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Bus Route 0-D Matrix Generation: 
Relationship Between Biproportional and 
Recursive Methods 

PETER G. FURTH AND DAVID s. NAVICK 

Planners must sometimes synthesize transit route origin
destination (0-D) matrices with limited data , usually on-off counts 
and sometimes a small or outdated 0 -D survey sample. When a 
small 0-D sample is available, iterative methods such as the bi
proportional method that begin with the sample as a seed matrix 
can be used adjusted to match on-off totals. When only on-off 
totals are available, the recur ive method ofTsygaJnitsl..J' ha been 
found to matcb 0-D patterns on some routes better than others. 
This method is in fact a special ca e of the biproportional method 
using an implicit null seed matrix that contain information on 
directionality and minimum trip length. [t illustrates why the 
recursive method is inappropriate when there is significant com
petition between routes, and offers a correction for when on-off 
data have been aggregated to the segment level. Estimation errors 
are then compared to help indicate how large the seed sample 
should be in order to produce a more accurate estimate than an 
estimate produced with a null seed. 

A route-level origin-destination (0-D) matrix (trip table::) gives 
the number of passengers traveling between each pair of stops 
or stations on a transit route in a particular direction. It can 
be specific to any period of interest, from the individual ve
hicle trip to an entire day. A route-level 0-D matrix is an 
important descriptor of passenger demand that has been used 
for such analyses as systematic route evaluations {1,2), route 
and schedule design for short-turning (3), zonal service ( 4), 
limited-stop service (5), and complementary express and local 
service (6). 

A route-level 0-D matrix can be obtained by directly sam
pling passengers. The typical passenger survey, in which pas
sengers fill in a questionnaire asking where they boarded and 
where they plan to leave, leaves a lot to be desired. Response 
rates are often low, and vary according to critical factors such 
as trip length-did the passenger have enough time to fill out 
the questionnaire?-and origin-stop-did the passenger get 
a seat? Is this stop in a low literacy neighborhood?-which 
may bias the results. A special purpose survey method, called 
by one author the "no questions asked" method (2), appears 
to overcome this nonresponse problem. Passengers are given 
origin-coded cards when they board and are asked to return 
the cards when they alight. By careful collection of the cards 
by alighting stop, 0-D information is obtained. Practitioners 
report response rates of over 90 percent (2 ,7). However, this 
method is not in common use, because it requires one checker 
at each door and careful pre-trip preparation. 

Far more common and easier to obtain than 0-D data are 
on-off counts. In the context of 0-D matrix generation, on-
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off counts represent row and column totals. It is not difficult 
for a ride checker to obtain a 100 percent sample of on-off 
counts, and measurement error is generally agreed to be quite 
small. Therefore an 0-D matrix whose row and column totals 
agree with the on-off counts should be preferred to one ob
tained by simple expansion of a small 0-D sample. Of course, 
there are many possible 0-D matrices whose row and column 
totals match the on-off counts. The problem of 0-D matrix 
synthesis is to generate an 0-D matrix that agrees with a 
given set of row and column totals and that meets some criteria 
of being the best or most likely 0-D matrix. Ben-Akiva et 
al. (8) describe three methods for combining a small 0-D 
sample with on-off counts: the biproportional method, con
strained maximum likelihood, and constrained generalized 
least squares. All three of these methods involve iterative 
computations. The first two are preferable because the third 
sometimes generates negative m:1trix entries, even though all 
three yield very similar results. The biproportional method is 
computationally more attractive, is better known, and has 
been used in a variety of contexts (9-11). In further work, 
Ben-Akiva (12) shows how the maximum likelihood approach 
can be used to derive estimation methods that combine var
ious imperfect sources of information. In an application to 
transit route 0-D estimation, his assumptions about the struc
ture of the nonresponse bias lead again to the simple bipro
portional method. 

It is often the case, however, that a small 0-D sample is 
not available, or that the small sample is so small or suspected 
of bias that an estimate based on it may not be reliable. A 
method for synthesizing a route-level 0-D matrix from on
off counts alone was proposed by Tsygalnitsky {13). It is a 
very simple method involving a single pass of recursive cal
culations, and can be done by hand (although use of a spread
sheet or computer program is still advi able). This method 
has also been used by London Transport in at least one study, 
presumably having been developed independently (J). Tsy
ga!nil~ky found that his recursive method fit well with data 
from Toulouse, France. Simon and Furth (7) also tested it 
against 0-D data from two routes in Los Angeles, and again 
found a good fit, although the fit on one route was better 
than that on another. Ben-Akiva et al. (8) tested the recursive 
method against 0-D matrices generated using the bipropor
tional and constrained maximum likelihood methods for two 
Boston area routes and found that it yielded matrix estimates 
that differed substantially from the estimates obtained by the 
iterative methods based on a small-sample 0-D survey. 

