TABLE 3 SUMMARY OF PITTSBURGH DYNAMIC 
ASSIGNMENT RESULTS 

DTA DTA CDA CDA 
Time Trip Number Mean Total Mean Total 

Time of Depart of Trip Trip Link Trip Link 
Interval Da:z: Prct Del!arts Time Va tu.me• Time Volume• 

6:50 12.5% 3051 10.2 min ll80 10.3 min 1209 

2 7:00 16.5% 4027 10.9 min 1478 10.8 min 151 I 

7:10 21.0% 5125 13.l min 1948 12.9 min 1916 

4 7:20 21.0% 5125 14.8 min 2079 14.5 min 2048 

7:30 16.5% 4027 12.l min 1699 11.9 min 1680 

6 7:40 12.5% 3051 10.5 min 1377 10.4 min 1309 

•Total link volume in each interval Car the 10 screenline locations. 
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CDA impedances for these routes were almost exactly con­
stant over the period, whereas the DT A impedances showed 
significant variation. 

Figures 3 and 4 show the travel times of these four routes 
for trips departing in each interval resulting from DT A and 
CDA, respectively. Travel times from DTA for these routes 
are higher and more varied than the travel times from CDA. 
The travel times all begin at around 11 min (slightly below 
the SUE travel time of 12 min due to the low initial departure 
rate of 12.5 percent), rise to between 13 and 14 min, and then 
decrease to their initial levels as travel demand falls off to a 
lower, steady-state level. Although observed travel times are 
not available for each 10-min departure interval, the author's 
experience with these routes , having lived in the area for 7 
years, is that these times underestimate actual times but show 
relatively valid magnitudes of peak-period variability between 
intervals. In validating this network for a previous study, 
Janson et al. (12) found that a SUE assignment from the F-W 
algorithm also tended to underestimate actual impedances 
along routes where travel time runs had been made. 
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CONCLUSIONS AND FUTURE RESEARCH 

Overall, the F-W, DTA, and CDA procedures were shown 
to generate similar steady-state assignments in these exam­
ples. However, only the CDA procedure steadily converges 
toward a dynamic equilibrium solution as formulated in this 
paper. Compared with DT A, CDA was shown to produce 
assignments that more closely satisfy DUE conditions as mea­
sured by the duality gap. Data are unavailable for the net­
works used in this study with which to validate the DT A and 
CDA results against observed link counts and travel times in 
each time interval. The author is arranging to obtain 10-min 
traffic counts and a coded network from a major metropolitan 
planning organization for validation purposes. 

The link flow formulation of DUE presented in this paper 
for multiple origins and destinations and the equivalent path 
flow formulation presented by Janson (9) prevent temporally 
discontinuous flows from entering the solution. An example 
was given earlier of how methods of linear combinations can 
easily cause such flows when applied to this problem. 

7:20 7:30 7:40 

Time of Weekday (AM) 

• Route A 1- Route B o Route C o. Route D 

FIGURE 3 DTA impedances of alternative routes. 
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FIGURE 4 CDA impedances of alternative routes. 
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Hamerslag (19) presented results of applying the F-W algo­
rithm to a small network to generate a dynamic assignment 
but did not evaluate the solution's degree of optimality or 
temporal continuity. CDA did not exhibit convergence dif­
ficulties in the test cases of this paper, and it was relatively 
quick to converge. With regard to convergence difficulties, 
Janson and Zozaya-Gorostiza (20) show that the F-W algo­
rithm introduces cyclic flows to an assignment that retard its 
convergence, and this problem will be compounded by the 
creation of temporally discontinuous flows in dynamic as­
signments. 

The test assignments evaluated in this paper were made 
with the usual BPR impedance function. Research has been 
conducted to test whether other functions, such as the David­
son function, may be superior when used in aggregate as­
signment models (21). Hungetink (22) suggests a modification 
of the usual link impedance function as one method of ap­
proximating queuing delays in capacity-restrained assign­
ments so that link volumes in excess of capacity affect the 
impedances of inflow links. Such impedance function alter­
ations might be considered for dynamic assignment proce­
dures, because travel times directly affect the temporal inci­
dences of competing flows on links common to paths from 
different origins. 

A practical advantage of dynamic traffic assignment as for­
mulated and solved in this paper is that it builds directly on 
the transportation planning data sets and solution algorithms 
familiar to transportation planners and software developers. 
DUE and CDA can also be integrated with other travel fore­
casting procedures. Janson and Southworth (23) show how 
trip departure times can be estimated with dynamic traffic 
assignment and observed traffic counts on selected links in 
each time interval. CDA can be run on large networks es­
sentially in real-time using high-speed computers. Thus, CDA 
is one approach to implementing real-time traffic assignment 
and route guidance systems on urban transportation networks 
and to evaluating plans for traffic management during evac­
uations and special events. 
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Dynamic Analysis of User-Optimized 
Network Flows with Elastic Travel 
Demand 

BYUNG-WooK Wm 

An equivalent continuous time optimal control problem is for­
mulated for dynamic user-optimized traffic assignment with elas­
tic travel demand. Using the Pontryagin minimum princip.le, op­
timality conditions are derived and economic interpretations that 
correspond to a dynamic generalization of Wardrop's first prin­
ciple are provided. The existence and optimality of singular con­
trols are examined. Under steady- tate as umptions, the model 
is shown to be a proper dynamic extension of Beckmann's equiv­
alent optimization problem for static user-optimized traffic a -
signment with elastic demand. Finally, limitations and extensions 
of the present model are discussed. 

There has been a great deal of interest in dynamic network 
equilibrium models . The interest derives from a growing rec­
ognition that steady-state network equilibrium is not typically 
reached during peak hours of commuting and that demand 
and supply characteristics of urban transportation networks 
are inherently time-varying in certain situations. With this 
recognition, a number of researchers have developed dynamic 
network equilibrium models from different perspectives. Friesz 
(J), Alfa (2), and Wie et al. (3) provide literature reviews of 
the dynamic network equilibrium models proposed to date. 

In this paper, a simplistic dynamic extension of the static 
user equilibrium traffic assignment model with elastic de­
mand, which was first formulated as an equivalent optimiza­
tion problem by Beckmann et al. (4), is analyzed. The key 
simplification is related to the assumption that adjustments 
from one system state to another may occur instantaneously 
as traffic conditions on the network change. The problem of 
dynamic user-optimized traffic assignment with elastic de­
mand is not only to predict time-varying traffic flows on con­
gested networks, but also to predict the temporal distribution 
of travel demand from each origin node in response to dy­
namic changes in traffic conditions. This paper should be 
regarded as an extension of the dynamic user-optimized traffic 
assignment model presented by Friesz et al. (5). The particular 
extension is to include elastic time-varying travel demand, 
which leads to the implicit consideration of departure time 
changes. The previous model considered only the route choice 
decision-making process because travel demand at each in­
stant was assumed to be known and inelastic with respect to 
changes in travel costs. This paper is a direct extension of 
Wie (6), which was restricted to a very simple network with 
one origin-destination pair connected by parallel arcs to a 
network with many origins and a single destination. 

School of Travel Industry Management, University of Hawaii, Hono­
lulu, Hawaii 96822. 

To describe individual behaviors of departure time and route 
choices, we assume that each driver receives complete infor­
mation on the current state of the network at each instant 
through an in-car computer connected to a traffic information 
center. The current traffic information may include instan­
taneous measures of arc densities and arc capacity changes 
due to traffic accidents, weather conditions, or road construc­
tion . On the basis of continuously updated traffic information, 
each driver can estimate the instantaneous expected unit path 
costs from an origin node or any en route intersection node 
to the destination node. We further assume that all network 
users attempt to minimize individual travel costs by changing 
routes and departure times. The problem considered in this 
paper corresponds to a type of noncooperatively dynamic 
game in which network users act independently without col­
laboration and compete with one another for limited network 
capacity through route and departure time choices. 

Our dynamic model has different behavioral assumptions 
compared with the dynamic models that have been developed 
by Hendrickson and Kocur (7), de Palma et al. (8), Mah­
massani and Herman (9), Ben-Akiva et al. (JO), Newell (11), 
and Arnott et al. (12). The choice of route or departure time, 
or both, in these dynamic models is generally based on the 
trade-off between travel time and schedule delay (i.e., a pen­
alty for late or early arrival). In contrast, our dynamic model 
cannot explicitly treat schedule delay ; in other words, the 
choice of departure time is not based on the trade-off between 
travel time and schedule delay. Our dynamic model handles 
departure time and route choices in a sequential manner. At 
each instant, travel demand-that is, the rate of departure 
from each origin node-is endogenously determined as a 
function of the instantaneous expected travel cost between 
the associated origin-destination pair. Each driver who de­
cides to depart then chooses the shortest path with minimum 
instantaneous expected unit travel cost to the destination. It 
is assumed that no driver has information as to how travel 
costs for further downstream arcs may change by the time of 
arrival at those arcs. However, as a driver moves downstream, 
he is free to revise his route choice at any en route intersection 
node if his current route is no longer optimal on the basis of 
updated traffic information. 

Another important difference in behavioral assumptions is 
associated with the dynamic user equilibrium conditions. The 
instantaneous expected travel cost defined in this paper is not 
the cost actually experienced on that particular day , but an 
estimate based on current traffic information . Therefore , our 
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dynamic model cannot predict time-varying traffic flows and 
elastic travel demands satisfying the dynamic user equilibrium 
conditions such that all network users with the same desired 
arrival time and same origin-destination pair experience equal 
travel cost to the destination regardless of route and departure 
time chosen. Because the optimality conditions of our dy­
namic model require only equalization of instantaneous ex­
pected unit path costs, it is possible that some drivers can 
reduce individual travel costs by unilaterally changing routes 
or departure times. 

An equivalent continuous time optimal control problem 
that corresponds to the problem of dynamic user-optimized 
traffic assignment with elastic travel demand is formulated. 
We derive the optimality conditions using the Pontryagin min­
imum principle, and we examine the existence and optimality 
of singular controls. The economic interpretation of the op­
timality conditions is given as a dynamic generalization of 
Wardrop's first principle. Our dynamic model is also analyzed 
under steady-state assumptions to show that it is a proper 
dynamic extension of Beckmann's equivalent optimization 
problem for static user-optimized traffic assignment with elas­
tic demand. Finally, limitations and extensions of our dynamic 
model are discussed. 

MODEL FORMULATION 

Assume a network represented by a directed graph G(N, A), 
where N is the set of nodes and A is the set of arcs. The 
cardinality of the set N is denoted by /NJ = n. Nodes 1, 2, ... , 
n - 1 are origins, whereas n is the only destination. The set 
of all origins is denoted by M. In general, we use the index 
a to denote an arc, k a node, and p a path. The set of all 
paths connecting Node k and Node n is denoted by Pkn· We 
consider a fixed time horizon of length T; that is, all activities 
occur at some time t E [O, T]. 

Let x.(t) denote the number of vehicles traveling on Arc a 
at Time t, which will be referred to as the traffic volume on 
Arc a at Time t. We assume that the instantaneous expected 
travel cost for a driver (or drivers) entering Arc a at Time t 
is dependent on x.(t) and that the instantaneous expected unit 
cost functions c.[x.(t)] are positive, nondecreasing, differen­
tiable, and convex for all x.(t) :::.:: 0 and t E [O, T]. Link 
interactions are not considered in this model. To depict the 
physical phenomenon of traffic congestion on each arc, the 
exit functions g.[x.(t)] are assumed to be nonnegative, non­
decreasing, differentiable, and concave for all x.(t) :::.:: O and 
t E [O, T] with the additional restriction that g.(O) = 0 for 
all a E A. A functional form of the exit functions can be 
represented as 

g.[x.(t)] = g:;'•• · {1 - exp[ -x.(t)/13.]} 

'v'a EA 'v' t E [O, T] (1) 

where g:;i•• is the maximum number of vehicles that can exit 
from Arc a at each instant and 13. is a parameter that varies 
with road type and traffic signal system. 

