Managing Quality: Time for a National Policy

KENNETH C. AFFERTON, JACK FREIDENRICH, AND RICHARD M. WEED

One of the nation's most valuable assets is the highway system; U.S. economic well-being depends strongly on the condition of the country's roads and bridges. Any means by which the system can be more effectively constructed and maintained warrants thoughtful consideration. Statistical quality assurance—currently in use or under development in approximately three-fourths of the states—has proven to be a very effective tool to encourage high-quality construction. However, although statistical specification writing must now be recognized as a thoroughly scientific activity, there is great disparity in the applications from state to state and many current practices and published standards are far from optimal. Part 1 of this paper stresses the need for sweeping reforms and suggests that the time is overdue for the establishment of a uniform and thorough national policy on transportation quality assurance. Part 2 describes a variety of obstacles—technical, managerial, political, and cultural—that must be overcome if such a transformation is to be made. Part 3 outlines an extensive series of fundamental principles that must be understood in order to derive the maximum benefit from a quality assurance program. And finally, Part 4 presents a plan of action that, if conscientiously followed, will significantly increase the effectiveness of transportation quality assurance practices nationwide.

PART 1: FACING THE PROBLEM

Few would argue with the statement that U.S. roads and bridges are among the nation's most valuable assets. In a recent column (1), George Will states that transportation (all types) makes up 18 percent of the gross national product, employs one-tenth of the work force, and accounts for 15 to 30 percent of the cost of agricultural products. In another publication (2, p. 1-4), it is stated that the total replacement value of the nation's roads and bridges is estimated to be between $1 and $3 trillion and that any measure that could improve their performance and durability by even 1 percent would result in savings of billions of dollars. Although this latter reference was focused on the projected benefits of research, there is another means by which the performance and durability of roads and bridges can be dramatically improved. The research is complete, and the results—well documented by actual data from many states—suggest that the expected improvement is substantially greater than 1 percent. We are referring to statistical quality assurance (SQA), a body of knowledge and procedures that provides a strong incentive to industry to use state-of-the-art techniques to obtain high-quality construction.

FACING ISSUES

In a recent paper on highway safety, Hauer (3, pp. 241-267) makes some telling points about the tremendous impact of the transportation engineering profession on the overall performance of the roads, bridges, and other modes of transportation under its purview. The author stresses the importance of facing up to certain responsibilities and the consequences of not facing up to these responsibilities. We shall take a similar approach to express our own concerns about what we perceive as serious shortcomings in the area of quality assurance. We shall then outline a series of facts that must be recognized and responsibilities that must be faced in order to derive the full benefits that quality assurance has to offer.

GOALS OF QUALITY ASSURANCE

In the field of transportation, the term "quality assurance" is generally associated with a comprehensive program to achieve conformance with established desired quality levels for design and construction. This program involves people, materials, equipment, procedures, and the optimal use of these resources. Probabilistic concepts and statistical acceptance procedures are frequently used. The following scope statement for the Transportation Research Board Committee A2F03 states the goals quite clearly:

This committee will concern itself with all aspects of total quality management in the transportation field. It will endeavor to foster responsible leadership in the application of both engineering and statistical knowledge toward sound, practical, and effective quality assurance procedures. It will develop and promote methods to achieve high quality design, construction, and maintenance at the lowest possible overall cost. These efforts will include, but not necessarily be limited to, end-result and performance-related specifications, statistical quality assurance and control techniques, acceptance sampling, accuracy and precision of tests, optimal use of limited resources, cost-effectiveness of quality assurance procedures, evaluation of consensus standards, preparation of monographs, and educational programs related to these topics.

This is an admirable set of goals, but if they are to be realized, we believe that a change in thinking and priorities...
will be required. The old attitude of "close enough for highway work" will not do. This not only downplays the importance of high-quality construction, but also serves to discourage the use of modern, effective statistical procedures. If anything, there needs to be a greater willingness to seek out modern technology and use it to its fullest advantage.