Although Tsygalnitsky's recursive method and the bipro
portional method are motivated from different assumptions, 
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the recursive method is actually a special case of the bipro
portional method. The biproportional method takes an initial 
matrix, called a seed matrix, and factors it to match on-off 
counts . The seed matrix contains information concerning the 
preferences for the various 0-D pairs. Typically, the seed 
matrix is an 0-D sample. If there is no 0-D sample to begin 
with, a reasonable guess is to use a "null seed," one that 
assumes that every permissible 0-D pair is equally preferred. 
It is demonstrated that Tsygalnitsky's recursive method is the 
same as the biproportional method using a null seed. 

This insight makes it possible to better analyze which method 
is more appropriate under various circumstances. A small 
0-D sample contains valuable site-specific information about 
0-D pair preferences but is also subject to sampling error 
and nonresponse bias. A null seed has no sampling error or 
nonresponse bias but lacks site-specific information. In ad
dition, two common factors-aggregation of stops into seg
ments and competition from other routes-are shown to be 
in contradiction to the assumptions underlying the null seed, 
and consequently the recursive method should not be ex
pected to perform well under these circumstances. 

BUS ROUTES ANALYZED 

Repeated reference is made to four bus routes that have been 
previously analyzed. Lines 16 and 93, analyzed by Simon and 
Furth (7) are operated by the Southern California Rapid Tran
sit District. For Line 16, virtually complete 0-D data, en
compassing 266 passengers, were obtained from five inbound 
short-turning trips over a 5-mi radial route containing 40 stops. 
For Line 93, virtually complete 0-D data were obtained on 
four a.m.-peak (383 passengers) and four p.m.-peak (273 pas
sengers) trips. Four trips were local trips covering the entire 
140-stop route from downtown Los Angeles to the San Fer
nando Valley, three trips were short-turned in North Holly
wood (about 90 stops), and one p.m. trip ran express from 
downtown to the valley. Routes 77 and 350, analyzed by Ben 
Akiva et al. (8), are operated by the Massachusetts Bay Trans
portation Authority. These routes were analyzed inbound in 
the a.m. peak and outbound in the p.m. peak . The available 
data consist of a small 0-D sample augmented by on-off counts. 
Route 77 is a heavily used radial route, 5.5 mi long, running 
through the suburb of Arlington into Harvard Square in Cam
bridge. In the a.m. peak, 2,148 passengers were counted, and 
0-D data were obtained from 54. In the p.m. peak, 1,617 
passengers were counted, with 0-D data obtained from 138. 
Route 350 is 15.2 mi long, with a large collection/distribution 
section in suburbs north of Boston, connected by express 
operation to selected stops in Cambridge and downtown Bos
ton. In the a.m. peak, 485 passengers were counted, with 
0-D data obtained from 76. In the p .m. peak, 200 passengers 
were counted, with 0-D data obtained from 61. 

TSYGALNITSKY'S RECURSIVE METHOD 

Tsygalnitsky's recursive method proceeds stop by stop, dis
tributing alightings at each stop among origin stops in pro
portion to the number of people from each origin stop who 
are eligible to alight. To be eligible, passengers must have 
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traveled a minimum distance, and must not have alighted 
previously. Taking each stop as a node, with nodes consec
utively numbered from 1 to n in the direction of travel, let 

t;1 = passenger trips from i to j, 
t;. = boardings at i = "i};1, 

t.1 = alightings at j = I;t;1, 

m; first node at which passengers who board at i are 
eligible to alight (m; ~ i), 

E1 set of nodes that can serve as origins for passengers 
alighting at j, 

e;1 = number of passengers who boarded at i who are eli
gible to alight at j, 

e.1 = total number of passengers eligible to alight at j 
I,e;1, and 

fj = fraction of eligible passengers who alight at j 
t) e.1 

Initially, set e;1 = 0 for all (i, j) except when j = m;, in 
which case set e;1 = t;. · Computation begins with the first node 
at which passengers are eligible to alight; call it Node k. After 
calculating e.k and fk> let 

(1) 

Stop if k = n; otherwise update: 

(2) 

and advance to the next node (let k = k + 1) and return to 
Equation 1. 