The dynamic evolution of the state of each arc is described 
by first-order nonlinear differential equations: 
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dx0 (t)/dt = x.(t) = u.(t) - g.[x.(t)] 

'v' a EA 'v' t E [O, T] (2) 

where 

x.(t) = the state variable denoting the traffic volume 
on Arc a at Time t; 

u.(t) the control variable denoting the traffic flow 
entering Arc a at Time t; and 

g.[x.(t)] the traffic flow exiting Arc a at Time t. 

Throughout the paper, Equation 2 will be called the state 
equation. In addition , we assume that the traffic volume on 
Arc a EA is a known nonnegaliw constant at the initial time 
t = 0: 

x.(O) = x~(t) :::.:: 0 'v'a EA (3) 

Different initial values of traffic volumes may lead to different 
predictions of time-varying traffic flow patterns. 

Let Sk(t) denote the instantaneous travel demand generated 
(i.e ., the rate of departure) from an origin node k at Time t. 
We assume that Sk(t) is endogenously determined as a func­
tion of the instantaneous expected unit travel cost between 
an origin node k and the destination node n at Time t. It 
follows that 

'v'kEM 'v' t E (0, T] (4) 

where Dk(-) is the instantaneous demand function for travel 
between Nodes k and n at Time t and µk(t) is the minimum 
instantaneous expected travel cost between Nodes k and n at 
Time t. We assume that the instantaneous demand functions 
are nonnegative and monotonically decreasing and that they 
can continuously change in functional form over the time 
interval [O, T] to represent time-varying price elasticity of 
demand for travel between each origin-destination pair. We 
are unable to discuss a functional form of the instantaneous 
demand functions and their calibrations. A more realistic dy­
namic model should also consider cross elasticity of demand, 
implying that Sk(t) is determined as a function of the trajectory 
of µk(t) over the time interval [O, T]. At this point, we are 
unable to model this case. Furthermore, we assume that the 
inverse of the instantaneous demand function is well defined 
and exists as follows: 

'v'kEM 'v' t E [O, T] (5) 

The flow conservation constraints are stated as follows: 

Sk(t) + L g. [x.(t)] 2: u.(t) = o 

where 

a E B(k) a E A(k) 

A(k) 
B(k) 

'v'kEM 'v' t E (0, T] (6) 

= the control variable, denoting the instantane­
ous travel demand generated from Node k 
at Time t; 
the set of arcs whose tail node is k; and 

= the set of arcs whose head node is k. 
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We ensure that both the state and control variables are non­
negative: 

V a E A V t E [0, T] 

u.(t) 2: 0 V k E M V t E [0, T] 

VkE M Vt E [O, T] 

(7) 

(8) 

(9) 

However, we will not consider the nonnegatively of the state 
variables in an explicit manner because the assumption g.(O) 
= O ensures that the state variables are always nonnegative. 

We define x(t) = ( .. ., x.(t), ... ), u(t) = ( ... , u0 (t), ... ), 
and S(t) = ( ... , Sk(t), ... ). In the sequel, we employ the 
set of feasible solutions 

n = {[x(t), u(t), S(t)): Expressions 2, 3, 6, 8, and 9 are satisfied} 

(10) 

for economy of notation. We are now ready to formulate the 
dynamic user-optimized traffic assignment problem with elas­
tic demand as an equivalent continuous time optimal control 
problem: 

l
Tlxo(<) 

Minimize J = L c.(w)[dgiw)ldw] dw dt 
a EA 0 0 

(11) 

subject to 

[x(t), u(t) , S(t)) E !l 

where w and 'Tl are dummy variables of integration. The per­
formance index J is a scalar function that has no intuitive 
economic interpretation. It should be viewed strictly as a 
mathematical construction. The derivation of J is analogous 
to that of the objective function of Beckmann's equivalent 
optimization problem for a static user equilibrium traffic as­
signment with elastic demand ( 4). 

OPTIMALITY CONDITIONS 

The Pontryagin minimum principle (J 3) is used to derive the 
necessary conditions for an optimal solution of the control 
problem (Equation 11). We first construct the Hamiltonian 
function: 

H[x(t), u(t), S(t), A.(t), µ(t)] = L rxo(<) c.(w)[dg.(w)ldw]dw 
aE A Jo 

- L <l>k(t, TJ) dTJ + L A..(t) u.(t) - g.[x.(t)] l~ { } 
kEM 0 aEA 

+ L µk(t) {sk(t) + L g.[x.(t)] - L u.(t)} 
kEM aEB(k) aEA(k) 

(12) 

where A..(t) is the costate variable associated with the state 
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equation (Equation 2) and µk(t) is the Lagrange multiplier 
associated with the flow conservation constraints (Equation 
6) . Note that A.(t) = ( ... , A..(t), . . . ) and µ(t) = ( ... , 
µk(t), ... ). 

The Pontryagin minimum principle states that the dynamic 
evolution of the costate variables are governed by the follow­
ing first-order differential equations: 

- ~.(t) = aH[x(t), u(t), S(t), A.(t), µ(t)]lax.(t) 

= { c.[x.(t)] - A..(t) + µ.k(t)} g~ [x.(t)] 

VaEB(k) VkEM VtE(O, T] (13) 

where g~ [x.(t)] = dg.[x.(t)]ldx.(t). Equation 13 will be called 
the costate equation. Let <!>.[x.(T)] denote the salvage value 
function when the terminal state is x0 (T). Because we impose 
no constraint on the values of the state variables at the ter­
minal time T, the value of <1>.[x0 (T)] must be equal to zero 
for all a E A. Hence, the terminal boundary conditions on 
the costate variables are given as follows: 

A.0 (T) = a<1>.[x.(T)]lax.(T) = o Va EA (14) 

Equation 14 is often called the transversality conditions. In 
addition, the state equation (Equation 2) can be expressed in 
terms of the Hamiltonian as follows: 

x.(t) = aH[x(t), u(t), S(t), A.(t), µ(t)]/ax.. (t) 

= u.(t) - g.[x.(t)] 

Va EA Vt E (0, T] (15) 

In optimal control theory, the differential equations for the 
state variables and the differential equations for the costate 
variables plus all boundary conditions are called the canonical 
equations, which give rise to the two-point boundary value 
problem. 

The Pontryagin minimum principle also requires that the 
Hamiltonian (Equation 12) be minimized by choice of the 
optimal control variables at each point along the optimal state 
trajectories. The control problem (Equation 11) can thus be 
converted into an infinity of constrained static optimization 
problems for each instant t E [O, T] as follows: 

Minimize H(x(t), u(t), S(t), A.(t), µ(t)] (16) 

subject to 

u.(t) 2: 0 Va EA 

VkEM 

While holding x(t) and A.(t) constant, the Kuhn-Tucker nec­
essary conditions for u(t) and S(t) to be optimal are readily 
obtained: 

aHlaSk(t) = µit) - <l>k[t, Sk(t)] 2: o 

VkE M Vt E [O, T] (17) 
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't/kEM 't/ t E [O, T] (18) 

't/ a E A(k) 't/kEM 't/ t E [O, T] (19) 

't/ a E A(k) 't/kEM 't/ t E [O, T] (20) 

't/kEM 't/ t E [O, T] (21) 

The complementary slackness conditions (Equations 17 and 
18) indicate that if the optimal value of the control variable 
Sk(t) is positive, Equation 17 must hold as an equality. In 
other words 

't/kE M 't/ t E [O, T] (22) 

Both sides of Equation 22 can be inverted to obtain 

't/kE M 't/ t E [0, T] (23) 

Hence, if the traffic flow generated at Node k at Time t is 
positive, it must be determined by the instantaneous demand 
function Dk[t, µ,k(t)]. If, however, µk(t) > <l>k[t, Sk(t)], then 
Sk(t) = 0, meaning that the minimum instantaneous expected 
travel cost between Origin k and Destination n at Time t may 
be too high to induce any departure. Because the instanta­
neous demand function Dk[t, µk(t)] is assumed to be mono­
tonically decreasing, it follows that its inverse, <l>k[t, SAt)], 
should be a decreasing function. The integral of a decreasing 
function is strictly concave, and the negative of the sum of 
concave functions is a strictly convex function. Thus, the sec­
ond term in the Hamiltonian (Equation 12) is strictly convex, 
implying that the optimization problem (Equation 16) has a 
unique solution in terms of S(t): 

From the complementary conditions (Equations 19 and 20), 
we know for all a E A(k) and k E M that if A..(t) > µk(t), 
then u.(t) = O; if A..(t) = µk(t), then u.(t) ~ 0. Obviously, 
the optimal value of the control variable u.(t) is influenced 
by the sign of [A..(t) - µk(t)], which is called the switching 
function. If, however, A..(t) = µk(t) for some a E A(k) and 
k E M during a finite time interval, the minimization of the 
Hamiltonian (Equation 12) leads to nonunique determination 
of the optimal value of u.(t), that is, singular control. As a 
result, the Pontryagin minimum principle yields no useful 
information to determine the optimal value of the control 
variable u0 (t). In this circumstance, an additional necessary 
condition is required to replace the optimality conditions 
(Equations 19 and 20) so that the singular controls could be 
tested for optimality. To this end we proceed to derive an 
expression for the singular control and to ensure that the 
generalized Legendre-Clebsch condition is satisfied. If A.

0
(t) 

= µk(t) for some a E A(k) and k E M during a finite time 
interval [t1, t2] ~ [O, T], it follows at once that 
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(24) 

(25) 

Consider an arc whose tail node is k and head node is s, that 
is, a = (k, s) EA. Using the costate equation (Equation 13), 
we may rewrite Equations 24 and 25 as follows: 

-{ c.[x.(t)] - A.0 (t) + µ,(t)} g; [x0 (t)] - µ,k(t) = 0 (26) 

-{ c;[x.(t)] x.(t) - ~.(t) + iis(t)} g; [x.(t)] 

-{ c.[x.(t)] - A.0 (t) + µ,s(t)} g~ [x0 (t) ]x.(t) - µ,k(t) = 0 (27) 

where dc0 [x 0 (t)]ldx 0 (t) = c; [x 0 (t)]. For the moment, we sup­
press the time notation (t) and the traffic volume notation 
xa(t). Substitution of Equations 2 and 24 into Equation 27 
yields an expression for the singular control as a feedback 
control: 

ua[x(t), A.(t), µ(t)] = 

(c;ga + Ji..k - Ji.,,)g; +(ca - J.l.k + µs)g~ga - ilk 
c;g~ +(ca - µk + µs)g~ 

't/a = (k,s)EA 

't/tE [t1, t2] ~ [O, T] 

't/kEM 't/sEM 

(28) 

When a singular control exists, an additional test is needed 
to determine whether this singular control is optimizing or 
not. Usually, the optimality of singular controls given by 
Equation 28 can be tested by using the generalized Legendre­
Clebsch condition (14) as follows: 

iJ { d2 [ iJL J} ( + µs)g~ - c;g; S 0 au,,(t) dt2 aua(t) = - ca - µk 

't/ a = (k, s) EA 't/kEM 't/s EM 

(29) 

Because c.[xa(t)] and ga[xa(t)] are assumed to be nondecreas­
ing for all x.(t) ~ 0, it follows that c;[x.(t)] g;[x.(t)] is non­
negative. We also know that g~[x.(t)] s 0 because ga[x.(t)] is 
concave for all x.(t) ~ 0. It remains to be proven that c.[x.(t)] 
- µk(t) + µ,(t) s 0. However, this condition is not strictly 
satisfied because it requires from the costate equation (Equa­
tion 13) that dA.

0
(t)!dt always be nonnegative. Certainly, we 

know that dA.0 (t)/dtcan be negative during a finite time period. 
Hence, we are not able to conclude that the singular controls 
expressed in Equation 28 are optimal. We reserve this issue 
for future research. 

