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Computational Characteristics of a 
Numerical Model for Series of 
Waterway Queues 

CHIEN-HUNG WEI, MELODY D. M. DAI, AND PAUL M. SCHONFELD 

A numerical method has been developed for estimating delays 
n conge red waterway represented by series of GI /1 queues 

(i.e .. with generally distributed a.rrival and service times and one 
chamber per lock). It is based on a metamodeling approach that 
develops simple formulas to approximate the re ult of imulation 
models. The fun ctional form of the metamodels is derived from 
queueing theory , whereas their coefficients are stati tically esti
mated from simulatio n resul.ts. The al.gorithm cans along a water
way and equentially estimates at each lock the arriva l di rribu 
tion ·, departure distributions , and delays. It can be applied to 
systems with two-way traffic through common t idirectional serv
ers a. well a · to one-way traffic systems. omputational resu lts 
are presented to illu trnte the speed and convergence propertie 
of the algori thm ·ind to investigate some of its variants. The 
algo rithm works satisfactorily and flexibly with different conver
gence criteria and scanning processes. For an illustrative 20-lock 
system, parameter estimates converge with five iterations and less 
than 3 sec of CPU tim e to differences lower th an 0.1 percent 
between successive iterations. The computation time increases 
only linea rly with the number of locks in the sy tern, thus allowing 
the analysis of very large systems of interdependent queues. 

Inl and waterway transportation is important in the United 
States and elsewhere, especially for heavy or bulky commod
ities, since it is inexpensive, energy efficient, and safe . Most 
U .S. waterways consist of stepped navigable pools formed by 
dams across natural rivers. The lock structures used to raise 
or lowe r vessels between adj acent pools constitute the major 
bottleneck · in the waterway network (1) and generate exten
sive queues. Some locks have only one chamber, whereas 
others may have two parallel chambers whose characteristics 
may differ. The service time distributions at locks depend 
heavily on chamber ize and tow size distributions . The lock 
service time distributions would be affected by the chamber 
assignmen t discipline at locks with two dissimil ar chambers . 

The waterway locks constitute a series of queueing stations. 
In queueing terms, locks are the servers and tows are cus
tomers waiting to be served by locks. Tows from both direc
tions , upstream and downstream, share the same lock servers, 
whereas in most other queueing systems servers are exclu
sive ly one-direcl'ional. Hence, the term "two-way traffic op
erations" characterizes the lock system analyzed la te r . 

Arrival and service time distribution at locks are fa irly 
complex. Carroll et al. (2) and Desai (3) found that serv ice 
times are not exponentially distributed, and arrivals are not 
Poisson distributed . Other standard distributions have been 
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tested for the present study without consistent success . Thus , 
empirical distributions (specified for 50 intervals) are used 
here for simulation, whereas general tabular distributions, 
described usually only by their means and variances, are used 
for queueing models. Although locks with a single chamber 
may be modeled as G/G/l queueing systems (i .e., general 
arrival/general service times/1 server per station), locks with 
two parallel chambers may not be treated simply as G/G/2 
queueing systems unless these chambers are identical. 

Considerable interdependence may exist among locks in a 
series. The departure distributions differ from the arrival dis
tributions since the service time distributions change the tow 
headways . Departures from one lock usually affect arrivals 
at the next lock. Interdependence among locks increases the 
difficulty in estimating systemwide delays since the inter
arrival time distributions from adjacent locks must be iden
tified at each lock. Two-way traffic operation through com
mon servers complicates the interdependence of lock delays 
and precludes the use of some otherwise interesting queueing 
models. 

Random failures (called stalls) contribute significantly to 
the difficulLies in estimating de lay . Stalls, which interrupt 
lock operntions and rhe reby increase delays, are relatively 
rare compared with other events and difficult to predict. Thus, 
Kelejian's efforts to model stall frequencies and durations 
have not yet yielded strong results despite the rigorous sta
tistical methods employed ( 4). 

The following special problems are encountered in esti
mating del ays of waterway queues: 

1. Arrival and service time distributions are too complex 
for analytic solutions and do not match known statistical 
distributions. 

2. Parallel chambers are not identical. 
3. Service time distributions are affected by the chamber 

assignment discipline. 
4 . Considerable interdependence exists among a series of 

locks . 
5. Two-way traffic operates through bidirectional cham

bers. 
6. Arrival distributions depend on distances and speed dis

tributions between locks, as well as departures from adjacent 
locks. 

7. Stalls increase the means and variances of delays. 

Delay estimation for a realistic lock queueing system has 
been undertaken by D ai and chonfeld (5,6,7) using several 
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approaches, including queueing theory, simulation , and nu
merical methods. Their simulation model deals with all seven 
problems listed and is efficient for analyzing particular system 
configurations. However, when large numbers of system al
ternatives must be evaluated for investment scheduling, a 
much faster numerical method, which approximates the re
sults of simulations, becomes preferable. The primary pur
pose of this paper is to assess the computational characteristics 
of the numerical method developed for thi role. In particular, 
the number of iterations and the computation time required 
to reach convergence using various criteria and scanning 
procedures are investigated. The effects of system size (i.e., 
number of locks) on computational requirements are also 
examined. 

LITERATURE REVIEW 

The available analytic solutions for estimating delays in G/G/1 
queues are inadequate . Kleinrock (8) suggested an approxi
mation solution for a G/G/l queue with heavy traffic, whid1 
is a useful upper bound for average waiting times in G/G/1 
queues. Bertsimas (9) derived an exact solution for mixed 
generalized Erlang distributed arrivals and service times. 
However, without a departure function this result is difficult 
to extend to a series of locks. 