Simon and Furth call this method a fluid analogy, because 
passengers on the bus are likened to a thoroughly-mixed fluid 
out of which alighting passengers are drawn at each alighting 
stop in proportion to their representation in the fluid . Newly 
boarding passengers are added to the fluid after they have 
met the minimum travel distance criterion. (This minimum 
distance may be expressed in stops, distance, or time units, 
and may vary from stop to stop.) Ben-Akiva et al. (8) call it 
an intervening opportunities method, because it follows the 
logic of classical intervening opportunities models in giving 
priority to closer destinations. 

BIPROPORTIONAL METHOD 

Additional notation that will be used is 

S;k = seed matrix, 
A; = overall adjustment factor for row i, 
Bk = overall adjustment factor for column k. 

The seed matrix contains information about relative like
lihoods of 0-D pairs to be chosen by travelers. It may be a 
small-sample 0-D matrix or an out-of-date 0-D matrix. If no 
empirical seed matrix is available , a seed matrix can be created 
by an analyst to reflect information available on preferences 
between 0-D pairs, as done by Furth (14) for vehicular traffic 
at an intersection. 

The method is to alternately balance rows and columns to 
match the desired row and column totals until convergence. 
Initially, we set t;k = s;k· Then, for iteration h, rows are 
balanced: 

for all rows i (3) 
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where the balancing factor a7 is the ratio of the desired row 
i total to the current row i total. Next, columns are likewise 
balanced: 

for all columns k (4) 

where the balancing factor bZ is the ratio of the desired column 
k total to the current column k total. Since balancing columns 
upsets the balance of the rows, the process is repeated until 
convergence is reached, that is, until, after balancing the col
umns, all the row totals agree (to some arbitrary tolerance) 
with the desired row totals. Reflecting the logic of the cal
culations, one name that has been used for this method is 
"iterative proportional fit." The name "bi proportional method" 
derives from the form of the final estimate for cell (i, k), 
which is 

(5) 

where the overall balancing factor for row i is A, = Tiha7 and 
the overall balancing factor for column k is Bk = TihbZ. It is 
well known that the biproportional method has a unique so
lution (15,16). In general, there is no closed form or single
pass recursive algorithm for determining the overall balancing 
factors, which must therefore be found by an iterative method 
such as the iterative proportional fit. 

The biproportional method has been derived in several dif
ferent ways. Several authors, including Ben-Akiva et al. (8) 
and Lamond and Stewart (16), derive it as a case of minimizing 
a measure of discrepancy between the estimate and the seed. 
Hauer et al. (JO) derive it as the moi;t lihly rn;iliwtion of o 
random (either Poisson or multinomial) process in which the 
seed represents the known ocurrence rates. Ben-Akiva (12) 
derives it as the maximum likelihood estimate of the popu
lation trip rates, assuming that the seed is a random sample 
subject to sampling bias, and the relative bias is a product of 
two factors, one from the origin stop and one from the des
tination stop. 

RECURSIVE METHOD AS SPECIAL CASE OF 
BIPROPORTIONAL METHOD 

The estimates produced by Tsygalnitsky's recursive method 
are actually a biproportional form. Implicitly underlying the 
recursive model is a null seed containing information on whether 
travel is permitted or not, based on directionality and mini
mum trip length, given by 

if travel from i to k is permitted 
otherwise (6) 

The recursive method also implies the following restrictions 
on the seed: s1" = 1 for all i, and for all k < n, s1.k+ 1 = 1 if 
S;k = 1. 

Theorem 

The recursive method is a special case of the biproportional 
method in which the seed matrix is the null seed matrix given 
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by Equation 6. More specifically, the recursive estimates 
t1k = e,Jk (Equation 1) are equivalent to the biproportional 
estimates t1k = s1kA1Bk (Equation 5), where 

for all i = 1, . . . , n (7) 

(8) 

and 

for all k = 1, . . . , n - 1 (9) 

Proof (by construction) 

Because the biproportional method has a unique solution, it 
is sufficient to prove that estimates produced by the recursive 
method have a biproportional form. Consider column n (i.e., 
let k = n). By inspection, it is clear that Equations 1 and 5 
are equivalent. Now consider column n - 1 (i.e., let k = 

n - 1). By construction, the recursive method yields e1.n = 
ei.n - i (1 - fn _ 1) if travel from i to n - 1 is permitted. Rear
ranging, we obtain 

if travel from i ton - 1 is permitted 
(10) 

otherwise 

Substituting for e1,,,_ 1 yields 

(11) 

which is a biproprotional form with the balancing factors given 
by Equations 7 and 9. 