ANALYSIS OF OPTIMALITY CONDITIONS 

Let us consider a path p connecting an origin node k and the 
destination node n, expressed in generic form as 
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(30) 

Using the costate equation (Equation 13), we define the in­
stantaneous unit path travel cost function: 

{ 
~·a(t) } 

"'p(t) = 2: ca[x.(t)] + --,--[. < )l a E A(p) Kn X0 t 

Vt E [O, T] (31) 

where A(p) denotes the set of arcs composing a path p . We 
are now ready to state and prove the following theorem: 

Theorem 1. If u0 (t) > 0 for all a E A(p) at some time t E 
[O, TJ, then 'l'p(t) = inf {'l'b(t): V b E Pkn} for an optimal 
solution of the dynamic user-optimized traffic assignment 
problem with elastic demand (Expression 11). 

Proof: Using the costate equation (Equation 13), we may 
rewrite Equation 31 as 

m 

"'p(t) = 2: [x..,<t) - µk,<t)J (32) 
1 ~1 

We know from Equation 20 that if u.(t) > 0 for all a E A(p), 

for i = 1, ... , m (33) 

Substituting Equation 33 into Equation 32, it follows at once 
that for a path p E Pkn 

'l'p(t) = [µko(t) - µkl(t)] + [µk.(t) - µk1(t)] + 

+ [µkm -l(f) - µkm(t)] 

= µk(t) - µn(f) 

The theorem follows immediately. Q.E.D. 

(34) 

Provided that µn(t) = 0, the economic interpretation of the 
Lagrange multiplier µk(t) can be given as a minimum instan­
taneous expected unit travel cost between Origin k and Des­
tination n at Time t: 

µk(t) = inf ( L {c.[x.(t)] 
a E A(p) 

~.(t) } ) 
+ g;[x.(t)] : VP E Pkn 

Substituting Equation 35 into Equation 13 yields 

X..(t) = c.[x.(t)] + { ;\.(t)lg;[x.(t)]} + µs(t) 

= c.[x.(t)] + { ~.(t)lg;[x.(t)]} 
+ inf {'l'p(l): V p E Psn} 

Va = (k, s) EA Vs EM Vt E [O, T] 

(35) 

(36) 

The costate variable X..(t) can be interpreted as a minimum 
instantaneous expected unit travel cost between Origin k and 
Destination n at Time t with only the restriction that a = (k, s) 
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must be the first arc to traverse. Therefore, 'l'P(t) may be 
viewed as consisting of static and dynamic components. The 
term I. e ACPJ c.[x.( t)] is considered to be static. On the other 
hand, the term I. e A(pJ [dX..(t)ldt]g;[x.(t)] is considered to be 
dynamic in that it includes the rate of change of x..(t) with 
respect to time, which represents the dynamics of the costate 
variables, whereas g; [x.(t)] is interpreted as a scaling of 
dX..(t)/dt. 

Theorem 1 requires equilibration of instantaneous unit travel 
costs for all the paths that are being used at each instant in 
time for a given origin-destination pair as follows: 

u.(t) > 0 for all a E {A(p) Ip = 1, ... , j} (38) 

u.(t) = Oforsomea E {A(p) IP= j + 1, ... ,J} (39) 

where J is the cardinality of the set Pkn· Hence, Theorem 1 
can be interpreted as a dynamic generalization of Wardrop's 
first principle (15) such that if, at each instant in time, for 
each origin-destination pair, the instantaneous unit travel costs 
for all the paths that are being used are identical and equal 
to the minimum instantaneous unit travel cost, the corre­
sponding time-varying traffic flow pattern is said to be user 
optimized. 

EQUIV ALENCY UNDER STEADY-STATE 
ASSUMPTIONS 

We shall establish that the control problem (Equation 11) is 
a proper dynamic extension of Beckmann 's mathematical pro­
gramming problem for a static user equilibrium traffic as­
signment with elastic demand ( 4). To this end we analyze our 
dynamic model under the following steady-state assumptions: 
first, that Sk(t) and c.[x.(t)] are time-invariant for all a E A 
and k E M, and second, that dx0 (t)ldt = 0 and thus u.(t) = 
g.[x.(t)] for all a EA and t E [O, T]. By changing the variables 
of integration, we may rewrite the first term in the Hamil­
tonian (Equation 12) and have the following relation: 

L lx"c.(w)[dg
0
(w)/dw]dw= L lg,(xa)c0(~)d~ (40) 

aEA 0 aEA 0 

Let f. denote g.(x.), meaning the traffic flow rate on Arc a. 
Under the steady-state assumptions, the continuous time op­
timal control problem (Equation 11) becomes a series of con­
strained static optimization problems that are identical at each 
instant during the fixed time interval [O, T] as follows: 

Minimize Z(x) = 

lfa lSk L c.(w)dw - L <I>h1) d11 
aEAO kEMO 

(41) 

subject to 

sk + 2: t. - 2: t. = o 't/kEM 
a E B(k) a E A(k) 
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'Va EA 

V k EM 

The Kuhn-Tucker necessary conditions for the problem 
(Equation 41) can be readily obtained as 

f.[ c.(f.) - µk] = 0 Va EA (42) 

c.(f.) - µk 2: 0 Va EA (43) 

Sk[µk - <l>k(Sk)] 0 'VkEM (44) 

µk - <l>k(Sk) 2: 0 'VkEM (45) 

sk + 2: f. 2: f. = 0 VkE M (46) 
a E B(k) a E A(k) 

f. 2: 0 Va EA (47) 

sk 2: o 'VkEM (48) 

where µk is the Lagrange multiplier associated with the flow 
conservation constraints, denoting the minimum unit travel 
cost between Origin k and Destination n. Because the opti­
mality conditions (Equations 42 through 48) are identical to 
user equilibrium conditions (16), the control problem (Equa­
tion 11) is proven to be a proper dynamic extension of Beck­
mann's equivalent optimization problem for a static user equi­
librium traffic assignment with elastic demand. 

CONCLUSION 

We have shown that an equivalent continuous time optimal 
control problem can be formulated to model the problem of 
dynamic user-optimized traffic assignment with elastic travel 
demand. The optimality conditions were derived and given 
economic interpretations. We have also shown that the model 
presented in this paper is, under steady-state assumptions, a 
proper dynamic extension of Beckmann's equivalent optimi­
zation problem for static user-optimized traffic assignment 
with elastic demand. 

The dynamic model encounters several limitations. First, 
the instantaneous costs are used as a criterion for departure 
time and route choices. A more realistic model should use 
the anticipated costs ' as the approximations of the actually 
experienced costs. Second, the instantaneous travel demand 
is determined as a function of the instantaneous perceived 
unit cost between the associated origin-destination pair. This 
assumption implies that no cross elasticity of demand is con­
sidered in our dynamic model. Third , the choice of departure 
time and route is not based on the trade-off between travel 
time and schedule delay. It means that our model cannot 
explicitly handle schedule delay as a penalty for early or late 
arrival at the destination. Fourth , the state equation (Equa­
tion 2) is not empirically tested to answer whether it provides 
an adequate representation of reality. No consideration of 
cross-link interactions further simplifies the dynamics of traffic 
flow on each arc. Finally, a functional form of the instanta­
neous demand function is not specified in this paper. The 
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question arises as to whether time-varying elasticity of de­
mand can be well represented in its functional form. 

Our future research includes the following important issues. 
First , we should be able to test the optimality of singular 
controls using the generalized convexity condition, and we 
need to investigate transition process from a singular control 
to a nonsingular control. Second, our dynamic model should 
be extended to analyze traffic flows in a congested network 
with multiple origins and multiple destinations . However , as 
discussed by Wie et al. (3) and Wie (17), there are some 
difficulties in generalizing the present model to a multiple 
destination case. Its generalization requires the linear exit 
function assumptions to keep the property of separability, 
which is crucial to show equilibration of instantaneous unit 
path costs. Last, an efficient algorithm must be developed for 
the computation of our dynamic model. Recently, a gradient 
algorithm based on the discrete maximum principle was de­
veloped by Wie (18,19) to solve the problem of dynamic user­
optimized traffic assignment with fixed demand. It is hoped 
that the algorithm can be modified to solve the problem with 
elastic demand. 
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Multicriteria Decision Making in 
Location Modeling 

Au E. HAGHANI 

Public- and private-sector location decisions are generally made 
in ~ multiobjective planning environment. Examples include lo­
cation of emergency medical service facilities and warehouses. 
V~r!o~s cr.iteria considered. in_ma~ing these decisions may include 
mm1m1zat10n of costs, max1m1zat1on of demands that are satisfied 
within a prespecified time or distance, and minimization of av­
erage distance from demand points to the nearest facility. Gen­
erally, location problems are formulated and solved as mathe­
matical optimization problems. Attempts have been made to solve 
location problems through multiobjective optimization. Gener­
ally, ~hese mod~ls ~ccount for more than one objective by using 
~ v~nety o~ we1ghtmg schemes or by concentrating on one ob-
1echve and mcorporating the others into the model as constraints. 
An alternative approach to consider several objectives sirnulta­
n~ously is presented .. Th~ approach is based on the analytical 
hierarchy process, which 1s a useful tool in multicriteria decision 
making. The approach is demonstrated by a numerical example. 

Engineers and planners in both the public and the private 
sectors are frequently faced with deciding where to locate 
facilities and how to allocate the resources for these facilities 
among competing demands . Public-sector examples of such 
decisions include where to locate emergency medical service 
(EMS) vehicles to serve a community, how such vehicles should 
be dispatched to incidents, how many fire stations are needed 
so that all points in an urban area may be reached within a 
prespecified time, and where public schools should be located. 
Private-sector examples include where to locate maintenance 
facilities over an airline or railroad network and how many 
warehouses are needed in a distribution system and where 
they should be located. In all cases, the location of the 
facilities significantly affects both the operating costs of the 
system and the ability of the system to satisfy the demands 
placed on it. 

Facility location decisions in both public and private sectors 
are generally multiobjective in nature. For example, in lo­
cating emergency medical service facilities, the objectives are 
to minimize the average travel time to an incident and the 
number of vehicles deployed, and hence the operating cost 
of the s~ste~. There may also be a need to consider many 
other ob1ect1ves, such as balancing the work load, increasing 
th~ nu~ber of people served by the system, and equity. Some 
Objectives may be conflicting in nature. For example, mini­
mizing the number of deployed vehicles conflicts with maxi­
mizing the number of people served. 

Generally, location-allocation problems have been for­
mulated and solved as mathematical optimization problems. 
Different formulation approaches and the use of different 
objective functions have resulted in a variety of location models. 

Department of Civil Engineering, University of Maryland, College 
Park, Md. 

Although attempts have been made to deal with location de­
cisions from a multiobjective point of view (1-5), most lo­
cation models are formulated and solved in a single-objective 
framework. Among the single-objective models, a few studies 
attempt to deal with the location-allocation problem in a hi­
erarchical modeling approach, and mostly from a dual ob­
jective point of view (6-9). This paper presents an alternative 
approach for making multiobjective location decisions. The­
oretically, the approach enables analysts and decision makers 
to simultaneously consider as many objectives as they wish 
without defining any a priori weights for the objectives or 
setting any constraints on the level of achievement of those 
objectives. 

PROBLEM STATEMENT 

Location problems are frequently confronted in both the pub­
lic and the private sectors. The most common location prob­
lems in the public domain include choosing fire station sites 
and determining the number and location of EMS vehicles. 
Private-sector location problems include determining the 
number of maintenance facilities needed on an airline or rail­
road network and the optimal location of these facilities and 
identifying optimal warehousing locations in product distribu­
tion networks. 

The allocation problem is closely related to the location 
problem. The allocation problem deals with optimal assign­
ment of the demands to service centers. The location­
allocation problem derives its importance from two sources. 
First, in many cases, the location of service centers in a net­
work and the allocation of demands to service facilities has a 
direct effect on system operating costs. This is particularly 
true in private-sector applications. The second reason for in­
terest in the location-allocation problem is that, in some cases, 
the nature of the demands and of the service depends dra­
matically on the ability of the customers to obtain service 
quickly. An example is medical emergencies, in which timely 
response is clearly needed. 