Exact solutions for networks of queues are still limited to 
Markovian networks. For more general networks of queues, 
approximation methods are employed by Whitt (10) and 
Albin (11) for system performance analysis. The underlying 
concept is to decompose the network into individual queues 
that are analyzed independently and then recombine the re
sults. Their efforts are valuable but employ unreasonable 
coefficients of variation (standard deviation divided by mean) 
and are not applicable to bidirectional servers. 

System simulation models to analyze lock delays and tow 
travel times were developed by Howe (12) and Carroll and 
Bronzini (13). These two models, which did not account for 
stalls, required considerable data and computer time. How
ever, simulation models can, in principle, represent the com
plexities of traffic on waterway networks much better than 
analytic queueing models. 

A new waterway simulation model was developed by Dai 
and Schonfeld (5). This model accommodates generally (i.e., 
arbitrarily) distributed trips and service times. It can also 
evaluate stall effects. This simulation model requires only a 
few seconds to a few minutes on a PS/2 computer for each 
run, depending on traffic volumes, simulation period dura
tions, network size, and so forth. Still, it is hardly affordable 
for direct application in large combinatorial network invest
ment problems. 

To avoid the computational expense of simulation, a meta
modeling approach (14) was developed. This approach con
sists of (a) developing and validating a simulation model to 
represent waterway networks with queues at locks, (b) for
mulating functions developed from queueing theory for delays 
through series of locks, (c) statistically estimating the param
eters of these functions using simulation results, and (d) em
ploying an iterative sequential scanning procedure to estimate 
interarrival and interdeparture time distributions lock by lock 

TRANSPORTATION RESEARCH RECORD 1333 

until results converge at each lock. Thus, relatively simple 
equations may serve as a proxy for the simulation model. 

SIMULATION MODEL 

The simulation model developed for this work is documented 
in Dai and Schonfeld (5). Only a brief description is provided 
below. 

The simulation model was developed using the lock perfor
mance monitoring system (PMS) data base, which includes 
detailed information on traffic through the locks as well as 
physical aspects of lockages (15). The simulation model is 
programmed in Fortran-77, which provides great flexibility in 
modeling. Basically, it is a stochastic, microscopic and event
scanning simulation model that can handle any distributions 
for trip generation, travel speeds, lock service times, and tow 
sizes. Currently, tabular distributions based on empirical ob
servations are used for most input variables. A FIFO (first
in-first-out) service discipline is currently used. This model 
simulates two-way traffic through common servers and ac
counts for stalls. 

The validation results (5,6,7) show that the overall mech
anism of the simulation model is correct, and that the simu
lated average wailing Limes for each lock and for the entire 
series of locks are closely similar to tho e observed. Dai (6) 
documents the statistical methods used in developing, vali
dating, and applying the simulation model. 

NUMERICAL METHOD 

Overview 

A numerical method has been developed for estimating delays 
through a series of queues with bidirectional servers. A brief 
description of the method follows. Details of its development 
and validation are provided elsewhere (6,7). 

The method consists of three major modules, namely arrival 
processes, departure processes, and delay functions (as sum
marized in Figure 1), which are applied in that sequence at 
each lock. The basic concept is to decompose the waterway 
system into locks (which remain interdependent since they 
are affected by inflows from adjacent locks), identify the pa
rameters of the interarrival and interdeparture time distribu
tions for each lock, and then estimate the implied waiting 
times. The structure of the equations used in each module is 
based as much as possible on queueing theory, and the pa
rameters in those equations are statistically estimated on the 
basis of simulation results. Currently, the following assump
tions are used in the numerical method: 

1. Interarrival times and service times are generally dis
tributed. 

2. Each lock has one chamber. 
3. Inflows and outflows occur only at the two end nodes of 

a series of locks. 
4. The average upstream volumes arc equal to the down

stream volumes in the long run. 
5. The long-run volume to capacity (V/C) ratio is less than 

1.0 at every lock. 
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FIGURE 1 Structure of numerical method. 

(7) 

Assumptions 2, 3, and 4 are only applicable to the numerical 
method . The simulation model is not limited by those as
sumptions. The numerica l method can provide a quick and 
inexpensive analysis of l ck de lays. I fowever, A sumption 
2 3 and 4 limit fairly significantly the applicabi lity of the 
currently developed numerical meth d and neces itate the 
substitution of the simulation model when significant devia
tions from those assumption. mus t be considered. With me 
extensions to the numerical method, Assumptions 2 and 3 
may be eliminated. A sumption 4 could be relaxed fairly easily 
eve n though it is u ually realistic for waterway . A umption 
l and 5 should be kept inc;e they reflect rea litie. rather than 
analytic limitations. 

Structure of Numerical Method 

To estimate delays in a queueing system, we need to know 
the means and variances of the inte rar rival inte rd parture , 
and ervicc time distribution . For e rie, of G/G/'J queues and 
bidir ctional servers a difficul ty ari es in identifying th va ri
ances of interarrival and interdeparture times. Because the 
interanival time · at each lock depe nd on departures Crom 
both up tream and downstream lock , the variances of inter
arrival times cannot be determined from one-directional scans 
along a series of queues. To overcome such complex interde
pendence, an iterative scanning procedure is proposed. The 
core concept is to decompose the system into individual locks 
and then sequentially analyze each of those locks. At each 
lock , the tow arrivals from both directions are first combined 
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into an overall arrival distribution and then split into two 
directional departure di tributions. 