WORK ETHIC AND PROFESSIONAL ETHICS

Much has been written recently about the trade deficit and the invasion of American corporations and markets by foreign interests. Various explanations have been offered, but it comes down to this: the United States has been outdone at what used to be its strength—developing and applying modern technology.

Many have observed what has been described as a persistent and progressive deterioration of the work ethic. A rather lengthy list of examples could be compiled, beginning with a general decline of educational standards and ending with an erosion of fundamental values that has led to a whole host of corporate and political ills. The problem is real, it is pervasive, it is present in both the public and private sectors, and it is unlikely to improve unless specific action is taken to correct it.

In the field of quality assurance, the problem manifests itself in a particularly troublesome way. In a discipline dedicated to the pursuit of excellence, it seems totally inappropriate to tolerate specifications and consensus standards that are far from excellent. If demands for excellence are to be made of the construction industry, it is imperative that engineers be willing to demand the same of themselves in the development of the specifications and standards that govern this work.

Ironically, all the necessary statistical tools are well developed and readily available. What is lacking, however, is a widespread willingness to use them. To take advantage of the benefits that modern methods have to offer, engineers can no longer afford to cling to the old ways of doing things just because these ways are familiar and comfortable. Those unfamiliar with the mathematical principles underlying SQA procedures may find it difficult to realize just how inadequate many current practices are.

Leaders within the transportation field must invite an open and thorough scrutiny of current practices and must insist that improvements be made where necessary. To do anything less would be a breach of both professional ethics and public trust.

NEW JERSEY'S EXPERIENCE

Our own experience with SQA, obtained over a period of approximately 20 years, is the basis for what we advocate. We present a brief history here with the belief that it will be both informative and helpful.

A congressional investigation (4, p. 3) in 1962 uncovered many cases of nonconformance in highway construction throughout the country at about the same time the (then) AASHO Road Test provided a wealth of statistical data relating quality measures to performance (5). This led to the realization that various statistical measures can effectively describe the characteristics that are desired and provided the motivation to commence the development of statistically based specifications.

New Jersey was one of several states that began to explore the benefits of this new approach. State design engineers were quick to recognize that, for many highway items, it simply was not possible to define a single level of quality that clearly separated acceptable and unacceptable work. Furthermore, it usually was not practical to require removal and replacement of an item that was only marginally deficient, but on the other hand, neither was it appropriate to accept such an item and pay full price for it. Statistical specifications provided a convenient and practical way to accept these items for a prearranged reduced level of payment.

Random sampling plans, statistical acceptance procedures, and adjusted pay schedules were first developed for various properties of bituminous concrete. As time went on, similar procedures were developed for pavement thickness and surface smoothness and for Portland cement concrete (PCC) strength.

The concrete specification was the first in New Jersey to incorporate a bonus provision, paying up to a maximum of 102 percent for exceptionally high strength. The most recent New Jersey statistical specification includes a combined acceptance procedure for thickness, strength, and surface smoothness of rigid pavement. Surface smoothness dominates and, provided all three parameters are under control, a maximum pay factor of 103 percent is obtainable. A unique feature of this specification is that, within reasonable limits, excesses and deficiencies in thickness and strength are allowed to compensate for each other.

SQA has worked well for the New Jersey Department of Transportation (NJDOT), which continues to use it and strongly endorses it. NJDOT administrators have also learned what to expect when an agency embarks on such a program. First, there is the usual resistance to change, sometimes from within the transportation agency but usually from the various industry organizations outside. The approach is new to many people and it is normal to fear the unknown. Next comes the learning process, in which both the transportation agency and the construction industry become familiar with the new procedures. There are some growing pains—nothing worthwhile comes without effort—but this phase usually proceeds more smoothly if the transportation agency and the construction industry engage in cooperative field trials. And finally comes the actual implementation. On the basis of NJDOT's experience, bid prices may go up a little but quality usually increases dramatically. As time goes on, bid prices usually tend to stabilize near their former levels as contractors become more familiar with the new specifications.