. Research on the location-allocation problem must recog­
mze that location decisions are generally made in a multiob­
jective planning framework. For example, in locating EMS 
vehicles , the objectives are to minimize the average travel 
time to an incident, the maximum travel time to an incident, 
and service differences between geographic areas of the city; 
maximize the number of people or potential demands that 
can be served by the system within a given time limit; and 
minimize the number of vehicles deployed. In fact, these are 
only representative of the many objectives that public decision 
makers must consider in locating and in choosing response 
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districts for EMS vehicles. Similarly, private location­
allocation decisions are also multiobjective in nature. In 
choosing repair centers for an airline network, for example, 
the objectives are to minimize the amount of deadheading 
required to reach the facilities and the construction and op­
erating costs of the facilities. 

One important difference between private- and public­
sector location problems is that it is generally easier to collapse 
the different objectives into a single objective in private-sector 
location problems. For example, deadheading may be con­
verted into an operating cost. By using appropriate weighting 
and discounting factors, the deadheading, construction, and 
opernting costs in the airline example may be collapsed into 
a single cost figure. In the EMS vehicle location example, 
however, it would be virtually impossible to collapse measures 
of service inequities across geographic areas and measures of 
vehicle work loads into a single value to be optimized. Even 
if it were possible, it would require the analyst to implicitly 
weight the two objectives. This task i better left to the public 
decision makers. This however, demands that the analyst 
develop techniques capable of clearly displaying the trade­
offs between objectives. 

This paper presents an approach that, theoretically, enables 
simultaneous consideration of as many objectives as desired 
in making location decisions. This approach is based on the 
analytical hierarchy process (AHP). AHP is selected as a 
vehicle for valuation and ranking of alternative sites (or com­
binations of sites) on the basis of multiple objectives. It has 
proven to be a valuable tool in multicriteria decision making. 
In this paper we deal witb objectives that are generally used 
in public-sector planning. However, the methodology can eas­
ily be generalized to include as many and as different objec­
tives as needed. The paper focuses on discussion of issues 
involved in implementation of AHP in multiobjective location 
modeling. 

DETERMINISTIC LOCATION MODELS 

Facility location is one of the most important Jong-term lo­
gistical decisions faced in the public or private sector. Most 
facility location models are concerned with network locations 
rather than plane locations. The location models can be cat­
egorized on the basis of such important criteria as type of 
objective function and the deterministic versus stochastic 
models. In this section we focus on deterministic location 
models and distinguish them by their objective function. Sto­
chastic models are beyond the scope of this study. 

Three general types of objective functions have been used 
the most in the literature concerning public-sector location 
decisions. Covering models locate facilities on a network such 
that the demands are covered within a prespecified critical 
time or distance. Median or minisum models locate the fa­
cilities such that the weighted average distance between the 
facilities and the demands served by those facilities is mini­
mized. Center or minimax models locate facilities to minimize 
the weighted maximum distance from the facilities to the de­
mands served by them. Median, covering, and center models 
encompass a large portion of the location models, and there­
fore we focus on these models. The interested reader is re­
ferred to Handler and Mirchandani (JO), Tansel et al. (11), 
or Brandeau and Chiu (12) for a more complete review. In 
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what follows, we describe covering, median, and center lo­
cation models and then briefly review some of the multiob­
jective approaches to location modeling. 

Covering Models 

The inputs to location models include a network with a set 
of N nodes and A links. Associated with each node is a de­
mand to be served by the facilities. Demands are assumed to 
be generated at nodes only. The travel time (or travel dis­
tance) between Node i and j is represented by a shortest path 
matrix. Also, a prespecified critical time (or distance) is de­
fined, which is the maximum time (or distance) limit. 

The simplest covering model is the location set covering 
model, which was originally formulated by Toregas et al. (13). 
This formulation attempts to minimize the number of service 
centers on a network such that all demands are covered within 
the critical time or distance. This model has been used in 
locating ambulances (14) and fire stations (15,16). Plane and 
Hendrick (17) studied a dual objective formulation of the set 
covering problem. They minimize the number of fire stations 
needed and maximize the number of existing stations in the 
solution. Daskin and Stern (6) proposed an alternative dual 
objective formulation that minimizes the number of service 
centers and maximizes the amount of backup coverage. 
Demand-weighted backup coverage has also been formulated 
(18, 19). 

The set covering model fails to recognize that demands are 
generated at the nodes at different rates. The maximum cov­
ering location model formulated by Church and Re Yelle (20) 
accounts for this by trying to maximize the number of de­
mands that are within the critical time (or distance) of one of 
the P facilities that are to be located. Maximum covering 
models have been used in practice to locate service facilities 
(21-23). 

Minisum or Median Models 

The P-median or minisum problem was originally formulated 
by Hakimi (24). This model minimizes the weighted average 
distance from a demand node i to the facility to which it is 
assigned. In the absence of capacity constraints or other com­
plications, demands are assigned to the nearest facilities. In 
using this model for an EMS facility location problem, the 
objective is to locate facilities so that the best average be­
havior of the system is obtained. 

Hakimi (24) has shown that at least one optimal solution 
to this problem consists of locating only on the nodes of the 
network. Hakimi's result has been generalized to a number 
of extensions of the P-median problem (25,26). A variety of 
heuristic methods have been proposed for solving the P­
median problem (10,27). 

Minimax or Center Models 

These models minimize the weighted maximum distance from 
the demand points to the nearest facilities. When facilities are 
to be located on nodes of a network, minimax models are 
referred to as vertex-center models. Center models attempt 
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to locate facilities over the network so that the level of service 
in the worst possible case is as good as possible (10). 

The objectives incorporated in the covering, median, and 
center models represent three of the most important objec­
tives that can be considered in location of public facilities­
in particular, EMS facilities such as ambulance and fire sta­
tions. It is clear that the best solution under one modeling 
approach and for one of the foregoing objectives may not be 
the best or even a good solution for the other objectives. 

Furthermore, although these objectives are among the most 
important, they are not necessarily the only ones to be con­
sidered. In public-sector facility location many other objec­
tives may be equally important. Balancing the work load among 
facilities, providing equitable service, providing as much backup 
service as possible, and political considerations are other ob­
jectives that may be considered. Some objectives may not 
even be quantifiable and cannot be incorporated into a math­
ematical model. It is desirable, therefore, to approach loca­
tion decisions in a multiobjective framework that addresses 
these issues. 

Multiobjective Approaches 

One of the important aspects of location decisions is their 
long-term effects on the service provided to the public. Several 
models have been formulated to deal with the public facility 
location problem in a multiobjective framework. Multiobjec­
tive approaches have been used to locate energy facilities 
(28-30) and fast food restaurants (31). Cohan et al. (29) 
formulated a multiobjective linear programming model for 
locating energy facilities. Mladineo et al. (30) propose a mul­
ticriteria approach for ranking the alternative sites. Min's model 
(31) considers the behavioral and spatial aspects of location 
scenarios. Fortenberry et al. (32) and Heller et al. (33) pro­
pose models to locate emergency medical service facilities in 
a multiobjective environment. Fortenberry et al. (32) use lin­
ear programming to determine optimal locations, and Heller 
et al. (33) propose a model that minimizes the mean response 
time and balances the facility work load. The results of the 
latter model are validated by simulation techniques. 

Ross and Soland (34) present an interactive algorithm for 
multicriteria optimization that solves a finite sequence of gen­
eralized assignment problems for location of public facilities. 
Schilling (35) proposed a dynamic location model to locate 
public facilities. His approach uses multiobjective analysis to 
plan public-sector facility systems that operate in a dynamic 
environment. 

Goal programming is used as a technique for approaching 
location decisions in a multicriteria environment (36-38) . Some 
researchers have developed interactive models for locating 
facilities (39,40). Multicriteria approaches have also been used 
in locating private-sector facilities (36,41-43). Buhl ( 44) pres­
ents several theorems characterizing single-objective reduc­
tions of multiobjective problems and shows that the objective 
functions used in location theory contain both implicit and 
explicit value judgments. 

In general, all but a few of the multiobjective approaches 
to location modeling use an optimization framework. Either 
all of the objectives to be considered are collapsed into a 
single objective with a weighting scheme or thresholds are 
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defined for all but one objective and the problem is ap­
proached by optimizing that objective while the others are 
constrained within their predefined thresholds (as in goal pro­
gramming). In these approaches, nonquantifiable objectives 
are either ignored or dealt with exogenously. 

Although efforts have been made to formulate and solve 
location models that deal with more than one objective, this 
area of research is still promising. In particular, a multiob­
jective approach that can incorporate several objectives, pro­
vide a systematic evaluation and ranking of alternatives, and, 
particularly, handle nonquantifiable objectives would be 
desirable. 

In contrast to other multiobjective approaches, optimiza­
tion is proposed as an alternative generation tool while at the 
same time a framework is devised enabling us to implement 
a multicriteria decision-making tool such as AHP to select the 
best alternative from those generated by the optimization 
approach. This approach theoretically enables us to consider 
as many objectives as desired simultaneously with no prior 
weighting schemes or threshold definitions. 

MULTIOBJECTIVE APPROACH TO LOCATION 
DECISIONS 

In this section a multiobjective approach to location modeling 
incorporating the maximum covering, median, and center is 
presented. We also incorporate cost considerations as the 
fourth criterion to be considered in the location of facilities. 
The approach is based on AHP (45-50). The procedure has 
proven useful in multicriteria decision making (51). 

AHP 

AHP provides a way to organize complex decision-making 
problems in a manner that allows for interaction and interde­
pendence among factors influencing the decisions and still 
allows the analyst to think about these factors in a simple 
way. It enables the analyst to make effective decisions on 
complex issues by simplifying and expediting the natural 
decision-making process. 

AHP is based on three principles: decomposition, com­
parative judgments, and synthesis of priorities. A complex, 
unstructured problem is decomposed into its component parts, 
which are further arranged into a hierarchic order. The ele­
ments in the hierarchy define the problem. A matrix of pair­
wise comparisons of the relative importance of the elements 
in a level of hierarchy with respect to the elements in the level 
immediately above it is then set up. Finally, the global or 
composite priorities of elements at the lowest level of the 
hierarchy (alternative solutions) are synthesized. 

AHP also provides an effective structure for group decision 
making. It enables decision makers to represent the simul­
taneous interactions of many factors in complex, unstructured 
situations and helps to identify and set priorities on the basis 
of various objectives. A detailed description of AHP is beyond 
the scope of this paper. The interested reader is referred to 
Saaty (45,48). However, the main steps of the process can be 
summarized as follows ( 46) : 
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1. Define the problem and specify the alternative solutions. 
2. Break the problem down into a system of components 

at different levels of hierarchies. Each component in a higher 
level of hierarchy encompasses some or all of the components 
in the next lower level. 

3. Construct a pairwise comparison matrix of the relevant 
contributions or impacts of each component on each govern­
ing component (criterion) in the next higher level. In this 
matrix, pairs of elements are compared with respect to a 
criterion in the superior level. The numbers in the cells of 
this matrix represent the superiority (inferiority) of each com­
ponent compared with the others, with respect to their con­
tribution to the governing component. The numbers can be 
based on either subjective judgments or available numerical 
data that measure the performance of the alternatives with 
respect to the criteria under consideration. 

4. Obtain all judgments required to develop the set of mat­
rices in the third step. 

5. Establish the priorities of components at each level of 
hierarchy with respect to the criterion or component in the 
higher level encompassing those components. 

6. Repeat Steps 3 through 5 until the priorities are estab­
lished for all levels of hierarchy. 

7. Vectors of priorities are then weighted by the weight of 
the criteria of each level, and this process is repeated until a 
priority vector for the lowest level of hierarchy (the alternative 
solutions) is obtained. 

8. The final decision or outcome depends on the vector of 
priorities for the lowest level of hierarchy and can be evalu­
ated on the basis of consistency measures. 