The algorithm is initiated by scanning along waterways from 
either direction, sequent ially estimating the interarrival and 
interdeparture time di tributions for each lock . Initially as
sumed values for the va riances of interdepartuJ·e time from 
the opposite direction must be provided for the first scan. 
Then, the scanning direction is reversed and the process is 
repeated, using the interdeparture time distributions for the 
oppo ·ite direction estimated in the previous can. Alternating 
direct ions, the scanning process continue· until the relative 
difference in the preselected convergence criteria stays within 
preset thresholds through successive itera tions. Waiting time 
at locks can be computed in every iterati n (and then used 
as convergence criteria) or just once after all iterations are 
completed. 

Arrival Processes 

The mean and standard deviations of interarrival times are 
estimated in two steps . First, the means and standard devia
tions of directional interarrival times at a particular lock are 
estimated from the interdeparture time distributions of the 
adjacent locks. If flows are conserved between locks and if 
the VIC ratio is less than 1, such relations are represented in 
Equation 1 (variables are defined in Figure 1): 

{
k = i -- 1 if j = 1 
k=i+lifj=2 

(1) 

Because speed variations change headway distributions be
tween locks, Equation 2 was developed to estimate the stan
dard deviation of directional interarrival times at one lock . 

R2 = 0.999954 n = 107 

{
k = i - 1 ifj = 1 
k = i + lifj = 2 

Se = 0.0586 µ. = 5.1685 

(2) 

This suggests that , theoretically, the standard deviation of 
directional interarrival times should be equal to the standard 
deviation of directional interdeparture tim s plus an adjust
ment factor depe nding on the speed distribution and dista nce. 

Second, the overall mean and coefficient of variation of 
interarrival times for this lock are estimated on the basis of 
the coefficients of variation of directional interarrival times. 

~; = 0.179 + 0.4l(C;;1; + C;;2;) 

(0.027) (0 .014) 

R2 = 0.9188 n = 79 Se = 0.0059 

(3) 

(4) 

µ = 0.988 

In Equation 4, the coefficients of variation of upstream and 
downstream interarrival times carry the same weight in esti-



48 

mating the overall variance of intcrnrrival times, since the 
mean directional trip rates are equal (Assumption 4). 

Departure Processes 

The departures module estimates the mean and coefficient of 
variation of interdeparture times. On the basis of the flow 
conservation law, if capacity is not exceeded, the average 
directional interdeparture equals the corresponding interar
rival time: 

(5) 

The coefficient of variation of interdeparture times is es
timated in two steps. First, the coefficient is estimated for 
combined two-directional departures. Departure processes with 
generally distributed arrivals and service times are analyzed 
using Laplace transforms (8). Some analytic relations ob
tained are shown in Dai (6). The following metamodel was 
eventually developed to bypass the difficulties of determining 
the variance of the lock idle times: 

Cb= 0.207 + 0.795 [q (1 - p) + p] + 1.001 (C.~ p2 
- p2

) 

(0.065) (0.066) (0.0046) (6) 

R2 = 0.9984 n = 79 S0 = 0.0058 µ = 0.8311 

Next, the coefficient of variation of directional interdepar
ture times is estimated. The following metamodel was de
veloped for this purpose: 

qji = o.518 + o.491 c;j, q, 
(0.0056) (0.0068) 

R2 = 0.9710 n = 158 

Delay Function 

(7) 

Se 0.013 µ = 0 .9164 

The delay function is intended to estimate the average waiting 
time at a lock. By applying Marshall's formula for the variance 
of interdeparture times (16), an exact solution for the average 
waiting time W was obtained as follows: 

W = CT~ + 2rri - <Tb 
2tA(l - p) 

(8) 

In this delay function, the average waiting time increases 
as the variance of interarrival and service times increases and 
decreases as the variance of interdeparture times increases. 
The average waiting time approaches infinity as the V/C ratio 
approaches 1.0. 

Comparison of Simulated and Numerical Results 

To validate the numerical method, its results were compared 
with the results of the previously validated simulation model. 
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Various system configurations were compared, including the 
relatively large 20-lock ystem given in Table I. 

The parameter alue for thi test sy te rn (e.g., means and 
standard deviation of input di ·tributions and distance be
tween lock ) were obtained from random number generators, 
except for traffic volumes , which were assumed to b 10 t w I 
day in each direction throughout the y tern . Table l gives 
the input parameters and a comparison of waiting times , which 
are the output variabl of greatest practical intere t . H can 
be seen that the numerical model estimates aggregate waiting 
times within 7 .85 percent of the simulated ones. At individual 
locks the percentage_ error can be considerably greate r, es
pecially when absolute e rrors are very small (e .g., in com
parisons with zero waiting times) . The compari on f inte r
mediate outputs (e.g., the parameter of directional interarrival 
and interdeparture time distributions) how th al differences 
below 10 percent are achieved . The detailed validation results 
are presented in Dai (6). 

COMPUTATIONAL TESTS 

A number of computational tests have been conducted to 
investigate the speed, accuracy, and convergence properties 
of the numt:rit:al melhod. Some of the results obtained are 
presented here. All were obtained with the two-directional 
iterative algorithm (coded in Fortran-77) compiled and exe
cuted on an IBM PS/2 model 70 personal computer with an 
80386 processor and an 80387 math coprocessor. 