CASE STUDY

The PCC specification, the most recent of NJDOT's statistical specifications to be widely implemented, serves as a case study for a number of fundamental concepts that are described in detail in Part 3 of this paper. Although both slump and air entrainment are routinely tested and used to accept or reject the material at the job site, final acceptance is based on compressive strength. The percent defective (the percentage of the concrete estimated to have strength below the specifica-
 precise value of about $3 million. The successful bidder
earned bonus payments totaling approximately $30,000.

The second project, which was of approximately the same
size and type, went to a different contractor and producer.
The performance in this case was still better, and this con-
tactor also received essentially the maximum amount of bo-

The relationship between the contractors and producers
was proprietary, and it is not known what arrangements were
made to share either bonuses or any potential pay reductions.
It is believed that the producers charged more for concrete
supplied under these contracts, but this information, too, was
proprietary. The contractors' unit prices were not abnormally
high, however, and the bids for the projects as a whole were
below the anticipated cost for the work.

After the successful completion of these two projects, some
minor improvements were made and the specification was
then adopted for all future work. After a suitable amount of
field experience has been obtained, it is planned to again seek
feedback to determine if any further refinements are desir-
able.

STATUS OF SQA NATIONWIDE

Where does SQA stand nationwide? On the basis of the re-

ults of a 1984 survey (R.M. Weed, unpublished data), ap-
proximately one-half of the states are actively using this ap-

proach and another one-fourth have statistical specifications
in various stages of development. Also, virtually every state
that has tried SQA continues to use it. Clearly, many consider
this approach to be preferable to the earlier "method" spec-
ifications under which transportation agencies provided de-
tailed instructions, supervised the construction operations
closely, and bore most of the responsibility for the outcome.
And no wonder—statistical specifications are easier to write
(just describe the desired end result in statistical terms), easier
to interpret (no vague terms like "reasonably close confor-
ma nce"), easier to enforce (clear separation of responsibilities
for control and acceptance), and easier to apply (pay adjust-
ment for defective work is predetermined; no negotiations
are required). An additional benefit of SQA is the data it
produces. Whereas historical data collected in conjunction
with method specifications have been notoriously unreliable,
SQA specifications produce accurate data obtained with valid
random sampling procedures. This is particularly important
if these data will be analyzed at a later date to develop better
performance-related specifications.

In spite of this progress, with which the transportation
profession can justifiably be proud, much remains to be done.
Although SQA appears to be performing well, there is a
distinct possibility that this might be illusory in many cases.
Many current practices and published standards pertaining to
SQA are far from optimal, and some may actually be incorrect (7–11). Unfortunately, there often is no immediately obvious indication that a statistical procedure is being misapplied. Instead, there may simply be a false sense of security, which most likely will be paid for in terms of premature failures and costly repairs.

BASIC FACTS AND RESPONSIBILITIES

How, then, can states be reasonably assured of deriving the maximum benefits that SQA has to offer? It seems to us that engineers must learn to face up to several facts and be willing to accept certain responsibilities. The facts are these:

1. SQA is one of the most useful tools that a transportation agency has at its disposal. Provided that the engineering designs are adequate, it can virtually guarantee the performance and durability of the items to which it is applied. This is usually accomplished by encouraging high-quality construction initially, but also by recouping the anticipated future repair costs in the form of pay reductions when quality is substandard.

2. The quality of SQA specifications has a direct bearing on the quality of construction that is produced.

3. Any failure to derive the full benefit of SQA is not a failure of the techniques themselves, but rather a consequence of an inappropriate application. Shortcuts taken by practitioners unfamiliar with statistical methods can produce procedures that are inefficient at best or ineffective at worst. Today, many current practices are far from optimal, falling well short of their potential in terms of simplicity, effectiveness, or economy.

4. The upgrading of existing applications, combined with an increase in the number of effective applications, would enhance both the durability and performance of the items to which they are applied and would produce substantial economic benefits.