AHP in Location Analysis 

The facility location problem can be approached as a mul­
tiobjective decision-making process using AHP. The problem 
can be decomposed to three levels of hierarchy. The first, 
finding the best sites among the candidates for locating the 
facilities, is the focus of the problem. The second level of 
hierarchy consists of the factors or objectives affecting this 
decision. Finally, the third level of hierarchy includes alter­
native sites or combinations of sites. According to AHP, mat­
rices of pairwise comparisons between various candidate sites 
can be established on the basis of individual objectives. The 
matrices allow the analyst to rank the alternative sites ac­
cording to the individual objectives. Then an overall vector 
of priorities (or ranking of alternatives) can be obtained by 
weighting the priorities according to the individual objectives 
by the relative weights of the objectives. Note that a vector 
of priorities for the different objectives can also be obtained 
through construction of a pairwise comparison matrix for the 
objectives themselves. The priorities can then be used as weights 
for the corresponding objectives. Construction of this pairwise 
comparison matrix requires judgment by the decision maker 
or the analyst on the relative importance of the objectives. 
The important issue, however, is that the value judgments 
can be made by comparing the relative merits of only two 
objectives at a time, a much easier task than comparing all 
objectives simultaneously. When these pairwise value judg­
ments are obtained and the comparison matrix is completed, 
the overall weights for all of the objectives can be obtained. 
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Therefore no a priori weights for the objectives need to be 
known and no threshold on the level of achievements of the 
objectives needs to be defined. 

There are three major issues in implementation of a tool 
like AHP in location decision making, in particular when we 
are dealing with multiple facility location. The first is the 
hierarchical structure to be used. In a single-family location 
case, a hierarchical structure like the one mentioned earlier 
can easily be used. However, in a more complex multifacility 
location problem it is not clear that such a structure is the 
best. The second major issue, and perhaps the most impor­
tant, is to generate the set of alternatives to be evaluated 
using AHP. In cases where a single facility is to be located, 
candidate sites can be used as individual alternatives. When 
we are dealing with large networks on which multiple facilities 
must be located, we have a combinatorial problem, and iden­
tification of the alternatives is not a simple task. Construction 
of the pairwise comparison matrices is the third issue. If these 
issues are successfully resolved, AHP will offer tremendous 
advantages in its simplicity of application, its ability to deal 
with qualitative objectives, and its theoretical ability to deal 
simultaneously with as many objectives as desired. 

In this paper, we try to deal with these issues in a simple 
example. Further research is required to address them in a 
more general case, along with development of other mul­
tiobjective approaches that could present similar advantages. 
In the next section we present the implementation of a mul­
tiobjective approach to locating facilities over a small network 
based on AHP. The example, although simple, provides 
useful insights into the multiobjective nature of location 
decisions. 

A Simple Example 

Consider the problem of locating a single facility or two fa­
cilities on the nodes of the network shown in Figure 1. The 
facilities must respond to the demands generated at the nodes 
of the network. The shortest path distance between the nodes 
of the network, along with the demand for service at each 
node and the cost of operation and maintenance of a facility 
located at each of the nodes, is given in Table 1. 

Assume that in this location decision we need to consider 
four different criteria: (a) achievement of lowest operation 
and maintenance costs, (b) coverage of as much demand as 
possible within a critical distance of 10 units, (c) provision of 
service such that the average distance from the located facil­
ities to the demand locations is minimized, and (d) provision 
of service such that the level of service in the worst possible 
case is as good as possible. As mentioned before, consider­
ation of these criteria individually generally results in location 
decisions that are drastically different. In fact, locations that 
might be optimal under one criterion may not even be good 
locations under another. Therefore, we must consider the 
trade-offs among the criteria. All nodes are considered to be 
candidate sites for the location of the facilities. 

First, we explore the results of different approaches to the 
single-facility location problem. Using the individual criteria, 
this simple location problem can be formulated as either a 
cost minimization, a maximum covering, a 1-medlan, or a 
vertex-1 center problem. Table 2 gives the value of each of 
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FIGURE 1 Example network. 

TABLE 1 DISTANCES, DEMANDS, AND COSTS 

Nodes 2 3 4 5 6 7 8 

5 5 12 14 12 15 18 

2 5 4 11 10 12 14 18 

3 5 4 7 9 8 10 14 

4 12 11 7 3 2 3 8 

5 14 10 9 3 5 5 11 

6 12 12 8 2 5 4 6 

7 15 14 10 3 5 4 6 

8 18 18 14 8 11 6 6 

Demands 9 13 6 3 8 5 7 10 

Costs 9 10 13 12 12 8 9 7 

TABLE 2 OBJECTIVE FUNCTION 
EVALUATION 

Locallon Vertex-1 1-Medlan Maximum Cost 

Center Covering 

180 568 28 9 

2 180 520 36 10 

3 140 440 51 13 

4 143 428 39 12 

5 130 489 42 12 

6 156 446 39 8 

7 182 506 39 9 

8 234 664 25 7 

Optimal 

Location 5 4 3 8 
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the individual objectives when the facility is located at each 
of the nodes. The solution of the single-facility location prob­
lem is trivial and can be determined by inspection in this case. 
Table 2 also gives the best location on the basis of the indi­
vidual criteria. 

Note that on the basis of each of these criteria, the optimal 
location of the facility is a different node. It is clear that each 
location, optimal on the basis of an individual objective, may 
not be optimal when all four objectives are considered 
simultaneously. 

We now present the results of an AHP-based approach. 
For this simple problem, the hierarchies can be structured as 
shown in Figure 2. 

The next step is to set up the pairwise comparison matrices 
for the alternative sites on the basis of the individual objec­
tives . The cells of each matrix indicate whether or not the 
site represented by the row is superior or inferior to the site 
represented by the column on the basis of the objective repre­
sented by that matrix . A cell value greater than (less than) 
1.0 indicates that the site represented by the row in the matrix 
is superior (inferior) to the site represented by the column. 
A cell value of 1.0 indicates that the two sites are equivalent 
with respect to that objective. 

In general, to fill the comparison matrices, Saaty ( 46) sug­
gests using values from 1 to 9 in comparing two alternatives. 
The value 1 indicates that the two alternatives are equivalent 
with respect to the criterion under consideration, and the 
value 9 indicates that one alternative has the highest possible 
priority over the other. The diagonal elements of these mat­
rices are all l's , and when the value for Cell (i, j) is deter­
mined, the value for Cell (j, i) is the reciprocal of the value 
for Cell ( i, j). 

An important issue in setting up the comparison matrices 
is consistency in judgment when comparing alternatives. Con­
sistency means that if Alternative i is preferred twice as much 
as Alternative j, and Alternative j is preferred twice as much 
as Alternative k, then Alternative i should be preferred four 
times as much as Alternative k. In many cases in the real 
world enforcing perfect consistency in judgment is not pos­
sible; however, relative consistency is desirable so that the 
judgments do not appear to be random. This is particularly 
true in dealing with qualitative judgments rather than judg­
ments based on quantitative measures. Fortunately, AHP 
provides a measure to determine the overall consistency of 
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Level 3: 2 3 4 5 6 7 8 

Allernatives 

FIGURE 2 Levels of hierarchy for the location problem. 

judgments by means of a consistency ratio. The details of 
calculation of this ratio are given in Saaty ( 46), and a consis­
tency ratio of 0.10 or less is deemed to represent good consis­
tency (a consistent matrix has a consistency ratio of 0). 

To construct the comparison matrices, our preference among 
alternative sites with respect to the individual criterion is based 
on the value of the mathematical objective function that 
represents the criterion under consideration. The criteria we 
are considering in our problem are represented by cost min­
imization, maximum covering, 1-median, and vertex-1 center 
objective functions. Therefore, the level of preference of one 
site over the other with respect to a particular criterion is 
determined by the ratio of the values of the objective function 
that represents that criterion when those sites are chosen for 
locating the facility. For example, when comparing Site 3 with 
Site 1 with respect to the center objective function, we use 
the ratio 180/140 in Cell (3, 1), which indicates that Site 3 is 
preferred 1.286 times as much as Site 1 for this objective, and 
we use the reciprocal of this value (0. 778) in Cell (1, 3). Note 
that we are implicitly assuming that our preference among 
the alternatives is directly proportional to their degree of 
attainment of the objective under consideration. In this case, 
where the objectives are readily quantifiable, such an as­
sumption may be appropriate. However, in a general case 
when we are dealing with nonquantifiable objectives, the pref­
erence structure may be complex, and such an assumption 
cannot be made. In that case, obtaining numerical values for 
the cells of the comparison matrices depends on comparing 
the values of the objectives among the alternatives, which by 
itself is an important task. Even when the objectives are quan­
tifiable, it does not necessarily mean that an alternative with 
twice the objective function value of another alternative will 
be preferred twice as much. These are important issues that 
must be addressed in future research. In any event, this as-

sumption can easily be relaxed by incorporating other pref­
erence structures. The advantage of AHP is that, as long as 
a preference structure is agreed upon by the decision makers, 
it provides an excellent framework for further analysis. 

This approach has the advantage that the comparison mat­
rices are perfectly consistent because all of the cells represent 
the ratios of the objective function values . In cases where the 
criteria are not easily quantifiable or calculation of numerical 
values is difficult, Saaty's general procedure could be used. 
These matrices are shown in Table 3, and the vectors of prior­
ities synthesized on the basis of these comparison matrices 
are shown in Table 4 [details on how the vectors of priorities 
are synthesized are given by Saaty ( 46)]. The underlined cell 
in each column indicates the most attractive alternative ac­
cording to the objective represented by that column. The most 
attractive alternatives identified by AHP on the basis of the 
individual objectives correspond to the optimal locations iden­
tified in Table 2. 

The overall ranking of the alternatives is obtained by mul­
tiplying the priority of each alternative based on each of the 
criteria by the weight of that criterion and summing the results 
for each alternative over all criteria. 

As long as a simple pairwise comparison of alternatives can 
be made, there is no need to know the weights of the different 
criteria a priori. The weights can be determined in the same 
way as the vectors of priorities for individual criteria, by set­
ting up a comparison matrix for the criteria themselves. The 
cells of this matrix determine whether a particular criterion 
is superior or inferior to another and show the preference 
structure among the criteria. 

In this example, if all criteria have the same level of im­
portance, they will have equal weights of 0.25 each, and the 
vector of overall priorities is (0.112, 0.118, 0.138, 0.130, 0.131, 
0.138, 0.125, 0.109). This means that both Nodes 3 and 6 are 
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TABLE 3 COMPARISON MATRICES BASED 
ON DIFFERENT OBJECTIVES 

Nodes 1 2 3 4 5 6 7 8 

1.00 1.00 0.78 0.79 0.72 0.87 1.01 1.30 

2 1.00 1.00 0.78 0.79 0.72 0.86 1.01 1.3.0 

3 1.29 1.29 1.00 1.02 0.93 1.11 1':30 1.67 

4 1.26 1.26 0.98 1.00 0.91 1.09 1.27 1.64 

5 1.39 1.39 1.08 1.10 1.00 1.20 1.40 1.80 

6 1.15 1.15 0.90 0.92 0.83 1.00 1.17 1.50 

7 0.99 0.99 0.77 0.79 0.71 0.86 1.00 1.29 

8 0.77 0.77 0.60 0.61 0.56 0.67 0.78 1.00 

(a) Comparison Based on Cenler Objeclive Funclion 

Nqdes 1 2 3 4 5 6 7 8 

1.00 0.88 0.75 0.73 0.83 0.76 0.86 1.12 

2 1.13 1.00 0.85 0.82 0.94 0.86 0.97 1.28 

3 1.34 1.18 1.00 0.97 1. 11 1.01 1.15 1.51 

4 1.37 1.22 1.03 1.00 1.14 1.04 1.18 1.55 

5 1.20 1.06 0.90 0.88 1.00 0.91 1.04 1.36 

6 1.32 1.17 0.99 0.96 1.10 1.00 1.14 1.49 

7 1.16 1.03 0.87 0.85 0.97 0.88 1.00 1.31 

8 0.89 0.78 0.66 0.65 0.74 0.67 0.76 1.00 

(b) Comparison Based on Median Objective Function 

Nodes1 2 3 4 5 6 7 8 

1.00 0.79 0.55 0.72 0.67 0.72 0.72 1.12 

2 1.29 1.00 0. 71 0.92 0.86 0.92 0.92 1.44 

3 1.82 1.42 1.00 1.31 1.21 1.31 1.31 2.04 

4 1.39 1.08 0.77 1.00 0.93 1.00 1.00 1.56 

5 1.50 1.17 0.82 1.08 1.00 1.08 1.08 1.68 

6 1.39 1.08 0.77 1.00 0.93 1.00 1.00 1.56 

7 1.39 1.08 0.77 1.00 0.93 1.00 1.00 1.56 

8 0.89 0.69 0.49 0.64 0.60 0.64 0.64 1.00 

(c) Comparison Based on Covering Objective Funclion 

Nodes 1 2 3 4 5 6 7 8 

1.00 1.11 1.44 1.33 1.33 0.89 1.00 0.78 

2 0.90 1.00 1.30 1.20 1.20 0.80 0.90 0.70 

3 0.69 0.77 1.00 0.92 0.92 0.62 0.69 0.54 

4 0.75 0.83 1.08 1.00 1.00 0.67 0.75 0.58 

5 o.75 o.e3 1.08 1.00 1.00 o.67 o.75 o:5e 

6 1.13 1.25 1.63 1.50 1.50 1.00 1.13 0.88 

7 1.00 1.11 1.44 1.33 1.33 0.89 1.00 0.78 

8 1.29 1.43 1.86 1.71 1.71 1.14 1.29 1.00 

(d) Comparison Based on Cosl Minimization Objective Function 

TRANSPORTATION RESEA RCH RECORD 1328 

TABLE 4 VECTORS OF PRIORITIES ACCORDING TO 
OBJECTIVES 

Nodes 

2 

3 

4 

5 

6 

7 

8 

Cos I 

0.133 

0.120 

0.092 

0.100 

0.100 

0.150 

0.133 

Objective Function 

Covering 

0.094 

0.120 

J!.Jl! 