Any variable that is computed in every iteration of the 
algorithm may be used to check for convergence and stop the 
algorithm when further changes between iterations become 
arbitrarily small. The most interesting candidate variables for 
convergence criteria are the variances in the interdeparture 
times from each lock (which affect error propagation) and the 
waiting times in queues (which are the output variables of 
greatest practical economic interest) . 

The convergence threshold may be specified as a relative 
change in the value of a variable from one iteration to the 
next (i.e., a ratio or percentage change) or an absolute dif
ference. The ratios may be large if and when some variable 
values approach zero even though absolute differences may 
be insignificant. 

Convergence may be sought on the basis of aggregate or 
system wide outputs (e.g., total delay per tow through a series 
of locks) or may be based on localized outputs (e.g., delay 
at each lock). In principle, it should be easier to reduce changes 
between iterations to x percent for a systemwide variable than 
for every single location in that system. 

The original algorithm used the squared coefficients of vari
ation of directional interdeparture times (VARDEP) as the 
convergence criteria. In this work, the individual lock waiting 
times (LOCW AIT) and system weighted waiting times 
(SYSWAIT) are also tested as convergence criteria. Waiting 
times must then be computed in every iteration rather than 
just at the end. 

The required inputs for the algorithm include the inflow 
rates, V/C ratio and service time variance at each lock, dis
tances between locks, means and standard deviations of tow 
speed distributions, and the choice of convergence criterion. 
We generally used 0.001 as the convergence threshold (i.e., 
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TABLE 1 VALIDATION OF NUMERICAL METHOD FOR 20-LOCK TEST CASE 

Lock O'•· CAb O'o Co O's Cs V/C Distc 

1 1.21 1. 01 0.92 0.77 0 . 52 0.56 0.78 7.04 
2 1.18 0.98 1.17 0.98 0.10 0.70 0.12 49.04 
3 1.20 1. 00 0 . 91 0. 76 0.74 0 .69 0.90 46.05 
4 1.19 0.99 1. 05 0.88 0.69 0 .76 0.75 47.74 
5 1.20 1. 00 1.02 0.85 0.81 0.78 0.86 105.56 
6 1.19 0.99 0.90 0.75 0 . 61 0 .60 0.84 71. 76 
7 1.19 0.99 1. 05 0.88 0.91 0 .84 0.90 39.91 
8 1. 21 1. 01 1.20 1. 00 0.13 0 .57 0.19 91.12 
9 1.19 0.99 0.94 0.79 0 . 65 0.65 0.83 60.55 

10 1.17 0.97 0.99 0.83 0.75 0.74 0.85 22.44 
11 1. 21 1. 01 1. 08 0.90 0.56 0. 71 0.66 53.38 
12 1.22 1. 02 1. 20 1. 00 0.23 0.67 0.28 89. 78 
13 1. 22 1. 02 1.19 0.99 0.28 0.69 0.34 103.77 
14 1. 23 1. 02 0.89 0.74 0 . 57 0.57 0.83 125.02 
15 1.21 1. 01 1. 16 0.97 0.35 0. 71 0.41 105.41 
16 1 . 22 1. 02 1. 18 0.99 0 . 37 0.80 0.39 80.29 
17 1. 21 1. 01 1. 02 0.85 0 . 45 0.57 0.66 99.98 
18 1. 20 1. 00 0.95 0.79 0.62 0.64 0.81 65.54 
19 1.18 0 . 99 1. 13 0.94 0 . 45 0.74 0.51 42.38 
20 1. 22 1. 02 0.96 0.80 0 . 71 0.70 0.85 96.75 

Estimated Waiting Time, hrs / tow 

Lock Numerical Simulation Difference % 

1 2.15 2.04 0 .11 5.31 
2 0.00 0.01 -0.01 d 

3 6.91 6.37 0.54 8.48 
4 1. 91 1 . 78 0.12 6.88 
5 4. 71 4.20 0.50 li.96 
6 3.39 2 . 67 0.73 27.19 
7 7.76 7 . 23 0.53 7.38 
8 0.00 0.04 -0.03 
9 3.30 2.83 0.47 16.48 

10 4 . 21 3. 73 0.49 13.02 
11 1.10 1. 08 0.01 1.04 
12 0.08 0.10 -0.03 -27.02 
13 0.13 0.17 -0.04 -22.84 
14 3.33 3 . 20 0 .13 4.19 
15 0.22 0.26 -0.04 -16.41 
16 0.21 0 . 26 -0.05 -19.91 
17 0.95 0.99 -0.04 -4.26 
18 2.80 2.74 0.06 2.29 
19 0.42 0.45 -0.03 -7.54 
20 4.34 4.27 0 . 08 1. 81 
System 47.92 44.44 3.49 7.85 

"cr1 : Standard dev i a t i o n of i nterarriva l time, inte r depar t ure time, and 
servi ce time dist ribu tions , r espectively. 
"C, : Coe f f ici e nts of variation o f i ntera r r ival time, i nt erdeparture time, 
and service time distributions, respectively . 
cDist: Distance to the next lock , in miles. 
"Not applicable. 

results were considered sufficiently accurate and additional 
iterations were deemed unnecessary when the variables cho
sen as convergence criteria changed by less than 0.1 percent 
from the previous iteration). 

