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Comparing Rectangular and Trapezoidal 
Seals Using the Finite Element Method 

MICHEL F. KHURI AND EGONS TONS 

To design proper seals, it is important to understand seal behavior 
and joint and crack geometry. Different seal cross sections are 
compared , namely, rectangular, trapezoidal, and trapezoidal
rectangular shapes. After a closed-form solution could not be 
achieved using th 1heory of lasticity, the plane strain, nonlinear, 
incon1pressible, hypcrelastic (Mooney-Rivlin) finite element for
mulation of the software ABAQUS was used to evaluate different 
seal cross-sections in tension and com pres. ion with cmpha ·is on 
bulge and sag and on shear ·train (e12). Laboratory measurcmems 
using ilicone Dow orning 888 were 1aken to determine bulge 
and sag. It was c ncludecl that the m t de irable cross section 
of the three shapes is the rectangular. Axial stra in (e11 ) at the 
urface of the sea l were compared wirh Tons' parnbolic defor

mation calcu.lations. T here was good ngr · emenr all along the seal 
urrace except near the j int walls because of a singularity. With 

cominued resea rch. the structural response ca lcula1ion at the 
joint wall inte rface hould be Improved. 

To make the pavement adjust to climatic conditions, joints 
are usually sawed or formed and a sealant material is poured 
or installed in the resulting groove to form a rectangular seal 
cross section such as the one shown in Figure la. Wt stands 
for top width; Wb, for bottom width; D , for total depth; Dt, 
for trapezoidal depth in a rectangular seal; and Dr, for rec
tangular depth in a trapezoidal-rectangular seal. 

The cracking problem, however, is generally attributed to 
localized weakness of the pavement. These cracks are due to 
weather conditions (freeze-thaw cycles, large changes in tem
perature, shrinkage, etc.) and to loading caused by traffic. 

To keep a highway in good condition and prolong its life , 
the cracks are sometimes grooved by a router, cleaned, then 
sealed. It is important to note that the resulting groove tends 
to have a trapezoidal shape, whether routed or not, because 
the top edges of a crack are exposed to weather and traffic 
and tend to spall because of lack of support. When a sealant 
material is poured into such a groove, the resulting shape of 
the seal may also end up being trapezoidal (Figure lb), or it 
could be trapezoidal-rectangular (trap-rec) if there is no backup 
material to protect the sealant from flowing (Figure le). The 
problem is that cracks are sealed without trapezoidal or trap
rec cross sections being considered. 

The objectives of this paper are to investigate the defor
mations and strains in different rubber seal cross sections 
(rectangular, trapezoidal , and trap-rec) using the finite 
element method (FEM) implemented on incompressible 
rubberlike materials and to compare the obtained results 
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FIGURE 1 Cross sections: a, rectangular seal; b, 
trapezoidal seal; and c, trapezoidal-rectangular seal. 

with laboratory measurements of top (Ht) and bottom (Hb) 
maximum displacements (Figure 2) with Tons' parabolic 
model (J) . 

BACKGROUND 

Rectangular Seals 

The cross section of a joint is usually made rectangular. This 
shape is encouraged because of its simplicity (1) . 

The tools used to prepare joints for sealing and resealing 
are usually designed to make the joint walls vertical. The 
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FIGURE 2 Trapezoidal seal: a, in its undeformed state; b, under compressive development; 
and c, under tensile displacement; rectangular seal: d, in its undeformed state; e, under 
compressive development; and/, under tensile displacement. 

depth of the joint groove is usually controlled. Schutz (2) 
coined the term "shape factor," which has been attributed to 
Tons' work (1,3), to describe the depth-to-width ratio (D!W) 
of a treated joint. 

A variety of sealant cross sections has been studied. Chong 
and Phang have experimented with a %- x %-inch cross sec
tion for transverse cracks in asphalt pavements in Canada. 
They also experimented with seals of dimensions 1.6 x 0.4 
in. (DIW = 1/4) (4). 

The shape factor concept for a rectangular cross section 
that has a DIW ratio of about 1 is generally used for sealing 
joints and cracks. 