0.130 

0.140 

0.130 

0.130 

0.084 

Median 

0.106 

0.120 

0.142 

0.146 

0.128 

0.140 

0.123 

0.094 

Center 

0.113 

0.113 

0.145 

0.142 

0.157 

0.131 

0.112 

0.087 

the preferred sites if all of the criteria are of equal importance. 
However, if the cost considerations are twice as important as 
the other criteria (i.e., have a weight of 0.4 while the other 
three have a weight of 0.2) , the overall priority vector be­
comes (0.116, 0.119, 0.129, 0.124, 0.125 , 0.140, 0.126, 0.121), 
which suggests that Node 6 is the preferred node on the basis 
of this preference among the criteria. Note that this site is 
different from those selected on the basis of consideration of 
the individual objectives. Also note that although Node 6 is 
not the optimal site when we consider the individual objec­
tives, it performs well compared with the other sites; there­
fore, the AHP approach has resulted in a logical choice con­
sidering all of the criteria. 

To see the effects of inconsistency in judgments, we changed 
some of the cells in the comparison matrices and introduced 
some inconsistency in those matrices. However, the changes 
were made only to the extent that the overall consistency ratio 
for the matrices remained under 0.1, so that we still had 
relatively consistent matrices. With these new matrices, the 
priorities of some of the sites changed. However, the pre­
ferred sites remained the same. This suggests that AHP results 
are not sensitive with respect to consistency in judgments, 
and if the comparison matrices are relatively consistent, the 
AHP provides overall results similar to those provided when 
perfect consistency exists. 

The single-facility location problem was an excellent tool 
to show the implementation of AHP . However , when we are 
dealing with multifacility location problems, the task is not 
so easy. In multifacility location problems we are dealing with 
combinatorial problems that may have numerous alternative 
solutions. One must note that AHP is not a tool for generating 
alternative good or optimal solutions; rather, it provides a 
framework for evaluating and ranking alternative solutions 
on the basis of multiple criteria. Therefore, in a multifacility 
location problem, the major issue is how to generate good 
alternative solutions that can later be evaluated using AHP. 

A naive approach to the multifacility location problem can 
be as follows. Assume for the moment that we want to locate 
P facilities. We can first rank all of the individual sites ac­
cording to all of the criteria (as we did in the single-facility 
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location problem); then the P sites with the highest ranks 
could be selected for location of facilities. This method is a 
type of greedy adding heuristic which will result in a solution 
quickly; however, there is no guarantee that we have the best 
possible set of sites. To obtain better results, the alternative 
solutions that are input to AHP must be combinations of P 
out of N sites that perform well with respect to the individual 
criteria. 

To generate good alternative solutions that can be input to 
AHP, we can use single-objective mathematical optimization. 
This can be done in two ways. A simple approach is to find 
a number of optimal and near-optimal sites on the basis of 
the individual objectives. This can easily be achieved by solv­
ing a sequence of uniobjective mathematical programming 
problems. When a number of good solutions based on each 
objective are identified, they are combined in a global set of 
alternatives, which can then be evaluated and ranked using 
AHP as discussed previously. 

For example, assume that we want to locate three facilities 
in a 15-node network using the same criteria as in the single­
facility location problem. We first identify a set of optimal or 
near-optimal alternatives on the basis of the individual cri­
teria. This can be achieved through an iterative process of 
solving the individual optimization problems, recording the 
optimal solution, and forcing it out of the solution space in 
the next iteration. Assume that the following sets of alter­
natives were identified: 

•Cost considerations: {l, 4, 7}, {2, 4, 8}, and {4, 7, 8}; 
•Coverage criterion: {5, 6, 9}, {6, 8, 4}, and {l, 2, 5}; 
•Median criterion: {6, 7, 9}, {2, 4, 8}, and {l, 8, 11}; and 
•Center criterion: {5, 6, 8}, {7, 8, 11}, and {4, 8, 9}. 

Then the global set of alternatives to be considered would be 
the combination of all 12 alternative sets of sites. 

A more involved approach is to identify the individual sets 
of alternatives as discussed. However, to find the global set 
of alternatives, consider all of the sites providing the individ­
ual alternatives and examine all possible combinations of these 
sites. For example, in the previous problem, the sites provid­
ing the individual alternatives are {l, 2, 4, 5, 6, 7, 8, 9, 11}. 
We can therefore consider all possible combinations of three 
of these sites. This results in 84 alternatives. This approach 
identifies many more alternatives, which in turn results in a 
more thorough evaluation of the alternative space, but if the 
set of sites is large, the number of alternatives to be considered 
becomes impractical. This approach is particularly useful when 
a relatively small number of sites provide all individual al­
ternatives. 

To do a preliminary evaluation of these approaches, we 
considered a two-facility location problem on the network of 
Figure 2, with all data and criteria being the same. 

On the basis of the vector of overall priorities, the naive 
approach suggests that the two highest-ranked sites are Nodes 
6 and 3 if all criteria are of equal importance. To implement 
the first alternative generation approach, we identified several 
alternatives under each criterion. These alternatives are as 
follows: 

•Cost: {l, 6}, {l, 7}, {2, 6}, {2, 7}, and {6, 7}; 
•Coverage: {l, 5}, {l, 6}, {1, 7}, {2, 5}, {2, 6}, {2, 7}, {3, 5}, 

{3, 6}, and {3, 7}; 

•Median: {l, 7}, {2, 6}, {2, 7}, and {3, 7}; and 
•Center: {1, 6}, {l, 7}, {2, 6}, {2, 7}, {3, 6}, and {3, 7} . 
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This results in 10 distinct alternatives, which were evaluated 
using AHP. On the basis of equal preference among the cri­
teria, Nodes 2 and 6 were identified as the best locations. 

To implement the second alternative generation approach, 
we used the set of sites providing all of the preceding alter­
natives. This set is {l, 2, 3, 5, 6, 7}. All combinations of two 
sites out of these six were identified and considered as possible 
alternatives. This resulted in 15 alternatives, which were ex­
amined using AHP. Again on the basis of equal preference 
among criteria, Nodes 2 and 6 were the best sites. Nodes 2 
and 6 are one set of the optimal locations based on center 
and covering objectives. The optimal locations based on me­
dian and cost objectives are {2, 7} and {1, 6} or {6, 7}, 
respectively. 

Although this problem is a small one and does not fully 
serve the purpose of evaluating these approaches, it provides 
useful insights into the applicability of the alternative gen­
eration approaches and the AHP. The power of AHP in mul­
ticriteria decision making is further realized where the pres­
ence of qualitative objectives complicates the application of 
traditional multiobjective optimization techniques, such as 
weighting and constraint methods. 

CONCLUSIONS AND DIRECTIONS FOR FUTURE 
RESEARCH 

In this paper we presented an approach to dealing with lo­
cation decisions in a multiobjective planning framework. The 
approach is based on AHP, which is a useful tool for multi­
criteria decision making. The approach was implemented in 
the context of a single- and a two-facility location problem. 
The example, although simple, provides useful insights into 
the multiobjective nature of location decisions and clearly 
shows that when location decisions are made in view of a 
single objective, the selected sites are likely to be inferior with 
respect to other objectives. In some cases, as the example 
indicates, the preferred location when considering all objec­
tives may not even be the optimal location when considering 
any of those objectives individually. 

The paper indicates that AHP is a promising approach in 
dealing with location decisions in a multiobjective planning 
framework. We presented a brief sensitivity analysis of the 
AHP results with respect to the numerical values representing 
the comparative judgments among alternative sites (the cells 
of the comparison matrices). More detailed sensitivity anal­
yses and exploration of methods of generating these numerical 
values other than those presented in this paper are important 
areas of research. In particular, the implicit assumption re­
garding the preference structure among the various criteria 
must be examined, and the sensitivity of AHP results with 
respect to changes in this preference structure should be 
analyzed. 

Alternative generation techniques that could provide better 
results should also be explored. The results of this approach 
should be further tested on a larger network and in a multi­
facility location problem context. These results should also 
be compared with those obtained from implementation of 
other multiobjective optimization techniques, such as weight-
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ing and bounding schemes. Finally, the results of this paper 
clearly indicate the multiobjective nature of location deci­
sions. Development of other tools enabling analysts to ap­
proach location problems from the point of view of several 
simultaneous objectives is yet another promising research area. 
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Forecasting Short-Term Demand for 
Empty Containers: A Case Study 

MICHEL GENDREAU, TEODOR GABRIEL CRAINIC, PIERRE DEJAX, AND 

HELENE STEFFAN 

Issues related to the modeling and estimation of short-term de­
mand for empty containers for subsequent movements on inter­
national shipping lines are explored. The study is part of a larger 
research effort directed toward the development of models, meth­
ods, and integrated planning tools to address typical problems 
related to the management of the land distribution and trans­
portation of containers . The study is based on actual operational 
dara coming from a large international maritime shipping com­
pany. The information and the extensive manipulation required 
to obtain a suitable data set for statistical analyses are described , 
including analyses of both daily and weekly demand for various 
combinations of container category and customer aggregation. 
The difficulties and requirements associated with forecasting short­
term demand for containers are discussed . 

A study aimed at the modeling and estimation of short-term 
demand for empty containers within the land networks of 
international shipping lines is presented. The study is part of 
a larger research effort directed toward the development of 
models, methods, and integrated planning tools to address 
typical problems encountered by international shipping com­
panies, which operate large-scale maritime and land net­
works, in the management of their container fleet and their 
land distribution and transportation operations. 

The planning of these operations is an extremely complex 
activity, especially if the aim is to simultaneously optimize the 
cost and service aspects of the company's operations in a 
competitive environment. Crainic et al. (1) describe the var­
ious operations and planning issues involved and present the 
methodological framework that we propose to address them. 
To facilitate understanding of the context of the demand study, 
we present a brief overview of operations and the proposed 
methodology. 