Three-Lock Systems 

The first test concerns the eight three-lock systems analyzed 
in Dai (6) . These eight systems (described in Table 2) were 
originally used to show the performance of various algorithms. 
The distances and speed distributions between locks were kept 
equal within each of these eight systems. Using VARDEP, 
LOCWAIT, and SYSW AIT as convergence criteria, the es
timated individual lock delays and system delays and number 
of iterations required are listed in Table 3. Also included are 
the simulated waiting times . Generally, the three criteria per
form equally well for each of the eight systems in terms of 
number of iterations required for convergence. The 

SYSWAIT criterion produces slightly faster convergence than 
the others. 

While assessing the differences in the number of iterations 
required with various criteria in System 1, we found that 
delays at low V/C ratios are so small that relative differences 
may be large and unstable even for very small changes in the 
absolute magnitudes of delays. Consequently, more iterations 
are required to satisfy a relative threshold. If, instead, we set 
an absolute threshold for delay (e.g., less than 0.001 hr/tow 
difference between successive iterations), System 1 converges 
at the fourth iteration for both LOCWAIT and SYSW AIT. 

We also sought to check whether the convergence was mon
otonic (i.e., whether the changes always decrease through 
successive iterations). We found that relative changes de
crease monotonically for all systems when SYSWAIT, but not 
VARDEP or LOCWAIT, is the convergence criterion. How
ever, the magnitudes of various criterion variables change 
monotonically through successive iterations for all systems, 
as shown in Table 4. It seems that monotonic convergence is 
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TABLE 2 PHYSICAL CHARACTF.RTSTTCS OF THREE-LOCK SYSTEMS 

Two-way Tow Speed Variance of 
Flow Rate Distance miles/day Service Time 

System Lock tows/day V/C miles ~i: a: hr2 /tow2 

1 1 6.0 0.01 5 270 85 0.0007 
2 6.0 0.07 5 270 85 0.0360 
3 6.0 0.17 5 270 I 85 0.1897 

2 1 12.0 0.15 5 325 102 0.0309 
2 12.0 0.34 5 325 102 0.1620 
3 12.0 0.25 5 325 102 0.0915 

3 1 18.0 0 . 22 5 108 34 0.0309 
2 18.0 0.03 5 108 34 0.0006 
3 18.0 0.50 5 108 34 0.1618 

4 1 24.0 0.50 5 162 51 0.1883 
2 24.0 0.29 5 162 51 0.0646 
3 24.0 0.67 5 162 51 0.3330 

5 1 27.0 0.75 10 108 34 0.2271 
2 27.0 0.57 10 108 34 0.1279 
3 27.0 0.89 10 108 34 0.3167 

6 1 27.0 0.75 20 216 68 0.1616 
2 27.0 0.57 20 216 68 0.0909 
3 27.0 0 . 89 20 216 68 0.2259 

7 1 28.5 0.60 5 325 102 0.1557 
2 28.5 0.05 5 325 102 0.0011 
3 28.5 0.80 5 325 102 0.2738 

8 1 28.5 0.35 60 162 51 0.0645 
2 28.5 0 . 60 60 162 51 0.1882 
3 28.5 0.80 60 162 51 0.3332 

•µ,,: Average tow speed. 
bcrv: Standard deviation of tow speeds . 

more difficult to achieve for local variables when the algorithm 
scans along the series of locks in alternating directions . When 
an iteration is defined as a two-way scan (e.g., first upstream, 
then downstream, and only afterwards compare results to the 
previous iteration), monotonic convergence is achieved for 
the local variables LOCWAIT and V ARDEP. It is achieved 
without two-way iterations for the aggregate variable 
SYSWAIT which, incidentally, requires 3 to 12 percent less 
CPU time than the local criteria. 

The algorithm was also allowed to run for 100 iterations to 
check the convergence and CPU times for various criteria. 
The results were quite satisfactory since no system ever di
verged in this experiment. This is illustrated in Figure 2 using 
System 6 as the example. 

Twenty-Lock Systems 

To further check the behavior of the algorithm, we randomly 
generated parameter values for a 20-lock system in which the 
values of the V/C ratio were uniformly distributed between 
0 and 1, and the coefficients of variation of service time were 
uniformly distributed between 0.2 and 1.0. This test system 
was assumed to have equal mean inflow rates in the two 
directions, as well as identical tow speed distributions and 
distances between any pair of locks. Table 5 describes this 
20-lock system. 

The aggregate results for the 20-lock system are summa
rized in Table 6. We found that the number of iterations 

required for convergence within 0.001 is almost identical to 
the numbers in Table 3, even though this 20-lock system is 
more than six times larger. This suggests that the algorithm 
may be applicable for very large systems . Comparisons of 
CPU times required for convergence again confirm that the 
aggregate criterion SYSW AIT saves iterations compared with 
the local criteria LOCWAIT and V ARDEP and reaches con
vergence with approximately 25 percent less CPU time. As 
in 3-lock systems, the 20-lock system never diverges, and the 
monotonic properties with various criteria are similar. With 
the LOCW AIT criterion a single violation of monotonic con
vergence was found at Lock 2 in the fourth iteration. Con
sequently, one more scan is desired to bring the entire system 
into convergence. Such violations were never found when the 
aggregate convergence criterion SYSW AIT was used or when 
iterations were defined to consist of two scans in alternate 
directions. 