5. SQA techniques can be presented in a simple and straightforward manner. They need not be complex, nor is an extensive statistical background necessary to use them correctly.

6. Statistical principles are universally applicable. To take advantage of them requires only that the basic underlying assumptions be reasonably satisfied and that the prescribed steps of the procedures be followed correctly. This is relatively easy to accomplish for most SQA applications.

These are the responsibilities:

1. Leaders in the transportation field must take the initiative to thoroughly investigate any measure that offers so great a potential return as the proper use of SQA.

2. If transportation leaders decide to endorse such an approach, whether it be the implementation of a new program or merely the enhancement of an existing program, their support should be visible and active. An effective SQA program is truly a “mind-set” that requires a commitment to excellence by every member of an organization from the top down.

3. The successful application of any technical discipline requires a working knowledge of that discipline. Just as bridge designers are expected to have a thorough knowledge of structural analysis, the developers of SQA specifications must have a thorough grounding in statistical principles. It is up to management to insist that appropriate personnel acquire and use the necessary skills. Because NJDOT recognized how important a command of this subject was to the development of a sound and defensible program, a new set of job specifications was created—the Statistical Engineer Series—to ensure that NJDOT would have staff with the necessary combination of engineering and statistical knowledge. It is this group that handles the technical aspects whenever a new SQA specification is developed.

4. An organization that is committed to quality assurance has an obligation to become familiar with the state of the art and to apply it in a thoroughly professional manner. SQA is now a totally scientific activity; there is no longer a need for guesswork or trial-and-error approaches that may, in fact, fail to provide the level of quality assurance that the agency expects.

5. Standards-writing groups, such as AASHTO and ASTM, must be especially diligent. Anything that is published as a procedural guide must be held to the highest of professional standards.

6. Although the users of SQA methods do not need to have as extensive a technical background as the developers of the procedures, they are much more likely to be willing and enthusiastic supporters of these methods if they have a basic understanding of how and why they work. In our opinion, it is essential that basic educational programs be provided for all who will work with SQA.

7. To be truly successful, a quality assurance program requires the cooperation of all parties involved, including the construction industry, which must be treated in a fair-minded fashion. Poorly developed programs do little but breed disrespect, distrust, a generally adversarial atmosphere, and a determination on the part of the construction industry to oppose the new procedures. The transportation agency must be continually critical of its own performance, must be prepared to acknowledge mistakes, and must act quickly to correct any discovered deficiencies to guarantee the program’s continued success.

NEED FOR A NATIONAL POLICY

If transportation leaders can be made aware of these facts, and a sufficient number are willing to accept the attendant responsibilities, this should provide the motivation necessary to establish a national policy on quality assurance. The potential benefits are many. A consistent approach nationwide, using the best methods in the most effective ways, would produce a general increase in construction quality and result in substantial cost savings and other long-term benefits. Consistency from state to state would tend to reduce confusion, both on the part of the engineers who write statistical specifications and the contractors whose work is governed by them. This could lead to simpler specifications, lower bid prices, and smoother implementation. It would almost certainly im-
prove contractual relations and lessen the resistance typically encountered from the construction industry. Uniformity from state to state may also aid in the establishment of a national database that might ultimately provide the information necessary to develop better performance-related specifications. A uniform approach known to be scientifically sound may also tend to increase the credibility of those agencies that use it. We believe that this would lead to a heightened responsibility for statistical methods in general and might provide the incentive needed to encourage the remaining 25 percent of the states to discover the advantages of SQA.

VISION AND DIRECTION NEEDED

If such a national policy is to be established, we believe that there will have to be distinct changes in the organizational culture of many transportation agencies. Of the various elements essential to an effective program, leadership is perhaps the most important. It is the leadership that first envisions the goals and then provides the direction to achieve them. As discussed in a recent article (12), the organizational culture ultimately reflects the leaders' values, their sense of what conditions ought to exist, and their readiness to work toward these goals. Consequently, leaders must have a clear vision of exactly what is to be accomplished in order to create the type of environment most conducive to the achievement of the goals of the organization.