Trapezoidal Seals 

As mentioned, trapezoidal cross sections tend to form in high
way cracks because of weather and traffic. A trapezoidal cross 
section will also result if the crack is widened by a conical 
tool. Cook (5) mentioned that trapezoidal cross-section seals 
would help eliminate spalling failure in a pavement. Boot (6) 
stated that cracks do not have parallel walls like joints do, 
and when routed, the shape of the cross section becomes 
trapezoidal. Leigh (7), on the other hand, used trapezoidal 
extruded neoprene sponge rubber for cracks. The dimensions 
were 1- or V2-in. deep and %-in. thick at the base, tapering 
to V4-in. at the top. 

Trapezoidal-Rectangular Seals 

Trap-rec seals may exist if a crack is widened with a conical 
tool and not closed at the bottom by a backup rod , causing 

the sealant material to flow to a deeper level and making the 
seal cross section trapezoidal , as shown in Figure le. This 
cross section, as will be explained, tends to give high strains 
at the bottom of a seal, thereby increasing the probability of 
failure. 

Finite Element Application 

Applying the finite element method to the analysis of joint 
seals is a promising idea, but obtaining reliable results may 
be complicated. This is because rubber material used in this 
analysis is assumed to be incompressible, and enforcing the 
incompressibility condition, as far as mathematical aspects are 
concerned, requires special computational methods. Also, be
cause of the large deformation encountered with sealants and 
the existence of a singularity, predicting the response using 
the classical finite element method is not very accurate. But 
with the use of special techniques, results can be substantially 
improved. 

The only significant work found to have applied the finite 
element method to highway rubber seals was done hy Wnng 
(8), who used viscoelastic models. Such application is consid
ered to be complicated, because finding the material prop
erties and a model that predicts the behavior of the seal struc
ture are two tedious tasks and may not be accurate. Also, the 
singularity at the joint-wall interface cannot be eliminated. 

To analyze the response of rubberlike material, one must 
find the law that the material under consideration obeys. Dif
ferent material laws have been suggested, such as Ogden ma
terial, Neo-Hookean material, and Mooney-Rivlin material. 

The Mooney-Rivlin strain energy formulation has been used 
by many investigators to analyze rubberlike material (9-15). 
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The process involves determining the strain energy function 
of the material. Different procedures have been used to de
termine the strain energy function, but what is important is 
to fit the function to the obtained experimental data (16-18). 

In this study the Mooney-Rivlin strain energy function 
was used, where material and geometric nonlinearity were 
assumed. 

ASSUMPTIONS 

Besides the fact that FEM by itself is an approximate method 
used in various types of structural analysis, other assumptions 
were made. These assumptions are as follows: 

1. The material is hyperelastic, perfectly incompressible; 
that is, Poisson's ratio as viewed from the compressible field 
is equal to 0.5. This is a simplified assumption, because rubber 
materials in general are viscoelastic and Poisson's ratio is not 
exactly equal to 0.5. 

2. A perfect bond is assumed between the sealant and the 
concrete. 

3. The side at which the sealant is in contact with the con
crete is assumed to be rigid or fixed in all degrees of freedom. 
Assumptions 2 and 3 are justified especially if the seal is 
handled properly (sawed, cleaned, primer is applied, and 
workmanship is good). 

4. The sealant is assumed to be free at the bottom surface. 

EXPERIMENTAL WORK 

Strain Energy Function and Stress-Strain Equations 

To determine the strain energy function, the use of one or 
more homogeneous deformations is recommended. Two ho
mogeneous tests were used in this work, namely, simple ten
sion and pure shear. 

Specimens were prepared only with Silicone Dow Corning 
888 for two main reasons: 

1. Silicone Dow 888 properties do not change significantly 
with temperature (19), so it can be assumed that one strain 
energy function may well define the material properties at 
various temperature conditions-unlike rubber asphalt, for 
example, where one must determine the material properties 
at different temperatures. 

2. For the same cross-sectional dimensions, FEM results 
for strains and displacements are the same regardless of the 
material type and modulus of elasticity, so it is unnecessary 
to do the analysis for different material properties. This is so, 
keeping in mind that the stresses are different but they can 
be normalized over the initial modulus of elasticity to give 
similar results for different materials. 

Using the method provided in ABAQUS (20), which is 
based on minimizing the error of the function that fits both 
simple tension and pure shear tests, the following form of the 
strain energy function ( U) was obtained for Silicone Dow 
888: 

where 

cl = 7.132, 
C2 = 7.878, 
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11 and / 2 = first and second principal strain invariants of 
the left Cauchy-Green strain tensor BiJ, and 

13 = third strain invariant unity (because imcom
pressibility condition is assumed) (14,17). 