The relation between system size and computational re
quirements was also examined using the 20-lock system and 
arbitrarily chosen subsets of that system. The CPU times and 
number of iterations required for convergence in various sys
tem sizes are shown in Figure 3. It again seems promising that 
the number of iterations does not change much for different 
criteria and system sizes. The CPU times seem roughly pro
portional to system sizes in all cases. Figure 3 demonstrates 
the apparently linear relaliuns. We sought to statistically es
timate the relations between CPU time and the number of 
locks in the system, using the following structural form: 
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TABLE 3 COMPUTATIONAL COMPARISON FOR VARIOUS CRITERIA IN 
THREE-LOCK SYSTEMS 

Estimated Waiting Time, hrs/tow 

VARDEP LOCWAIT SYS WAIT 

System Lock Wsim~ wv• Dv' WL DL Ws Os 

1 1 0.0003 0.0001 -0.0002 0.0001 -0.0002 0.0001 -0.0002 
2 0.0153 0.0175 0. 0022 0.0176 0.0023 0.0176 0.0023 
3 0.0989 0.0990 0.0001 0.0990 0 . 0001 0.0990 0.0001 
Total 0 .1145 0.1166 0.0021 0 . 1167 0.0022 0 .1167 0.0022 

Required Iterations 5 7 6 

2 1 0.0334 0 . 0290 -0.0044 0.0290 -0.0044 0.0290 -0.0044 
2 0.2316 0.2289 -0. 0027 0.2289 -0.0027 0.2289 -0.0027 
3 0 .113 9 0.1099 -0.0040 0.1099 -0.0040 0.1099 -0.0040 
Total 0.3789 0 . 3678 -0.0111 0.3678 -0.0111 0.3678 -0.0111 

Required Iterations 5 5 5 

3 1 0.0542 0.0528 -0.0014 0,0528 -0.0014 0.0528 -0 . 0014 
2 0.0008 0.0001 - 0.000 7 0 . 0001 -0 .00 07 0.0001 -0.0007 
3 0. 4621 0.4660 0.0039 0.4660 0.0039 0.4659 0.0038 
Total 0. 5171 0.5189 0. 0018 0.5189 0.0018 0.5188 0 . 0017 

Required Iterations 5 5 

4 1 0.4355 0.4404 0.0049 0.4404 0 . 0049 0 . 4404 0.0049 
2 0. 0 962 0.0999 0.0037 0 . 0999 0.0037 0.0999 0.0037 
3 1. 2 02 8 1. 1844 -0.0184 1.1844 -0 . 0184 1.1844 -0 .0184 
Total 1.7345 1. 7247 -0.0098 1.7247 -0. 0098 1.7247 -0 . 0098 

Required Iterations 4 4 4 

5 1 1. 3 92 6 1. 4 6 93 0 . 0767 l. 4693 0.0767 1. 4 6 93 0.0767 
2 0.3901 0.4127 0 . 0226 0 . 4127 0.0226 0 . 4127 0 . 0226 
3 4.9837 4.7980 -0 . 1857 4 . 7980 -0.1857 4.7980 -0.1857 
Total 6.7664 6.6800 -0 . 0864 6.6800 -0.0864 6.6800 -0.0864 

Required Iterations 4 4 4 

6 1 1.2203 1.3038 0.0 835 1.3038 0.0835 l.3038 0.0835 
2 0.3286 0.3416 0 . 0130 0.3416 0.0130 0.3416 0.0130 
3 4.4608 4.2983 -0. 1625 4.2983 -0.1625 4 . 2983 -0.1625 
Total 6.0097 5.9437 -0.0660 5.9437 -0 .06 60 5.H37 -0.0660 

Required Iterations 4 4 4 

7 l 0.5430 0.5900 0.0470 0.5899 0 . 0469 0.5899 0.0469 
2 0.0012 0.0001 -0.0011 0.0001 -0.0011 0.0001 -0. 0011 
3 2.0874 2.0906 0. 0032 2.0906 0. 0032 2.0906 0.0032 
Total 2.6316 2.6807 0.0491 2.6806 0 . 0490 2.6806 0.0490 

Required Iterations 4 3 3 

l 0 . 1372 0 .1405 0.0033 0.1405 0,0033 0 . 1405 0.0033 
2 0.6381 0.6592 0. 0211 0. 65 92 0 . 0211 0 . 6592 0. 0211 
3 2.3165 2.3146 -0.0019 2.3146 -0.0019 2.3146 -0.0019 
Total 3.0918 3 . 1143 0.0225 3 . 1143 0 . 0225 3 .1143 0 . 0225 

Required Iterations 4 4 4 

'Wsim: Waiting time estimated from simulation. 
"Wi: Waiting time estimated when criterion i used. 
"Di : Difference between numerically estimated waiting time at a given iteration 
and simulated waiting time ~ Wi - Wsirn. 

(9) 

In Equation 9 CPU1 is the central processing time using Con
vergence Criterion i, K 1 and P1 are statistically estimated pa
rameters associated with Criterion i, and N is the number of 
locks in the system. The P1 parameter was expected to be 
very close to 1.0, on the basis of the nearly linear relations 
shown in Figure 3, and indeed turned out to be nearly 1.0, 
confirming the essentially linear relation. The value of P1 was, 
therefore, fixed at 1.0, and the remaining parameter K 1 was 
estimated as indicated in Table 7. 

The small standard errors and high R 2 again confirm that 
CPU time is essentially linear with respect to the number of 
lock in the system. Among lhe three criteria, the aggregate 
criteri n SYSWAIT ha the smalle t tanditrd error and high
est R2

, suggesting it yields not only the fa test bul a lso the 
most predictable computer times. The structural form of 
Equation 9 force the computer time function through the 
origin since Equation 9 has no intercept. When an intercept 

A 1 is provided in Equation 10 (presumably to reflect the fixed 
times required for setup or input and output functions), even 
better fits were obtained, as indicated in Table 7. 