Now consider column n - 2 (i.e., k = n - 2). By similar 
argument, 

iftravelfromiton - 2ispermitted 
(12) 

otherwise 

Combining Equations 11 and 12 yields 

ei,n - 2 = 

if travel from i ton - 2 is permitted 

otherwise (13) 

Substituting for e1.n _ 2 in Equation 1 with k = n - 2 again 
yields a biproportional form, with balancing factors given by 
Equations 7 and 9. Similar reasoning can be applied to each 
successive column k = n - 3, n - 4, ... Equation 13 
becomes generalized to 

if travel from i to k is permitted 

otherwise (14) 
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from which the equivalence of Equations 1 and 5, using the 
substitutions given by Equations 7 and 9, is obvious. Q. E. D. 

This theorem provides a framework for determining which 
method of transit route 0-D matrix generation, the recursive 
or biproportional method, is better. Because the two methods 
differ only in which seed is used, the question can be reframed 
in terms of which seed is better, a null seed or a seed derived 
from exogenous data such as a small sample. We have already 
mentioned a few empirical studies of the methods. The re
mainder of this paper examines theoretical deficiencies of 
both the null seed and the small sample seed in common 
situations along with some experimentation, offering further 
guidance as to which seed is most appropriate in various 
situations. 

One interesting corollary of this theorem is that when the 
seed has the form of a null seed, the recursive method provides 
a single-pass algorithm for finding the bi proportional solution. 
Another corollary is that the recursive method is reversible; 
that is, it will yield the same results if one works backward 
or forward along the route. In this sense, the recursive method 
is not myopic like other intervening opportunities models. It 
appears to be myopic since it determines demand to stops 
along the route without explicitly considering what oppor
tunities lie further downstream. 

FACTORS AFFECTING APPLICABILITY OF 
RECURSIVE METHOD 

The fact that the recursive method is the same as the bipro
portional method with a null seed helps indicate the types of 
routes and situations in which the recursive model can or 
cannot be expected to perform well. It can be expected to 
perform well when there is little a priori reason to believe 
that anything other than the popularity of the origin and des
tination stops is responsible for the demand for travel between 
0-D pairs. In the two situations suggested by Tsygalnitsky 
(13), a null seed appears plausible. These situations are (a) an 
express route with a collection segment outside the city and 
a distribution segment downtown, with travel permitted only 
between the collection and distribution segment; and (b) a 
short local route free from interference (e.g., competition) 
with other routes. 

However, there are other situations in which a null seed 
violates a priori knowledge of trip-making behavior, the fore
most being when significant competition from other routes 
affects demand. For example, imagine a local route between 
Segment A and Segment E, with several intermediate seg
ments . If there is another route that goes express from Seg
ment A to Segment E, we would expect that the express route 
would capture most of the demand from A to E. The seed 
matrix for the local route should therefore have a relatively 
low propensity for stop pairs that are served by the express 
route, rather than equal propensities throughout. Likewise, 
if two local routes begin at a common intersection uptown 
and end at a common location downtown and use different 
paths to get there, the travel market that can use either route 
will be split between the routes , lowering on both routes the 
propensity to travel between stop pairs served by both routes. 
Other network effects can affect travel propensity along a 
route as well. For example, a large transfer volume from a 
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feeder route can influence propensity for travel between that 
transfer point and other stops on the main route because these 
transferring passengers may have a high propensity to go to 
certain portions of the main route, but not to other portions 
(e.g., there may be a more expedient path to some portions 
of the main route than via that transfer point). 

Long local routes may be another example of the unsuit
ability of a null seed. Travel propensity is commonly agreed 
to decline with distance, except for very short distances, where 
competition with walking yields the opposite effect. On short 
routes , travel time differences between different 0-D pairs 
are sufficiently minor that an equal-propensity seed is still 
plausible. But on long routes, even if there is no competition 
from other routes, propensities should be expected to be smaller 
for long trips than for short trips . It has yet to be shown how 
long a route can be before the null seed assumption becomes 
unrealistic. 