For a Mooney-Rivlin first-order deformation strain energy 
function, the stresses TiJ can be obtained using the following: 

gii = (g;)-1 

Gil = (Gi)-1 

where 

Bil = (1 1gii _ girgJsQ,s); 

g11 and G11 = metric tensors in undeformed and deformed 
configurations, respectively; 

B1i = (BiJ)- 1; and 
P = pressurelike variable that is calculated for every 

element, just like the displacement. 

On the other hand, the strains ei1 are of the form 

where I is the identity matrix. 
For additional and detailed explanation of the mathematical 

formulation and the experimental determination of the strain 
energy function, the reader is referred to the work by Khuri 
(21). 

Determination of Top and Bottom Displacements 
(Ht and Hb) 

Silicone Dow 888 was poured between two wood blocks that 
were cut to the desired dimensions. The sealant material was 
cast and left to cure under room temperature, then tested in 
the lab in tension and compression using an INSTRON ma
chine. For a detailed description of the experimental methods, 
the reader is referred to the work by Khuri (21). 

FINITE ELEMENT MODELING 

Type of Element Used 

Eight node elements were used throughout this study. A plane 
strain element called CPE8H in ABAQUS consists of eight 
nodes; four lie at the corners and four lie at the midpoint of 
each side. CPE8H is a stable element and may be best suited 
to model rubberlike material (20). The mathematical for
mulation of this element is explained in detail in ABAQUS 
(20) and by Khuri (21) and Bathe (22). 

Number of Elements Chosen 

In determining the stresses and strains in a typical seal cross 
section, it was observed that the response near the points A, 
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A', B, and B' in Figure la does not stay constant as the 
number of elements changes in that area (Figure 3a). This is 
because the material is fully supported at sides AB and A' B' 
and imposing large deformation creates a discontinuity (non
Lipschitzian domain) between the material and the fixed end. 
This means that as one approaches the corner, the defor
mation tends to become tangent to the vertical axis, causing 
the response to increase, because the gradient tends to infin
ity. This means that the finite element method used is not 
accurate in the vicinity of the corner. However, because the 
objective is to compare the behavior of different seal cross 
sections, a model that can give values useful for comparison 
is needed. 

It was decided to perform analyses using ABAQUS on 
2- x -2, 6- x -6, 10- x -10, 20- x -20, and 80- x -80 elements. By 
studying the behavior of the shear strains at the integration 
points (Figure 3a), it can be observed that values are the same 
until the last integration point closest to the corner is reached, 
at which point the output of the strain is higher. Values of 
shear strain at the corner node versus number of elements 
are shown in Figure 3b, which shows that the value is higher 
for a higher number of elements and goes to infinity for an 
infinitely large number of elements. This again emphasizes 
that the finite element method does not evaluate the response 
accurately at the corner. However, if one finds the area under 
the curve in Figure 3a for each of the number of elements for 
a rectangular cross section (2 x 2, 6 x 6, 10 x 10, 20 x 20, 
and 80 x 80), it can be observed in Figure 3c that after a 
10- x -10 element mesh, the area under the curve tends to be 
about the same regardless of the number of elements used . 
Because of this, it was decided to use the response that cor
responds to 10- x -10 elements. These ideas were suggested 
by Kikuchi (23) and personal communications with ABAQUS 
consultants. 

As can be observed in Figure 3a, if a 2- x-2 mesh is used, 
the shear strain obtained at the corner node may be about 
half of what is obtained if a 10- x -10 mesh is used. However, 
as the number of elements is increased, the response keeps 
increasing, and the upper limit tends to infinity where the 
l/r singularity is in effect, where r is a radius that describes 
a domain in which, as one approaches the corner from the 
sealant material point of view, the stress goes to infinity. 

Boundary Conditions 

Modeling rectangular seals was done on the basis of 10- x -10 
element mesh. After using two-directional symmetry, with 
respect to both x- and y-axes, a 5- x -5 element structure is 
obtained. All rectangular cross sections used were modeled 
by 5- x -5 elements regardless of the depth-to-width ratio of 
the seal cross section (Figure 4a) . 