(10) 

The best fit is again obtained for the SYSW AIT criterion. 
Thus, based on our very small sample , the best estimate of 
CPU time (in seconds to reach convergence within 0.001) for 
N-lock systems is obtained with the SYSWAJT criterion as 

CPU = 0.107 + 0.0853N (11) 

Table 6 shows that convergence to within 0.1 percent dif
ference between successive iterations is reached in 1.75 sec 
of CPU time for the 20-lock system and SYSWAIT criterion. 
The corre ponding time for the simulation model to analyze 
the same 20-lock y tem on the s11me computer is 53 min per 
replication (i .e. 1,590 min or 95,400 ec for 30 replications) . 
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TABLE 4 CONVERGENCE PROPERTIES FOR VARIOUS CRITERIA IN SYSTEM 2 

Criterion: VARDEP 

Magnitude, Dir 1 

It er Lock 1 Lock 2 

1 0.9930 0.9629 
2 1. 0027 0.9724 
3 1.0027 0.9778 
4 1.0030 0.9780 
5 1. 0030 0.9782 

Magnitude, Dir 2 

It er Lock 1 Lock 2 

1 0.9456 0.9214 
2 0.9884 0.9705 
3 0.9884 0.9715 
4 0.9897 0. 9725 
5 0.9897 0. 9726 

Criterion: LOCWAIT 

Magnitude 

It er Lock 1 Lock 2 

1 0.0177 0.1994 
2 0.0287 0.2254 
3 0.0287 0.2283 
4 0.0290 0.2288 
5 0.0290 0.2289 

Criterion: SY SWAIT 

Magnitude 

It er System 

1 0.3236 
2 0.3606 
3 0.3667 
4 0.3676 
5 0.3677 

•Not applicable. 

ClUTl!RlON: VARIANCE OP INTElIDl!PARlURE TIME 

--<>-LOCK I (DIR I)-+- LOCK 2 (DIR I) _,,_LOCK 3 (DIR I 

--LOCK I (DIR 2)-+- LOCK 2 (DIR 2) -.A.-- LOCK 3 (Diil 2 

6 100 
#ITERATIONS 

CRITllRION: WAITING TIME 

__,,__ LOCK I --+-- LOCK 2 ...,.__ LOCK 3 __,.._ SYSTEM 

4 6 # ITERATIONS 

FIGURE 2 Convergence for three-lock system 
with various criteria. 

100 

Lock 3 

0.9715 
0.9715 
0.9802 
0.9802 
0.9804 

!Lock 3 

0.9889 
0.9889 
0.9907 
0.9907 
0.9907 

Lock 3 

0.1065 
0.1065 
0.1098 
0.1098 
0.1099 

Relative Difference, Dir 1 

Lock 1 Lock 2 Lock 3 

--· 
0.0098 0.0098 0.0000 
0.0000 0.0056 0.0090 
0.0003 0.0002 0.0000 
0.0000 0.0002 0.0002 

Relative Difference, Dir 2 

Lock 1 Lock 2 Lock 3 

0.0453 0.0533 0.0000 
0.0000 O.OOll 0.0018 
0. 0013 0.0010 0.0000 
0.0000 0.0000 0.0000 

Relative Difference 

Lock 1 Lock 2 Lock 3 

0.6167 0.1304 0.0000 
0.0000 0.0126 0.0312 
O.OllO 0.0023 0.0000 
0.0000 0.0004 0.0007 

Relative Difference 

System 

0. l142 
0.0171 
0.0023 
0.0004 

Thus, in this case simulation requires 54,514 times more CPU 
time than the numerical method. However, it should be noted 
that our simulation runs were designed to extract very precise 
estimates for estimating new metamodels. We usually simu
lated 22,000 tows, discarded the first 10,000 of those, and 
replicated the simulation 30 to 80 lim for each '"data point." 
For practical application, the simulation would require 104 to 
105 times more CPU time than the numerical method. 

Double Scanning Versus Single Scanning 

In the baseline algorithm an iteration consists of scanning th 
waterway from one end to the other (i.e., in one direction). 
The next iteration would then scan in the opposite direction. 
The results obtained so far suggest that a smoother conver
gence may be obtained by d uble scanning (i.e. , checking for 
convergence only after two full can in opposite directions 
are c mpleted). With uch double scanning, the change in 
variables are alway found to decrease (or at least not in
crea e) with each successive convergence check, which is per
formed every second iteration by comparing Iteration i with 
Iteration i - 2 (instead of i - 1). 

However, double scanning imposes a computer time pen
alty by increasing the number of iterations required for con
vergence to a specified threshold. That is indicated in Table 
8, where the convergence threshold is still 0.001. There are 
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TABLE 5 RELEVANT DATA FOR THE 20-LOCK SYSTEM 

Lock 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

V/C 

0.5625 
0.2473 
0.4505 
0.4098 
0.9865 
0.2148 
0.8315 
0.7088 
0.8563 
0.5989 
0.2065 
0.0510 
0.9894 
0.5051 
0.6715 
0.6728 
0.9475 
0.8662 
0.9074 
0.8711 

c: 
0.2482 
0.2591 
0. 3725 
0.2942 
0.8953 
0.2328 
0.5422 
0.3447 
0.9832 
0.8641 
0.6823 
0.5392 
0.8309 
0.4834 
0.6363 
0.7805 
0.6943 
0.4078 
0.4017 
0.9968 