Results reported in the literature confirm these expecta
tions. For example, Tsygalnitsky found that his method per
formed very well on the two routes he tested, one an express 
route with separate collection and distribution areas, the other 
a short local route . Simon and Furth (7) found that Tsygal
nitsky's recursive method worked very well on a short local 
route, but that on a longer route with competition from ex
press routes, it overpredicted very long trips. It should be 
noted that, because the average trip length is determined by 
the given on and off totals on the route, any model for 0-D 
matrix generation must yield the correct average trip length. 
Therefore, an overprediction of long trips must be accom
panied by an overprediction of short trips. Ben-Akiva et al. 
found that the recursive method overpredicts very long and 
very short trips, particularly on Route 350, a long route with 
competition from express service . It is not clear, however, 
whether the discrepancies on these longer routes arise because 
of interference from competing routes, from route length, or 
from using segment-level data. 

0-D MATRIX ESTIMATION WITH 
SEGMENT-LEVEL DATA 

An important factor affecting the applicability of the recursive 
method is whether the on-off counts are by individual stop 
or by segment (aggregations of stops). With stop-level data , 
travel along the diagonal of the 0-D matrix (i.e., beginning 
and ending at the same stop) is not permissible , but with 
segment-level data, travel along the diagonal is permissible. 
Although the recursive method recognizes only the dichotomy 
permissible/not permissible (1 or 0), the possibility of intra
segment travel calls for a finer level of gradation. Intraseg
ment travel in a segment with n stops is an aggregation of n2 

stop pairs. If propensity is 1 for stop pairs for which travel is 
permissible and 0 for ineligible pairs, then the average pro
pensity for stop pairs contained in that segment is at most 
(n - 1)/2n, which is less than 0.5. Similarly, average travel 
propensity between nearby segments can be less than 1 if the 
minimum travel distance is greater than one stop, because the 
pair of nearby segments could contain stop pairs that are 
ineligible for travel. In the example given in Figure 1, a null 
seed containing only O's and l's at the stop level is shown to 
be equivalent at the segment level to a matrix of average 
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FIGURE 1 Stop-level null seed and segment
level equivalent. 

propensities that include, besides O's and l's, fractional values 
ranging from 1/16 to 23/24. 

__ Because the recursive algorithm itself does not-permit.frac
tional propensities, applying it to segment-level data will bias 
results, because this method forces all those fractional pro
pensities to be l's. For example, Ben-Akiva et al. apply the 
recursive method to segment-level data, setting the minimum 
travel distance to zero in order to make intrasegment travel 
permissible. As should be expected, they find that the method 
predicts too many intrasegment trips. In contrast, Simon and 
Furth (7) and Tsygalnitsky apply the recursive method at the 
stop level, although the results are often presented at the 
segment level, avoiding this bias. This effect no doubt ac
counts in part for the poor fit found by Ben-Akiva et al. using 
the recursive method. 

When only segment-level data are available, a method of 
synthesizing 0-D matrices that is consistent with the recursive 
method at the stop level is the biproportional method with a 
seed matrix consisting of segment-level average propensities. 
An example using data from Line 93 demonstrates how using 
this "equivalent null seed" avoids the large bias of a naive 
segment-level application of the recursive method. Table 1 
shuws fuui sels uf resulls (pn:sented at the segment level even 
if the analysis was done at the stop level): (a) the actual 
0-D matrix; (b) the stop-level estimate using a stop-level null 
seed (minimum trip length = 2 stops), which is the same as 
a recursive estimate; (c) the segment-level estimate made 
using the segment-level equivalent null seed; and (d) the 
segment-level estimate made using a naive null seed (mini
mum trip length = 0 segments), which is the same as a re
cursive estimate made at the segment level. Three different 
error measures are used: relative root-mean-square error 
(RRMSE), root-mean-weighted fractional error (RMWFE), 
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and x2. The RMWFE can be used to judge whether the actual 
data obtained agree with the model. Formulas for these mea
sures applied at the segment level are 

RMWFE = {_!_ i i [(i11 - t,1)2]}112 
t .. • ~ 1 1 ~ · 1,, 

where 

~i = passenger trips from i to j, 
tii = synthesized passenger trips from i to j, 
t .. = total passenger trips, and 

(15) 

(16) 

(17) 

K = number of matrix cells containing permissible trips. 