Although somewhat different, both trapezoidal and trap
rec seal models may be considered under the same category 
and were modeled on the basis of 10- x -10 elements. After 
one-directional symmetry with respect to the vertical y-axis, 
a 10- x -5 structure was obtained. The loads and boundary 
conditions for trapezoidal and trap-rec cross sections are shown 
in Figures 4b and 4c, respectively. 
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RESULTS AND DISCUSSION 

Comparison of Results 

For the rectangular seals, laboratory results, FEM results, 
and the parabolic deformation model suggested by Tons (J) 
were compared. In Figure 5, Ht or Hb (Ht = Hb for rectan
gular sections) is plotted versus extension and contraction, 
respectively. The legend with subscript (FE) stands for FEM 
results; the legend with subscript (P) stands for parabolic 
model results. The legend with subscript (L) stands for lab
oratory results. Note that laboratory results for each specimen 
size are based on the average of results obtained from three 
specimens. Similar results were obtained when comparing lab
oratory results and FEM results for trapezoidal and trap-rec 
cross sections. Figure 5 shows that the experimental measure
ments are close to FEM results (range between 2 to 10 percent 
difference), and Tons' calculations tend to overestimate the 
measurements (range up to about 20 percent difference). 

Comparisons Based on FEM Only 

It is important to note that using the finite element method, 
the top and bottom displacements obtained from similar spec
imen dimensions gave the same top and bottom displacements 
and strains regardless of the material properties. This behav
ior is expected, because the material is considered incom
pressible (it deforms with no change in volume); the defor
mation should be the same, regardless of the modulus of 
elasticity of the material. This is true, even though the force 
required to stretch different materials to the same amount of 
displacement may be different , but the force can be normal
ized over the modulus of elasticity to give similar results . 

In the following subsections, the behavior of rectangular, 
trapezoidal, and trap-rec seal cross sections under tensile and 
compressive displacements was investigated for typical se
lected specimens. Variations of strains and displacements in 
the seal structures are reported. 

Comparison of Displacement (Ht and Hb) 

In comparing rectangular, trapezoidal , and trap-rec rubber 
seal cross sections, it is important to understand the mecha
nism of deflection, in tension and in compression. In this 
paper, tensile displacements are emphasized. For a more de
tailed description of the performance under compressive dis
placements, see Khuri (21). 

A trapezoidal cross section, which is the top portion of a 
trap-rec section, is shown in Figure 2a in its undeformed state; 
in Figure 2c, it is shown under tensile displacement . A rec
tangular cross section, which is the bottom portion of a trap
rec seal, is shown in Figure 2d in its undeformed condition; 
in Figure 2/, it is shown under tensile displacement. Note that 
Ht and Hb are identical because of symmetry. However, in 
Figure 2c, which shows a trapezoidal seal under tensile dis
placement, Ht is always greater than Hb. For trap-rec cross 
sections, behavior can not be predicted without calculations 
(Ht may be larger or smaller than Hb, as will be explained 
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later) . The same principle applies to seals under compressive 
displacement shown in Figures 2b and 2e. 

Comparisons Based on Strains 

In this section, strains in the x-direction (e11 ), strains in the 
y-direction (e22), and shear strains (e12) are evaluated for all 
three cross sections. 

Edge Conditions For all seal cross sections, edge condi
tions along Line ABC in Figure le yielded the highest shear 
strains. This is due to stress concentration near the corner. 
In this region , only the shear strain was considered because 
all other strains are zero at a fixed edge . Some values were 
obtained for e, 1 and e22 at the corners and along the edge, 
because in finite element analysis, response is calculated at 
integration points and then extrapolated to the nodes. 

Shear strain (e 12) versus location along the depth as shown 
in Figure 6 is drawn at the edge for rectangular, trapezoidal, 
and trap-rec cross sections. 

Figure 6c shows the shear strain behavior in a trap-rec cross 
section under 20 percent of Wb tensile displacement. It starts 
from depth equal zero at the bottom to depth equal one at 
the top. Shear strain (e12) is highest at the bottom corner. 
Going up from the bottom corner, e12 decreases until the 
midline is reached, which is the point at which the rectangular 
cross section ends and the trapezoidal cross section starts. At 
this point there is a strain concentration, and on the way up 
toward the trapezoidal portion, the strains decrease because 
the imposed displacement on the seal is only 20 percent of 
Wb , which is 5 percent of Wt. 