Inflow Rate of Direction 1 (tows/day) 
Inflow Rate of Direction 2 (tows/day) 
Convergence Threshold 
Tow Speed (miles/day) 

48 
109 

60 
66 
27 

126 
32 
38 
32 
45 

131 
529 

27 
53 
40 
40 
28 
31 
30 
31 

Standard Deviation of Speed (miles/day) 
Distance between Locks (miles) 

0.5000 
0.2198 
0.4004 
0.3643 
0.8769 
0.1909 
0.7391 
0.6300 
0.7612 
0.5324 
0.1836 
0.0453 
0.8795 
0.4490 
0.5969 
0.5980 
0.8422 
0.7700 
0.8066 
0.7743 

13.5 
13.5 

0.001 
213.48 

67.68 
20.0 

0 2d 
s 

0.0154 
0.0032 
0.0223 
0.0115 
0.6163 
0.0020 
0.1606 
0.0472 
0.5601 
0.2116 
0.0157 
0.0006 
0.5340 
0.0471 
0.1442 
0.2179 
0.3419 
0.0986 
0.1050 
0.5957 

•c, : Coefficient of variation of service time distribution. 
bCap: Lock capacity, tows/day. 

cµ, : Mean of service time distribution, hrs/tow. 

da~: Variance of service time distribution, hrs 2 /tow2 • 

TABLE 6 COMPUTATION RESULTS FOR THE 20-LOCK SYSTEM 

VARDEP LOCWAIT SY SWAIT 

Required Iterations 
for Convergence 
Within 0.001 4 5 4 

CPU Time (seconds) 2.15 2.36 1. 75 
Total Waiting Time 

(hrs/tow) 151.2056 151.2044 151.2056 

100 Iterations 

Divergence None None None 
CPU Time (seconds) 31. 25 34.38 27.14 
Total waiting time 

(hrs/tow) 151.2043 151.2043 151.2043 

53 

two reasons for the penalty. First, an even number of itera
tions is required in double scanning, even when convergence 
is reachable with one less iteration. Second, a larger change 
may be expected after two iterations than after one, making 
the same threshold (e.g., 0.001) harder to satisfy. 

12 
16 
20 

8 12 

LOCWAIT 

#ITERATIONS 
VAR01!P LOCWAIT SYSWA!T 

4 5 5 
4 5 4 
5 6 4 
4 5 5 
4 s 4 

16 20 #LOCKS 

0 SYSWAIT 

Thus, it seems that double scanning provides added reas
surance that the algorithm converges in a smooth and well
behaved way . However, since convergence seems so assured 
regardles of canning procedure, it seems preferable to opt 
for the computation savings of single scanning. 

CONCLUSIONS 

FIGURE 3 Relations between system size and computational 
speed. 

A numerical method has been developed to estimate water
way travel times through a series of lock queues. This nu-
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TABLE 7 PARAMETERS FOR CPU TIME VERSUS SYSTEM SIZE 

Standard 
Criterion K1 Error of K! 

Eq. 9 

VARDEP 0.1129 0.0026 
LOCWAIT 0.1245 0.005 
SY SWAIT 0.0925 0.0019 

Eq. 10 

VARDEP 0.106 0.0055 
LOCWAIT 0.108 0.0084 
SY SWAIT 0.0853 0.0024 

TABLE 8 ITERATIONS REQUIRED FOR VARIOUS 
SCANNING PROCESSES 

3-Lock System 1 VARDEP LOCWAIT SY SWAIT 

Single Scan 5 7 6 
Double Scan 6 8 8 

20-Lock System 

Single Scan 4 5 4 
Double Scan 6 6 6 

merical method was estimated from simulation results. It can 
approximately duplicate simulation results for complex sys
tems of interdependent queues, while requiring 104 to 105 

times less computer time than simulation. The basic approach 
used in this numerical method and several of its components 
(or "metamodels") should lead to numerical analysis methods 
for other types of queueing networks with greater complexity. 

This paper focused on the main computational character
istics of the baseline numerical method and some its varia
tions. The main computational findings are as follows: 

1. Variables other than the original interdeparture time 
variance V ARDEP are suitable as convergence criteria. In 
particular, the aggregate waiting time SYSW AIT yields con
vergence faster than the other variables considered. Not 
surprisingly, more iterations may be needed if a specified 
convergence threshold (e.g., 0.1 percent) is to be satisfied 
at every location and in every direction rather than for an 
aggregate criterion. 

2. Convergence to within 0.1 percent of values in the pre
vious iteration is achieved relatively quickly (typically in four 
to six iterations), even when that 0.1 percent threshold must 
be satisfied everywhere in a 20-lock system. 

3. Convergence is achieved smoothly and, with rare excep
tions, differences in the variable values decrease with each 
successive iteration. The exceptions are all traceable to scans 
in alternating directions and can be avoided by double scan
ning before convergence checks or by always scanning in the 
same directions. However, since convergence seems always 
assured, the single scanning in alternating directions seems 
preferable to save computer time. 

4. The computer time required by the algorithm seems to 
be linear with respect to the number of locks in the system. 
It also seems to be predictable. Thus, the numerical method 
should analyze efficiently relatively large systems of interde
pendent queues. 

Standard Error 
of CPU Estimate Rz Ai 

0.0774 0. 98 67 
0.1482 0.9537 
0.0578 0.9885 

0.0696 0.9919 0.102 
0.1074 0.9817 0.242 
0.0315 0.9974 0.107 
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