The segment-level estimate made using the equivalent null 
seed is almost as good as the stop-level estimate. The equiv
alent null seed minimizes aggregation bias, and aggregation 
error, as shown by the increase in the error measures, is small. 
The results are markedly worse when the recursive algorithm 
is applied naively at the segment level. The tendency in this 
case to predict too many very short and very long trips is 
clearly seen. The same analysis was performed for Line 16 
and similar results were obtained. 

An attempt was also made to assess the effect of aggregation 
bias_ on the_ t~sts performed _by Ben~Aiciv_a et al. (8). Thrt<t< 
segment-level estimates for Route 77 outbound are shown in 
Table 2: the "best" estimate, a biproportional estimate gen
erated using a small-sample 0-D survey as a seed; the estimate 
using an equivalent null seed based on a minimum trip length 
of three stops; and the naive estimate using a segment-level 
null seed (minimum trip length = 0 segments). Because stop
level data were not available, it was impossible to generate a 
stop-level estimate and compare the results with the true dis
tribution. Measures of error are in comparison with the best 
estimate. The equivalent null seed estimate approximates what 
would be obtained from a proper stop-level application of the 
recursive method. The comparison of these cases clearly shows 
how the naive segment-level application of the recursive method 
increases the estimated number of very short and very long 
trips. 

SAMPLING ERROR AND BIAS WITH 
SMALL-SAMPLE SEED 

It may seem that any empirical seed, whether from a small
sample 0-D survey or an old 0-D survey, would be superior 
to pleading ignorance and using a null seed. However, a null 
seed is not such a bad guess for many situations, being con
sistent with our understanding of travel behavior and having 
been confirmed on a few test routes. Before an empirical seed 
is used with the biproportional method or another iterative 
method, the value of its information content should be con
sidered. Although information content can in many contexts 
be difficult to judge, in the case of a small-sample 0-D matrix 



TABLE 1 COMPARISON OF STOP-LEVEL AND SEGMENT-LEVEL 
ESTIMATES, LINE 93, a.m. 

a. Actual 0-D Matrix 

From I To I 2 3 4 7 On 
l 0 14 9 5 8 7 5 51 
2 12 10 12 22 25 7 89 
3 3 18 16 2 18 57 

3 20 12 3 40 
6 25 11 45 

8 28 38 
32 47 

16 
22 38 72 79 

b. Stop-Level Estimate 

From I To I 2 3 4 7 
I o.o II . 6.4 7.6 10.3 .3 .s 1.4 I 
2 14.4 12.1 13.8 20.0 15.6 10.7 2.4 89 
3 3.5 11.8 17.2 12.4 9.4 2.7 51 
4 4.8 14.0 12.9 6.9 1.4 40 
5 10.5 19.5 12.2 v 45 
6 10.3 25.6 2.2 38 
7 33.7 13.3 47 
8 16.0 16 

Off 2 22 38 72 79 104 42 383 

c. Segment-Level Esrimate with Equivalent Null Seed 

6 
7. 

15.9 
13.0 
ll.4 
18.9 
12.1 

d. Segment-Level Estimate with Naive Null Seed 

From I To 
I 
2 
3 

I . ~ 

16.5 15.6 

22 JR 72 

12.2 
9.9 

13.9 
18.5 

I 

1.9 51 
3.3 89 
2.6 57 
2.1 40 
2.9 45 
3.9 38 
9.4 47 

16.0 16 
42 83 

RRMSE = 0.352 

RMWFE=0.479 

Chi Squared= 47.2 

RRMSE = 0.368 

RMWFE = 0.513 

Chi Squared'= 52.2 

RRMSE = 0.534 

RMWFE = 0.641 

Chi Squared= 94.8 

TABLE 2 COMPARISON OF SEGMENT-LEVEL ESTIMATES, 
ROUTE 77 OUTBOUND 

a. Estimate using Small 0-D Sample Seed 

From I To 1 2 4 s 6 7 
I 0. 14. 16.2 3.2 I . I. 92.4 l 
2 6.5 56.7 6.5 13.0 84.3 298. l 465 
3 9.7 3.2 1.6 38.9 228.5 282 
4 6.5 3.2 4.9 197.7 212 
5 o.o 9.7 110.2 120 
6 40;5 367.8 408 
7 0.0 0 

or 0 21 19 19 180 1295 1617 

b. Segment-Leve/ Estimate with Equivalent Null Seed 

Fro mlTo I 2 3 4 5 6 7 On 
l o.u 11.8 16.2 2.4 2.1 14.6 SH 130 
2 9.2 57.9 9.4 8.0 57.0 323.4 465 
3 8.9 6.1 S.5 39.2 222.3 282 RRMSE = 0.197 