In the field of quality assurance, if realistic and effective goals are to be established, it is absolutely essential that certain basic requirements be met first. Either the leaders themselves must have a solid technical grasp of both the capabilities and limitations of SQA, or they must acquire qualified staff or consulting assistance from outside their respective organizations, or they must obtain suitable formal training for themselves or their staff. Ideally, the individuals who either provide or acquire this expertise should also have a background in engineering so that they will have a practical understanding of the construction work to which the quality assurance techniques will be applied. The potential benefits of a sound quality assurance program are of such magnitude that it warrants nothing less than the same high level of expertise devoted to other engineering and scientific disciplines.

And finally, if efforts in this direction are to be successful, a sense of responsibility and accountability must be established. It is up to leaders who undertake this task to set up some sort of technical review process to provide periodic feedback to assure that their goals are in fact being accomplished.

SUMMARY AND PREVIEW

The highway system represents an investment valued in trillions of dollars. SQA, widely used to govern both construction and maintenance work, has considerable unrealized potential because of a variety of less-than-optimal applications. A general upgrading of current practice coupled with a wider use of effective procedures might produce long-term benefits measured in billions of dollars.

Leaders at all levels—heads of transportation departments, administrators of federal programs, chairmen of Transportation Research Board committees and technical standards groups, managers of research programs—have an obligation to thoroughly consider the benefits that might be derived from a more rigorous application of modern quality assurance methods. In our opinion, this could best be accomplished through the creation of a national task force to provide the necessary vision, direction, and leadership. Individuals with the required combination of multidisciplinary skills could be recruited on a voluntary basis from the transportation, academic, and industrial communities.

To aid those who wish to explore this proposal further, Part 2 of this paper warns of several obstacles that might impede either the effective application of SQA procedures by individual agencies or the development of a sound national policy on quality assurance. It also presents several examples of shortcomings in existing standards and specifications and makes recommendations to improve them. Part 3 presents a series of fundamental principles that must be understood and applied correctly if truly effective quality assurance programs are to be established. Part 4 then draws from the foregoing material to develop a plan of action to assure the effective application of these concepts.

REFERENCES (Part 1)

PART 2: OBSTACLES TO OVERCOME

Many obstacles stand in the way of a successful quality assurance program. They may be technical, managerial, behavioral, political, cultural, budgetary, regulatory, or any combination of these.

We believe that the technical problems are relatively minor. The relationships between design values and ultimate performance are reasonably well understood. Test methods for engineering materials and properties are generally well defined. Optimal statistical techniques for sampling a product and estimating its quality are well established and easy to apply. Although advances in these areas may still be made, all the necessary technical tools are now in place to support an effective quality assurance program. The only significant problem in the technical category is the existence of inadequate standards and guide specifications (1) that could mislead those unfamiliar with statistical acceptance sampling procedures.

The fact that optimal SQA techniques are not being widely used is one of several problems that fall into the managerial category. Transportation leaders must become aware that better tools exist and that a very real price—in terms of wasted sampling effort, greater risk of accepting poor quality, and some equally serious but less obvious consequences—is being paid when inferior methods are used. Perhaps the underlying problem is that there has been a lack of visible leadership that would serve to encourage and motivate the development of a comprehensive and sound policy on transportation quality assurance.

Whenever a quality assurance program is implemented, resistance will inevitably be encountered. Sometimes it will be internal, from employees who are more comfortable with the older ways of doing things, but more often it will be external, from contractors who are apprehensive about any system that can affect their profitability. Industry lobbies can be vocal and influential, and it is essential that transportation agencies have a sound plan of action before undertaking such a program. Specific guidance on these matters is provided in Parts 3 and 4 of this paper.

Political factors also play a role. Public perception can sometimes be a stronger motivating force than sound scientific rationale. Unfortunately, decisions that make the greatest technical sense in the long term are sometimes unpopular in the short term.