Figure 6b is plotted for e12 at the edge from bottom to top 
for a trapezoidal cross section . Shear strains are highest at 
the bottom, decrease to zero at about quarter of the depth 
going up, then increase again at the top, because of the corner. 
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In Figure 6a, e12 is highest at the bottom or top corner, 
decreasing to zero at the center, and then increasing to a 
maximum at the other corner . Note that values at both corners 
are equal due to symmetry . 

Centerline Conditions In Figure 7, e 1 ,, e 22 , and e,2 are 
plotted at the centerline of symmetry with respect to the 
y-axis. Very consistent results are observed where e11 and e22 

are equal and opposite in magnitude because the volumetric 
strain is zero . That is to say, since the total volumetric strain , 
e11 + e22 + e33 = 0, and e 33 = 0, e 11 = - e 22 . On the other 
hand, e, 2 is always about zero at the center. 

Comparison of e11 with Parabolic Model Figure 8 shows 
axial strain (e 11 ) comparison between FEM results and the 
results obtained by Tons' parabolic model for a rectangular 
cross section along Line AA' and BB' (1). It can be observed 
that e 11 is uniform in magnitude in the interior portion of the 
seal, and there is an agreement in results between Tons' model 
and FEM all along the seal surface except at the corners of 
the joint-wall interface. 

Effects of Variations in Cross-Section Dimensions 

In the following analysis and discussion, a typical trap-rec 
cross section was used as the starting point with varied di
mensions. Rectangular and trapezoidal cross sections were 
covered in the analyses of these variations. 

Effects of Variations in Bottom Width (Wb) 

A trap-rec cross section was analyzed for different values of 
Wb, keeping Wt, Dt, and Dr constant. Wb was varied between 
Ys and 1 in. at Wt = 1, Dt = 0.5, and Dr = 0.5 in. Graphs 
for the shear strains and maximum displacements versus Wb 
are shown in Figure 9. 

It can be noticed from Figure 9 (top) that there is a signif
icant increase in shear strain between values at Wb = 1 and 
values at Wb = Ys in. At 20 percent of Wb displacement, e12 

at Wb = 0.125 is about 1.6 e ,2 at Wb = 1. 
In Figure 9 (bottom), Ht and Hb are plotted against Wb . 

Note that the maximum Ht at Wb = 1 is about 3 times higher 
than the maximum Ht when Wb = Ys in. This may be because 
the structure is being displaced to 20 percent of Wb. When 
Wb = Ys in ., the total imposed 20 percent Wb displacement 
is 0.025 ; when Wb = 1 in. the total displacement is 0.2, which 
is eight times larger. 

Note also that Ht is less than Hb at values of Wb < 0.35 
in. and becomes greater between values of 0.35 s Wb < 1. 
At Wb = 1, the section is rectangular or square and Ht = 
Hb. This behavior might be explained as follows: when the 
seal is very narrow at the bottom rectangular portion, the 20 
percent extension of Wb is small compared with Wt and does 
not have a significant effect on the trapezoidal portion. 

Effects of Variations in Rectangular Depth (Dr) 

The same trap-rec cross section was analyzed for different 
values of Dr, keeping Wt, Wb, and Dtconstant. Dr was varied 
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between 0 and 1.5 in . Graphs for the shear strains and max
imum displacements versus Dr are shown in Figure 10. 

It can be observed in Figure 10 (top) that as Dr increases, 
maximum shear strain increases significantly. That is, e12 for 
Dr = 1.5 is about seven times e12 for Dr = 0. This means 
that if the crack were closed at the bottom of the trapezoidal 
section, the strain concentration could be decreased seven 
times. 

Figure 10 (bottom) shows Ht and Hb at 20 percent of Wb 
displacement. Hb at Dr = 1.5 is about 20 times higher than 
when Dr = 0, that is, when the section is only trapezoidal. 

It is important to observe that although the top width is 
wider than the bottom width, it can be seen that Hb at high 
Dr > 0.35 tends to be larger than Ht, making Ht/ Hb < 1. 
As the rectangular depth Dr increases, both displacements 
increase. As Dr reaches about 0.35, Hb becomes greater than 
Ht. 