4 I .I 3.4 31 .1 176.4 212 
s o.o, 15.4 '104.6 120 
6 22.7 385.3 408 

RMWFE = 0.427 

7 o.o 0 Chi Squared= 106.3 
orr 0 21 83 19 19 180 1295 1617 

c. Segment-Level Esrimate with Naive Null Seed 

Fro mlTo l l 3 4 s 6 7 On 
1 0.0 4.6 12.2 21 1.9 13.3 95.8 130 
2 16.4 43.5 7.8 7.0 47.6 342.7 465 
3 27.3 4.9 4.4 29.9 215.4 282 RRMSE = 0.242 
4 4.1 3.6 24.9 179.3 212 
s 2.1 14.4 103.S 120 RMWFE=0.407 
6 49.8 358.2 408 
7 0.0 0 Chi Squared= 126.1 

arr 0 21 83 19 19 (HO 1295 1617 
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seed, the information content can be evaluated in terms of 
bias and sample size. 

The main bias in 0-D surveys is nonresponse bias, which 
is present if the response rate is substantially below 100 per
cent, a condition endemic to surveys on busy bus routes, and 
the nonresponding population is different in its 0-D patterns 
from the responding population. The differences most often 
cited are as follows : nonresponders (a) are more likely to 
come from segments of the route in neighborhoods that have 
lower literacy or are less cooperative, or both ; (b) are more 
likely to board where the route is crowded and they can't get 
a seat; and (c) are more likely to be making short trips , leaving 
them too little time to complete a survey. Fortunately, the 
first two biases are proportional to the response rates at each 
origin and each destination stop , and since the biproportional 
method correctly expands origin and destination totals, these 
biases disappear, as confirmed by Ben-Akiva (12). The third 
bias, however, remains, and can be significant, though its 
extent is hard to judge. 

The effect of sample size on quality of information in an 
0-D matrix is also well known. A common rule of thumb is 
that an observation of fewer than five travelers in a cell is 
unreliable, since a difference of one or two people can effect 
an enormous relative change in the value. In the extreme 
case, a cell with no observations poses a special challenge, 
since a biproportional estimate for a cell must be zero if its 
seed value is zero. If a small-sample 0-D matrix, aggregated 
to the segment level , where the segment is the level of the 
detail one is finally interested in, has a substantial number of 
cells with fewer than five observations , the information con
tent of the seed may be so compromised by sampling error 
that it is worse than the information content of a null seed . 

For example, the small-sample 0-D surveys used by Ben
Akiva et al. (8) are all quite small, containing 61, 76, 138, 
and 54 responses for the four route/direction combinations 
studied . In the case with the greatest sample size, Route 77 
outbound, only 8 of 25 segment-to-segment cells contain five 
or more observations, and six of these all lie in the same 
column of the matrix alighting at the last stop. Ten of the 25 
cells contain no observations at all. An estimate based on 
such a seed seems risky. 