"Made in the USA" used to be the hallmark of quality. But a decline in academic achievement (particularly in science and mathematics), a work ethic that seems to be predicated on being just good enough to get by, a management that is technically indifferent, and a willingness to tolerate mediocrity now pose major challenges to the United States' reputation as a technological leader. A similar situation is evident in the manner in which SQA has been applied in the transportation field.

Budgetary problems have become increasingly acute in recent years, resulting in both personnel and equipment shortfalls for many transportation agencies. Although managers have little control over the amount of funding available, they do have fairly direct control over how the funds are spent. Total quality management (TQM) concepts in general, and SQA procedures in particular, can help ensure that these funds are used resourcefully.

And finally, laws and regulations can sometimes limit potentially desirable applications. For example, FHWA supports positive incentive (bonus payment) clauses for superior quality, and several states have found this to be a practical and effective approach (2). However, such clauses apparently are not permitted by the laws of some states. Similarly, as discussed in the report of the European Asphalt Study Tour given at the 1991 TRB Annual Meeting, some of the contractual relationships that have been demonstrated to work well in Europe almost certainly would not comply with current laws in the United States. Although these may be the hardest obstacles to overcome, they need not be considered insurmountable. If and when there is ample evidence that laws need to be changed to keep pace with modern technology, government leaders should be able to bring their collective influence to bear on such issues.

Of the several types of obstacles just discussed, the majority by far are well within the control of a management that is committed to excellence in quality assurance. In the remainder of Part 2, we will explore several of these obstacles in detail and the steps that can be taken to overcome them.

Specific topics to be addressed are the following:

- Little demand for excellence,
- Complacency about existing SQA practices,
- Uncertainty about effectiveness of SQA methods,
- Inadequate procedures and practices,
- Poor teaching of statistical methods,
- Resistance from within the transportation agency,
- Opposition from the construction industry,
- Political factors,
- Work ethic and cultural attitudes, and
- Conveying the wrong messages.

LITTLE DEMAND FOR EXCELLENCE

Occasionally, a situation arises that is sufficiently disturbing that conscientious people feel compelled to do something about it. The status of highway quality assurance is one of those situations. When a body of knowledge exists that is both extremely useful and easy to use and that body of knowledge is either widely misunderstood or not used at all, then something is basically wrong. When national standards-writing committees demonstrate neither a concern for these problems nor a willingness to resolve them, something needs to be done.

Although statistical acceptance procedures are widely used—about three-fourths of the states either actively use them or have them in various stages of development—there is great disparity in the manner in which they are applied (3). Many are far from optimal, some are ineffective, and a few are blatantly incorrect (1, 4).

It is not much of a stretch of the imagination to see a parallel to the American manufacturing industry of the 1960s. Writers such as Deming (5) and Juran (6) tried to tell industry leaders that they could dramatically improve their operations. But
business was good back then; American management didn’t have to be particularly effective to capture a large share of both the national and international markets. They were—as Malcolm Baldrige characterized them—“fat, dumb, and happy” (7). So Deming and Juran took their advice to Japan, with incalculable cost to the American economy.

Is the highway profession, which is currently performing well below its capability in the area of quality assurance, poised for a similar decline? No one knows, of course, but there certainly are some ominous signs. In 1988, the U.S. Department of Transportation classified only 57 percent of the Interstate highway system in good condition, and the rest ranged from “fair” to “wretched” (8). The non-Interstate portions of the highway system tend to be in somewhat poorer condition and the situation with highway bridges is similarly alarming (9).

Given the status of quality assurance practices in the United States, it is not unreasonable to lay some of the blame for this state of disrepair on the failure to provide sufficient incentive to produce high quality at the time of construction. (For example, if a statistical acceptance procedure for rigid pavement encourages an increase in as-built thickness of \(\frac{1}{4} \) in. rather than a deficiency of the same amount, this will increase the load-carrying capacity of the pavement by about 35 percent, affecting service life accordingly.) Although nothing can be done about the events of the past, they can still provide useful guidance to encourage better practices in the future. What are needed now, particularly during this time of shrinking resources, are the leadership and resolve to insist that modern quality assurance technology be used to its fullest advantage.