Arriving ships carry containers, which come in several sizes 
and types and are loaded with imported goods, and empty 
containers returning from previous exports. Loaded con­
tainers are moved to their final destinations (import cus­
tomers), and the empty containers are dispatched wherever 
they are needed for subsequent exports. Once unloaded, empty 
containers at the customer's site return either to the port of 

M. Gendreau, Centre de recherche sur !es transports, Universite de 
Montreal , Montreal, Canada. T. G. Crainic, Centre de recherche sur 
Jes transports, Universite de Montreal and Departement des sciences 
administratives, Universite du Quebec a Montreal, Montreal, Can­
ada. P. Dejax, Laboratoire Economique, Industriel et Social, Ecole 
Centrale Paris, Chatenay-Malabry, France. H. Steffan, Centre de 
recherche sur les transports, Universite de Montreal , Montreal, Can­
ada and Laboratoire Economique, lndustriel et Social , Ecole Cen­
trale Paris , Chatenay-Malabry , France. 

ongm or to another depot . On the other hand, exporting 
customers require empty containers . Once loaded , containers 
are transported to the port and loaded on ships together with 
empty containers sent abroad to cope with the worldwide 
supply-demand imbalance. Note the importance of empty­
container movements. First, every commercial (profitable) 
movement of a loaded container generates, almost automat­
ically, a nonprofitable empty-container movement . Second, 
significant regional imbalances between imports and exports 
result in empty containers being moved over relatively long 
distances, usually directly between depots. Thus, up to 40 
percent of land container traffic is made up of movements of 
empty containers , which represent a significant portion of the 
total system cost (2,3). 

The methodology proposed to improve the management of 
empty-container movements is based on an integrated mul­
tilevel approach, which reflects the observed hierarchy in the 
decision process and the flow of information. Its first main 
component is a strategic-tactical model , formulated as a mul­
timode, multicommodity location-distribution problem with 
interdepot balancing requirements [(4); see Crainic et al. (1) 
for references concerning algorithms developed for this model]. 
The output of this model consists of the set of depots to be 
used for the duration of the planning horizon (several months 
to a year), the customer-to-depot allocation rules, and the 
main interdepot empty-container balancing flows. 

The second component of our method corresponds to the 
level of the operational (day-to-day) planning of the com­
pany's activities . At this level, demand must be satisfied and 
the most effective routes and means of transportation must 
be selected and used. Two models are used: an empty­
container allocation model and an empty- and loaded­
container routing model. The allocation model aims to de­
termine the "best" distribution of empty containers that sat­
isfies known and forecast customer demands at lowest total 
system cost ; it is formulated as a stochastic, dynamic network 
model (5). The routing model strives to minimize the overall 
transportation cost of the loaded and empty containers from 
their origin to their destination while ensuring on-time deliv­
ery (6). 

Demand data , especially short-term forecasts , are essential 
for these operational models because, besides regular cus­
tomers with sufficiently well-known behavior (and possible 
long-term contracts), a significant part of the total service 
requests come from irregular customers, who order rarely, or 
at irregular intervals , or both. Yet, to our knowledge, there 
does not exist any model with which short-term (daily or 
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weekly) container demand can be estimated. Hence, we have 
initiated an empirical investigation aimed at determining pos­
sible formulas for the average demand and the associated 
probability distributions . Ultimately, we look for models that 
may help forecast demand by container type and geographical 
zone, for a very short horizon. This paper gives an account 
of the first phase of this study, which was dedicated to the 
exploration of the available information, the construction of 
a reliable data set, and its statistical analysis. The plan of the 
paper parallels this sequence. 

AVAILABLE DATA 

The initial data available for this study come from a company 
operating worldwide maritime shipping lines to and from some 
20 major European ports while servicing customers through­
out most of Western Europe. The data correspond to the land 
distribution and transportation operations of the company for 
1986. We concentrate on a network covering France, parts of 
Germany (corresponding to the former Federal Republic), 
the Netherlands, Belgium, and Luxemburg. This area cor­
responds to about 80 percent of the total container movements 
the company performed in Europe in that particular year. 

The 224,374 records of the data file stand for as many land 
movements of one or several loaded or empty containers. 
Among the various pieces of information recorded for each 
movement, the most significant for the demand study are the 
following: 

• Transportation mode identifies the actual mode used for 
transportation and the type of movement. The two main trans­
portation means are private trucking and railways, including 
multimodal truck-rail combinations. Movements may be im­
port or export, loaded or empty, and commercial or technical 
(balancing flows, movements of damaged or rented con­
tainers, etc.). 

• Commercial mode specifies the type of contract between 
company and customer. Two modes are prevalent: carrier 
haulage (70 percent of the performed movements), in which 
the company manages and pays for the transportation of the 
containers; and merchant haulage (about 20 percent of the 
performed movements), in which the customer is entirely in 
charge of moving the containers and only the loaded move­
ments are registered (with zero cost) in the company's records. 
The remaining traffic moves under mixed mode agreements, 
in which the company and the customer are each responsible 
for a part of the trip. 

• The container category used for a given movement is 
identified by a combination of size and type characteristics. 
In 1986, the company used containers of 20 different cate­
gories (see Table 1) . Note that, with the exception of the 
"bulk" and 9m3 containers, the company used exclusively 20' 
and 40' containers (in Europe, a truck is 20' or 40' long, 
whereas a rail car measures 60') . Distinctions among these 
containers are then induced by the particular usage (shipping 
line or operational characteristics) they are intended for. 

Several manipulations of this initial information had to be 
performed to obtain a data set suitable for demand analyses 
(7). After cleaning up the file, we identified the origins and 

TABLE 1 DESCRIPTION OF CONTAINER 
CATEGORIES 

-
Size Type Designation Panicularities 

05 00 9m' containers one 20' = 3 9m3 
20 00 20' general All heights 
22 00 20' general 8'6 height (Zeebruge) 
43 00 40' general 
20 51 20' open top 
40 51 40' open top 
20 60 20' flat 
45 00 40' flat 
20 40 20' isotherm Not allowed on French Caribbean lines 
42 40 40' isotherm Not allowed on F"'nch Caribbel(I lines 
22 49 20' isotherm Dedicated to French Caribbean lines 
42 49 40' isotherm. Dedicated to F"'nch Caribbean lines 
22 32 20' refrigerated 
43 32 40' refrigented 
20 72 20' tanker 
41 CT 40' tanker 
49 RW ACLtrailer AC!.. shipping line 
VR bulk 
NU empty trailer Truck movement without a container 
22 80 20' special bulk 
22 02 20' open side 
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destinations of movements as customers or depots. We then 
determined a customer (depot) zone for each customer (de­
pot) by selecting some 300 points where container traffic is 
most intense and building zones around these points that are 
consistent both geographically and commercially. Thus, be­
cause no aggregation of records has been performed, we en­
sure that, in most cases, a meaningful number of occurrences 
(observations) for each possible movement type are available 
for statistical analyses. The next step consists in estimating 
the daily supply of and demand for empty containers, for each 
customer zone and container category. 

Two approaches may be used to estimate the supply of and 
demand for empty containers. The first approach counts the 
empty containers that arrive (the empty customer demand) 
at and leave (the empty customer supply) each customer zone. 
This approach cannot be applied to movements performed 
under the merchant haulage commercial arrangement. The 
second method is based on the fact that each time a customer 
ships a loaded container, the company first had to deliver an 
empty one and, symmetrically, each loaded container deliv­
ered to a customer has to be picked up later on and moved 
away empty. Thus, the second approach counts the loaded 
containers that leave (the empty customer demand) and arrive 
(the empty customer supply) at each customer site. 

Table 2 gives the results of the two methods for our data 
set. Both methods yield approximately the same figures. Yet, 
the total supply-demand is higher when the loaded method is 
used, which indicates that not all empty movements have been 
originally recorded in the company's data base. Consequently, 
we based our demand study on the daily estimates obtained 
by using this approach. 

There are two sources of potential difficulties in the analysis 
of data and the interpretation of results . First, as emphasized 
by the yearly figures given in Table 2, not all container types 
are equally used. In fact, some are rarely called for. Conse­
quently, 1 year's data may not be sufficient to obtain statis­
tically significant results for some container types. Second, 
the available data do not reflect demand but rather the actual 
operations: the performed movements of loaded containers 
and some of the empty ones. Hence, the date of the request 
for a given movement is not recorded in the available data, 
and we miss the refused demand, as well as the container 
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TABLE 2 SUPPLY-DEMAND EVALUATIONS 

Cw.Tier Haulage and Mixed Mode Merchant Haulage 

Category Empty Loaded Loaded 
Demand Supply Supply Demand Demand Supply 

0500 29 8 8 27 12 505 
2000 14183 6414 11361 18302 4674 13478 
2040 410 2478 2920 416 628 193 
2051 1004 482 520 1024 19 478 
2060 223 90 93 242 80 439 
2072 351 438 440 352 303 149 
2200 3102 2732 3463 2931 549 1803 
2232 1066 836 855 1080 378 1502 
2249 6229 4568 6734 7181 14446 4320 
2280 9 0 0 0 0 0 
4051 1029 174 208 1013 10 157 
41CT 3 11 11 3 1 0 
4240 120 38 47 114 18 5 
4249 1564 974 1346 1649 1950 746 
4300 6465 2666 4117 8132 1137 2589 
4332 1214 876 1015 1348 31 303 
4500 581 56 36 560 7 1021 

49RW 115 40 43 117 0 0 

substitutions the company had to make to satisfy demand 
when the particular container category requested was not 
available. Furthermore, it has not been possible to establish 
exactly the meaning of the temporal information recorded 
with each movement. (At that time, the company was con­
tracting out all its computer-related operations and was not 
using or validating in detail its past operational data.) On the 
basis of discussions with the company's management, we as­
sumed that it indicates the date when the movement took 
place. This hypothesis is corroborated by the statistical anal­
yses we performed. However, it may also indicate, at least 
for some movements, the date when the operation was re­
corded, thus introducing a certain level of uncertainty in our 
analysis. 

In spite of these problems, it was decided to perform the 
analyses on the movement data, interpreting movements as 
demand, because this is the only information available. Fur­
thermore, this is the type of data likely to continue to be 
available, because the planned management information sys­
tem of the company was still meant to record the actual per­
formed movements. 

ST A TIS TI CAL ANALYSES 

In spite of the aforementioned uncertainties regarding the 
exact timing of customer requests for empty containers, sta­
tistical analyses were performed on the final demand data set. 
They included analyses of both daily and weekly demand for 
various combinations of container categories (also called 
"product" in this section) and customer aggregation. 

Daily Demand Analyses 

These analyses were motivated by the fact that, in many fields 
of freight transportation, demand follows weekly cyclic pat­
terns ( 8). More specifically, we were interested in determining 
whether a model of the following form could be fitted to the 
observed data: 
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where 

D~w = demand for Product p on Day d of Week w, 

Df., = demand of Product p in Week w, and 
~ = day-of-the-week adjustment factor for Product p 

and Day d. 

Plotting demands for every day of the week over the 52 
weeks of the year did not yield any clear pattern, whether 
aggregate demands for a product or demands for a specific 
container category-customer zone combination were consid­
ered, apart from the fact that observed values for Saturdays 
and Sundays were much lower. 

To further investigate the impact of the day of the week 
on daily demands, linear regressions with dummy variables 
associated with the days of the week were performed on the 
data streams with the largest observed values (i.e., the ag­
gregate demands per product and the demands for 24 product­
zone pairs). In these regressions, the Saturday and Sunday 
values of each week were added together, yielding six obser­
vations per week for each data stream. The general form of 
the resulting regression equations was 

where Dis the daily demand for a given product or product­
zone pair; X 1 is 1 if the demand occurs on the ith day of the 
week and 0 otherwise; and a, b, c, d, e andf are the regression 
coefficients to be estimated. 

The results of these regressions are summarized in Tables 
3 and 4. For Table 3, it must be pointed out that for Product 
0500 none of the independent variables X, was sufficiently 
correlated with the dependent variable D to pass the tolerance 
tests of the stepwise regression method; thus in this case the 
regression is not significant. For the other products, the 
F-ratios indicate that the regressions are globally significant 
(the last column of the table gives the probability that the 
regression as a whole is not significant), but the R2 coeffi­
cients, which correspond to the proportion of the total vari­
ation explained by the model, are not large. For the product­
zone pairs (Table 4), though almost all regressions can be 
considered as significant, the R2 coefficients are even smaller, 
which indicates a fairly poor fit. 