Ben-Akiva et al. respond to the problem posed by cells 
with zero observations by offering a correction to deal with 
these "non-structural zeros." Even with this correction, es
timates based on the empirical seed are heavily influenced by 
patterns that appear in the seed. Their estimate for Route 77 
outbound made using this empirical seed (Table 2a , equiva
lent to their Table 3) contains the peculiar pattern in which, 
although there is substantial demand from Segments 1 to 7 
(92 passengers) and from Segments 2 to 6 (84 passengers), 
there is virtually no demand from Segments 1 to 6 (1.6 pas
sengers), because in the small-sample 0-D survey, no one 
went from 1 to 6. In contrast, the estimate resulting from the 
equivalent null seed (Table 2b) has a much more typical pat
tern, assigning a far larger volume (14.6 passengers) to 0-D 
pair 1- 6. Because Route 77 is a short route and, at the time 
of data collection, had no significant competition from other 
routes, a null seed seems quite plausible. The question is 
whether the peculiar p,attern found using the small-sample 
seed is a reflection of true patterns in the population, or just 
the spurious outcome of a random sampling process . 
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The effect of sample size can be addressed more rigorously. 
Ben-Akiva et al. provide equations for determining the ap
proximate standard error of a biproportional estimate based 
on the number of observations in a cell, and also report 
approximate standard errors of their estimates. However, be
cause many of their results are reported normalized to a stan
dard grand total, the level of accuracy attained is not im
mediately apparent. Reversing the normalization, it was found 
that for the case of Route 77 outbound , the relative standard 
error of their estimates (standard error divided by estimate) 
is quite small (below 13 percent) for all six eligible cells in 
which the destination is Segment 7. These were the cells with 
many observations in the empirical seed. In the remaining 19 
eligible cells of the matrix, the seed contained only 26 ob
servations. Consequently, the relative standard error is greater 
than 100 percent in a majority of those cells. For the entire 
matrix, the average passenger volume per eligible cell is 17, 
and the average approximate standard error is 8.4. With a 
smaller sample size, as in the other three cases examined by 
Ben-Akiva et al. (8), errors can be substantially larger. 

How large should a small-sample survey be for it to be a 
more reliable seed than an equivalent null seed for 0-D matrix 
estimation? To explore this issue, a Monte Carlo simulation 
was conducted that repeatedly drew samples at random from 
the population of passengers surveyed on Lines 16 and 93, 
the two routes for which complete stop-level data were avail
able . Simulated sampling was done without replacement, and 
there was no bias in the sampling process . Biproportional 
estimates were generated for various sample sizes using the 
simulated sample as a seed and compared with the true distri
bution. For each sample size, 100 to 200 repetitions were 
made. The final measure of fit reported is the RMSE as av
eraged across all cells and all repetitions for a given sample 
size. The results, shown in Figure 2, show how estimation 
error decreases with the sample size. 

Also shown in Figure 2 is the RMSE resulting from a stop
level estimate using a null seed. While the three cases ex
amined are too few to draw any firm conclusions, the results 
consistently show that a null seed is better than the ideal small
sample seed with fewer than 100 observations. When real
world sampling biases, response errors, and coding errors are 
accounted for, the sample size at which a null seed is as reliable 
as a small-sample survey will be still higher. On the other 
hand, if the route under study has significant competition from 
other routes, the null seed model is theoretically flawed, and 
so a small-sample seed will be preferred even with a sample 
size under 100. 

CONCLUSIONS 

Planners who need route level 0-D matrices have had two 
primary approaches to use for generating 0-D matrices from 
on-off counts. One is the biproportional and similar iterative 
methods that require a seed matrix containing information 
about relative preferences for 0-D pairs. The seed matrix is 
usually a small-sample 0-D matrix. The other technique, Tsy
galnitsky's recursive method, is a computationally simple 
technique that requires no seed matrix. The recursive method 
is actually a special case of the biproportional model using a 
" null seed," a seed matrix in which entries are either zero or 
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FIGURE 2 Estimation error versus sample size. 

one, corresponding to whether travel between stop pairs is 
permissible based on direction of travel and minimum travel 
distance. A null seed is theoretically plausible on certain types 
of routes, such as relatively short routes with little interference 
(e.g., competition) from other routes. Empirical tests on dif
ferent bus routes confirm this hypothesis. 

The structure of the null seed underlying the recursive method 
implies that it is unsuitable for application to segment-level 
data. Instead, the biproportional method should be applied 
using an "equivalent null seed," a seed whose values are the 
average stop-level null seed propensity averaged over the stop 
pairs comprehended in a segment-level pair. This method 
yields results that closely approximate estimates made using 
the recursive method with stop-level data. It is probably the 
best method available for generating a transit route 0-D ma
trix from segment-level data when there is no reliable small
sample survey or old 0-D matrix to serve as a seed. 

Finally, a comparison of estimation error using an equiv
alent null seed versus using a small 0-D sample seed indicates, 
at least for the routes tested, that an ideal small-sample survey 
is preferable to a null seed when the sample size is over 100, 
and that a null seed is preferable when the sample size is 
smaller. In real-world applications, modifications to this 
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threshold should be made to account for imperfections in the 
sampling process and competition between routes. 
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