COMPLACENCY ABOUT EXISTING SQA PRACTICES

“If it ain’t broke, don’t fix it!” This frequently heard expression is generally interpreted to mean that a system that appears to be working well should not be disturbed. This advice seems sound enough and there undoubtedly are situations in which it would be wise to heed it. However, a number of recent writers on quality management, most notably Deming, caution that there are times when this advice may be especially inappropriate (10).

Perhaps one of the most difficult obstacles to overcome is a general lack of awareness of the inadequacy of many current SQA standards and specifications. Unfortunately, neither the infrequent occurrence of reject lots nor the absence of short-term failures is a guarantee that an existing SQA program is performing properly. Unless the operating characteristic curves (described in Part 3) have been constructed, there usually is no way to be sure that a statistical acceptance procedure is sufficiently capable of distinguishing between satisfactory and unsatisfactory work. For example, if the acceptance procedure happens to be weak (or even if it is strong but the specification limits are not suitably restrictive), moderately defective work would not be detected and the project would have the appearance of being well controlled. When this happens, pavements may begin to fail after 10 years instead of 20, or structures may begin to crumble after 25 years instead of 50, and the cost of such premature failure can be substantial. By the time the failure occurs, however, the cause will be difficult to ascertain. Very probably, it will be further obscured by the additional routine maintenance that these items will receive throughout their lifetimes.

To guard against this potential weakness, it is necessary to examine all statistical acceptance procedures critically, even those that appear to be working well. It is relatively easy to construct the operating characteristic curves and these, at least, give the transportation agency the information needed to decide whether the acceptance procedures are providing the desired degree of protection.

UNCERTAINTY ABOUT EFFECTIVENESS OF SQA METHODS

An oversight, for which proponents of SQA are not entirely to blame, is the failure to establish definitively that quality assurance programs are cost-effective. The type of controlled studies that would be capable of demonstrating this are extremely difficult to design and, to our knowledge, have never been attempted.

There are, however, other measures by which to judge the effectiveness of a quality assurance program. A primary one is its effect on the general quality level of the items to which it is applied. A second but equally important consideration is the cost of implementing and maintaining such a program. A third measure is the effort that administrators are willing to make to actively support SQA methods.

It has been our experience that the introduction of a new quality assurance specification usually produces a dramatic improvement in quality. As described in the case study in Part 1 of this paper, there was a general increase of between 1,000 and 1,500 psi in concrete strength levels when the specification was implemented with the pay adjustment clause in effect. Judging from responses obtained from a 1989 survey of many state transportation agencies (O. Riley, unpublished data), this result is fairly universal.

The more difficult question to answer is whether the expected increase in quality justifies the cost of achieving it. In the absence of the necessary data, we can only offer an opinion—one that seems to be shared by our counterparts in the approximately three-fourths of the states that are actively pursuing SQA methods—that the advantages far outweigh any possible disadvantages. As noted in Part 1 of this paper, statistical specifications are easier to write (just describe the desired end result in statistical terms), easier to interpret (no vague terms like “reasonably close conformance”), easier to enforce (clear separation of responsibilities for control and acceptance), and easier to apply (pay adjustment for defective work is predetermined; no negotiations are required). An additional benefit that comes almost as a bonus is that the existence of a formal SQA program ensures the development of valid data bases that may be useful for the development of better performance models in the future.

Finally, in regard to the amount of effort that transportation administrators are willing to expend to overcome the skepticism and resistance that inevitably accompany a new program of this type, we offer the following empirical evidence. In spite of outside resistance that is frequently well organized,
and internal resistance that is often quite vocal, the use of SQA methods has been steadily increasing over a period of approximately 20 years. Also, virtually every agency that has tried them continues to use them. We believe that these facts, because they reflect the collective opinion of many leaders throughout the transportation field, provide a particularly strong endorsement of the effectiveness of SQA methods.