TABLE 3 REGRESSION 
RESULTS ON 
UNNORMALIZED 
AGGREGATE DATA 

Category R' F·rado Probability 

0500 
2000 41% 32.49 0.0000 
2040 10% 7.18 0.0000 
2051 4% 13.13 0.0003 
2060 1% 4.63 0.0323 
2072 14% 9.87 0.0000 
2200 29% 24.86 0.0000 
2232 9% 15.43 0.0000 
2249 55% 76.54 0.0000 
4051 16% 12.05 0.0000 
4240 2% 7.21 0.0076 
4249 39% 38.57 0.0000 
4300 47% 53.61 0.0000 
4332 20% 19.02 0.0000 
4500 11% 7.89 0.0000 

49RW 7% 7.70 0.0001 
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TABLE 4 REGRESSION 
RESULTS ON UNNORMALIZED 
DISAGGREGATE DATA 

Category Zone Rz F-rario Probability 

2000 105 8% 5.54 0.0001 
2000 107 13% 9.32 0.0000 
2000 140 9% 6.47 0.0001 
2000 154 6% 3.55 0.0039 
2000 155 6% 3.81 0.0023 
2000 210 8% 5.12 0.0002 
2000 220 4% 2.27 0.0472 
2000 222 4% 2.80 0.0268 
2000 224 6% 3.85 0.0022 
2000 237 17% 12.54 0.0000 
2000 239 7% 4.84 0.0003 
2232 208 12% 7.80 0.0000 
2249 9 2% 1.60 0.1753 
2249 140 23% 17.64 0.0000 
2249 172 17% 12.49 0.0000 
2249 192 8% 5.34 0.0001 
2249 237 20% 15.27 0.0000 
2249 274 33% 29.04 0.0000 
2249 275 11% 7.59 0.0000 
4300 107 7% 4.84 0.0003 
4300 140 15% 10.69 0.0000 
4300 208 21% 16.32 0.0000 
4300 210 13% 9.13 0.0000 
4300 239 2% 0.93 0.4586 

Obviously, seasonal patterns could occur; if such was the 
case, they would probably be responsible for the large amount 
of unexplained variation. To account for such patterns, new 
data were created by dividing daily demands by weekly de­
mands (the new observations thus represent the proportion 
of weekly demand taking place on a given day). The corre­
sponding regression equation is then 

where Dw is the weekly demand and D, X 1 ••• , X 4 are 
defined as before. (One independent variable had to be elim­
inated, because the observed values for every week now sum 
to 1.) 

The results of these regressions for the global demands per 
product are given in Table 5. Surprisingly, the normalization 
of daily demands does not produce much larger R2 values 
overall, and there are now two container categories for which 
the regressions are not significant (0500 and 4240). 

TABLE 5 REGRESSION 
RESULTS ON 
NORMALIZED 
AGGREGATE DATA 

Category Rz F-ratio Probability 

0500 
2000 42% 43.66 0.0000 
2040 ' 11% 7.42 0.0000 
2051 16% 11.86 0.0000 
2060 4% 5.89 0.0031 
2072 13% 9.32 0.0000 
2200 33% 29.99 0.0000 
2232 17% 12.29 0.0000 
2249 54% 73.41 0.0000 
4051 15% 18.58 0.0000 
4240 
4249 39% 39.84 0.0000 
4300 50% 61.46 0.0000 
4332 34% 31.30 0.0000 
4500 12% 8.65 0.0000 

49RW 8% 13.06 0.0000 
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It was pointed out earlier that demands on Saturdays and 
Sundays are, not unexpectedly, much lower. Because this 
could have had an impact on the previous analyses, it was 
decided to discard these observations and to perform a new 
series of regressions similar to the first one for the global 
demands per container category (i.e., with unnormalized val­
ues). These regressions yielded much lower R2 coefficients 
(for instance, for Product 2000 the R2 goes down from 41 to 
18 percent and for Product 2249 from 55 to 17 percent). This 
confirmed that, apart from the difference between working 
days and weekends, the day-of-the-week effect is not impor­
tant. This led us to abandon the model initially proposed and 
to focus our attention on weekly demands. 

Weekly Demand Analyses 

Whereas our analyses of daily demands were aimed at the 
identification of repetitive cyclic patterns, a different ap­
proach had to be used for weekly demands. For one thing, 
the available data (1 year) are clearly insufficient to provide 
any insight into possible seasonal patterns in any of the data 
streams. Furthermore, preliminary analyses of the aggregate 
demands per container category indicated that, if seasonal 
patterns were indeed present, these would be different from 
one product to another, thus making it useless to try to identify 
a general pattern for all categories. On the other hand, the 
observed variations in the demands may simply correspond 
to plain randomness in the underlying processes. To test this 
hypothesis, we first tried to fit normal and Poisson distribu­
tions to the demands per container category. The parameters 
used for the postulated distributions were the sample mean 
and standard deviation for the normal and sample mean for 
the Poisson. The goodness-of-fit test was the Kolmogorov­
Smirnov test, which compares the observed cumulative distri­
bution with the postulated cumulative distribution on the basis 
of the most extreme absolute difference (MEAD) between 
them. In fact, in this test, the MEAD is transformed into a 
standard normal statistic (Zvalue), from which the probability 
that the observed data follow the postulated distribution can 
be derived. 

The results of these tests (see Tables 6 and 7) indicate that 
the normal distribution provides a good fit for four products 
(2000, 2200, 2249, and 4300) and a reasonable fit for two 
(2072 and 4051), whereas the demands for Container Cate­
gories 0500 and 4249 are approximately Poisson. It is inter­
esting to note that the four container categories for which a 
good fit was obtained with the normal distribution are those 
with the largest sample means; there is thus a high level of 
aggregation of individual demands for these products and, 
therefore, this result could be expected. 

The Kolmogorov-Smirnov test considers all observations as 
a static sample, neglecting any serial autocorrelation within 
the data streams. This is important because the presence of 
significant autocorrelations would invalidate the assumption 
of plain randomness. When we computed the autocorrelations 
and the partial autocorrelations for the 16 series, we found 
that there were no significant autocorrelations for 9 (Products 
2000, 2051, 2060, 2072, 2232, 2249, 4051, 4240, and 49RW). 
It is thus possible to conclude that the series corresponding 
to Container Categories 2000, 2072, 2249, and 4051 are indeed 



102 

TABLE 6 KOLMOGOROV-SMIRNOV TEST: 
NORMAL DISTRIBUTION 

Category Mean 
Standard MEAD 

Kolmogorov 
Probability Deviation Smirnov Z 

0500 0.53 1.03 0.364 2.597 
2000 354.10 58.30 0.053 0.381 
2040 8.08 5.11 0.153 1.094 
2051 19.75 11.46 0.159 1.136 
2060 4.51 4.91 0.205 1.467 
2072 6.84 3.82 0.106 0.760 
2200 57.18 20.90 0.066 0.469 
2232 20.84 7.83 0.139 0.993 
2249 138.69 23.12 0.076 0.541 
4051 19.67 7.50 0.099 0.709 
4240 2.18 2.46 0.215 1.534 
4249 32.08 8.01 0.143 1.019 
4300 158.27 27.57 0.069 0.494 
4332 26.18 13.79 0.176 1.255 
4500 10.82 6.29 0.116 0.830 

49RW 2.27 2.59 0.218 1.556 

TABLE 7 KOLMOGOROV-SMIRNOV 
TEST: POISSON DISTRIBUTION . 

0.000 
0.999 
0.182 
0.151 
0.027 
0.610 
0.980 
0.277 
0.932 
0.696 
O.ot8 
0.250 
0.968 
0.086 
0.496 
0.016 

Category Mean MEAD 
Kolmogorov 

Probability Smimov Z 

0500 0.53 O.D78 0.555 0.918 
2000 354.10 0.290 2.072 0.000 
2040 8.08 0.136 0.973 0.300 
2051 19.75 0.231 1.648 0.009 
2060 4.51 0.253 1.808 0.003 
2072 6.84 0.143 1.022 0.247 
2200 57.18 0.263 1.878 0.002 
2232 20.84 0.182 1.298 0.069 
2249 138.69 0.186 1.330 0.058 
4051 19.67 0.168 1.203 0.111 
4240 2.18 0.169 1.207 0.108 
4249 32.08 O.D78 0.558 0.915 
4300 158.27 0.226 1.617 0.011 
4332 26.18 0.358 2.569 0.000 
4500 10.82 0.198 1.414 0.037 

49RW 2.27 0.193 1.376 0.045 

"white noise" (i.e., sequences of independent identically dis­
tributed normal random variables). 

Further analysis was required for the seven other container 
categories. This was done by using the well-known Box­
Jenkins method, which allows characterization of sequential 
dependencies in time series through autoregressive integrated 
moving average (ARIMA) models (9). For two of the con­
tainer categories (2040 and 4300), it was impossible to identify 
satisfactory models. Models were identified for the five re­
maining products, but they all displayed a high residual variance­
to-mean ratio, which would make them almost useless in prac­
tice for predictive purposes (7) . 

We also applied the Box-Jenkins method to the disaggre­
gate series (i.e., the series for the container category­
customer zone pairs). For practical reasons, this analysis was 
restricted to the 24 pairs with annual demand larger than 300 
containers. For these disaggregate series, the Box-Jenkins 
method yielded the following results (7): 

•For 10 series, no ARIMA model could be identified. 
• Four series displayed no significant autocorrelations, and 

it was possible to fit a normal distribution for three of them 
and a Poisson for the other . 

• ARIMA models were identified and fitted for the other 
10 series; however, these models were quite different from 
one another and, in most cases, the residual variances were 
large. 
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Overall, the results obtained for the disaggregate series 
confirm what could be suspected after the analysis of the 
aggregate series: the processes underlying the demand for 
empty containers are complex and their combined effect can­
not be easily characterized in statistical terms, except when 
the level of aggregation is very high (that would be the case 
in the global demands for Products 2000, 2072, 2249, and 
4051). 

Discussion of Results 

Several general remarks are in order. First, with only one 
year of data, it is not possible to detect any overall trend in 
the demands or to identify any seasonal patterns. Second, 
container categories with low traffic display high coefficients 
of variation, even for the weekly demands. This may suggest 
the use of different probability distributions, such as the neg­
ative binomial or the gamma, to represent the demand in 
these cases. Third, some external factors have an important 
effect on observed demands. For one thing, demands for emp­
ties are certainly driven to some extent by ship schedules, 
because a request for a container probably occurs a few days 
before the departure date of the ship on which it will sail. 
With regard to daily variations in demand, legal holidays and 
"traditional" vacation periods (such as most of July and Au­
gust in most of Western Europe) must be taken into account. 
When we plotted the daily demands, we were easily able to 
pick up the dates of all major holidays on the graphs: in each 
case, there was a significant dip in demand. Given the large 
number of such holidays in the countries covered by the study, 
this in itself may have been sufficient to throw off the time 
series analyses. 

CONCLUSIONS 

The objective of the empirical study described in this paper 
was to gain some insight into the short-term demand process 
for empty containers and, if possible, to derive demand fore­
casting models. 

We were successful in constructing a data set on demand 
for empties by using recorded information on loaded con­
tainer movements. This data set, though not perfect, was 
adequate to allow for statistical analyses of demand. 

The analyses indicated that predicting short-term demand 
for empty containers is extremely difficult . This confirms the 
conclusions of similar studies performed for the rail mode 
(10,11). However, when traffic is consistently large, we were 
able to fit probability distributions for the demand of specific 
container categories. The distributions can certainly be di­
rectly used in short-term planning models. 

The situation is different for container categories with low 
traffic. For them, the available data were not sufficient to 
estimate distributions by using straightforward statistical tech­
niques. Good predictions require more than 1 year of data , 
and all elements that may significantly affect the demand 
process in the specific case under study must be taken into 
account: ship schedules, holidays, vacations, substitution rules, 
and so forth. Note, however, that the lack ofreliable demand 
distributions for these container categories is not a critical 
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issue in short-term planning. This is because conservative es­
timates of buffer stocks at depots can be derived from the 
means and variances of observed demand. Moreover, given 
the low level of demands (and stocks) for these containers, 
the inventory costs associated with overestimating demand 
form a small portion of total system costs. 
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