Effects of Variations in Trapezoidal Depth (Dt) 

Again, the same trap-rec cross section was analyzed for dif
ferent values of Dt, keeping Wt, Wb, and Dr constant. Dt 
was varied between 0 and 1.5 in. at constant Wt = 1, Wb = 
0.25, and Dr = 0.5 in . Results show that Dt, when compared 
with Dr or Wb, does not have a significant effect on the change 
in response. For detail explanations, the reader is referred to 
the work by Khuri (21) . 

GENERAL OBSERVATIONS 

The discussion shows that as Dr of a trap-rec section increases 
strains, Ht , and Hb increase significantly and that as Wb de~ 
creases, the response increases accordingly . 

In comparing Figures 9 and 10, it can be observed that an 
increase in Dr, as seen in Figure 10, has a significantly larger 
effect on the increase in shear strain (e12) and displacements 
(Ht and Hb) than that of a decrease in Wb in Figure 9. This 
is because an increase in the depth of a narrow joint (Wb = 
0. 25) will increase the strains, because when Dr = 1.5, larger 
deformations will occur in the material near the bottom cor
ner. 

Also, the displacement imposed on the sealant is 20 percent 
of Wb throughout. If this crack were actually designed or 
a~sumed to be larger than the actual Wb , then a 20 percent 
displacement would give much higher values because it is not 
20 percent anymore, but actually it could be 50or100 percent. 
If a crack is assumed to be Y2-in. at the bottom and was 
designed or expected to be such, then 20 percent of Wb is 
equal to 0.1 in. However , if the crack is not closed at the 
bottom , the material will flow into a much smaller Wb than 
was calculated for-say , 1/s in . This means that a 0.1-in . dis
placement is not 20 percent of Wb anymore but 80 percent 
of Wb. A displacement of 80 percent of Wb would cause very 
large strains in a seal. 

As can be seen from these results, closing the bottom of 
the joint may improve the performance and life expectancy 
of crack sealants. This can be done by installing a special 
backup rod at the desired depth. 
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CONCLUSIONS 

Laboratory measurements and nonlinear incompressible hy
perelastic (Mooney-Rivlin) finite element formulations were 
used to compare different seal cross sections. Silicone Dow 
888 was used for laboratory determination of the strain energy 
function and bulge and sag measurements. Using certain as
sumptions, finite element analysis was used to calculate strains 
and displacements. Comparisons between all cross sections 
were made on the basis of strains and displacements and cross
secrional variations in dimensions. 

It was concluded that 

1. The most desirable cross section is rectangular, because 
trapezoidal and trap-rec cross sections can cause high strains 
if not properly designed and implemented. 

2. Wide and shallow seals are highly recommended; seals 
with a high WID ratio(> 1.5) provide lower strains than those 
with a low WID ratio. 

3. Ht = Hb for rectangular cross sections and Ht > Hb for 
trapezoidal cross sections, but Ht and Hb for a trap-rec cross 

section are not predictable without calculations and depend 
mostly on Dr and Wb. 

4. As the bottom width (Wb) in a trapezoidal seal is de
creased and the depth is increased, strains are increased; as 
the material is allowed to flow deeper into a crack, it creates 
a point of high stress concentration. This leads to the conclu
sion that cracks should be closed at the bottom by a backup 
rod to eliminate the possibility of creating a trap-rec cross 
section. 

5. Tons' parabolic calculations (for rectangular seals) and 
the finite element analysis appear to be m close agreement 
for the maximum displacements, bulge and sag. For the axial 
strain (e 11), results show that there is a good agreement all 
along the sealant surface except at the corners, where the 
sealant meets the joint walls . Tons' method does not apply 
to trapezoidal or trap-rec cross sections. 

6. The FEM method used in this research seems to be prom
ising, but it did not accurately predict the response at the 
corners because of a discontinuity. However, with continued 
research and development in this area, improvements may be 
expected, including new seal design procedures. 



Khuri and Tons 

RECOMMENDATIONS 

Recommendations for future research are summarized as 
follows: 

1. Experimentally determine failure strain limit inside the 
seal by implanting strain gauges at the corners and throughout 
the seal structure and simulating environmental conditions; 
using these values, comparison with FEM results can be made. 

2. Apply the theory of fracture mechanics to determine 
bond failure criteria, then use the polynomial version of the 
finite element method, which may be more stable at the 
discontinuity. 
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