INADEQUATE PROCEDURES AND PRACTICES

For a variety of reasons, many current quality assurance practices are far from what they should be. When inferior methods are used, the transportation agency—and ultimately the motoring public—pays for this in one way or another:

1. Sampling rates may be larger than necessary for the degree of protection afforded, wasting personnel, materials, and storage space.
2. The risk of accepting poor quality may be significantly greater for a given sampling rate, increasing the likelihood of premature failure of various construction items.
3. Inferior methods occasionally produce inconsistent results and sometimes do not provide the proper incentive and reward to the conscientious contractor (2). This will eventually become apparent, even to those unfamiliar with statistical methods, and is responsible to a large degree for breeding a general distrust of SQA programs.
4. This general distrust tends to produce an adversarial relationship between transportation agencies and the construction industry rather than the cooperative climate that is desired. This can escalate to potential litigation if contractors sense that the acceptance procedures are not technically sound and defensible.
5. Less-than-optimal methods, if they are unduly severe, will produce such strong resistance from the construction industry that political representatives may be called upon to intervene. This may also lead to an undesired inflation of bid prices.
6. In general, methods lacking a clear scientific rationale are undesirable for several reasons. They are difficult to justify, difficult to explain, and difficult to defend. They tend to be confusing to all concerned. This makes it all the more difficult to build confidence in the quality assurance program and generate the support and cooperation needed within the transportation agency itself.

The examples that follow are but a few of the literally dozens that could be included. Although no single example by itself is damning, the fact that so many examples exist is indicative of the need for major reforms.

Example 1: Wasted Sampling Effort

When SQA specifications were first developed in the 1960s, most transportation agencies chose to use the range rather than the standard deviation as the measure of variability. The range was easier to understand, and hand calculators that could compute the standard deviation with a single keystroke were not yet available. Another simplification was the occasional use of attributes procedures, which avoided the need for any statistical calculations and involved only the counting of the number of failing tests. The different types of acceptance procedures are discussed in more detail in Part 3. The important thing to note here is that there is a considerable difference in the efficiency of these methods. They can all be designed to be effective—to distinguish between satisfactory and unsatisfactory work at whatever level of risk is believed to be appropriate—but to be equally effective, they require different sample sizes.

Table 1 is a comparison of these three approaches—a plan based on the standard deviation, one based on the range, and an attributes plan—all designed to control percent defective (the percentage of the lot falling outside specification limits). The effectiveness of these plans can be judged by their operating characteristic curves, the data for which are shown in Table 1. It will be noted that the probabilities of acceptance for the three plans at all levels of quality are virtually identical; that is, the plans are all equally effective. The measure of efficiency is provided by the sample sizes given in the column headings (N = 10, N = 12, and N = 15). The range plan is substantially less efficient than the standard deviation plan because it requires a 20 percent larger sample to provide the same degree of protection. The attributes plan is considerably less efficient, requiring a 50 percent larger sample.

At a time when more than half the states are experiencing severe budget shortfalls (11), any plan that does not make the most efficient use of the available data must be regarded as inadequate. There are many existing range plans, and possibly a few attributes plans, that could be readily converted into more efficient standard deviation plans, thus affording an appreciable savings in personnel, materials, and storage.

Example 2: Potentially Ineffective Plans

Although the three acceptance plans just discussed do account for variability of the product, many currently used plans do not (4). These plans fall into two general categories:

1. Plans that are based only on the average of the test values and
2. Standard deviation plans that assume a constant, known value for the standard deviation.

Table 1 Comparison of Efficiency of Three Acceptance Plans

<table>
<thead>
<tr>
<th>Percent Defective</th>
<th>Probability of Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variables Plans</td>
</tr>
<tr>
<td>10</td>
<td>0.99</td>
</tr>
<tr>
<td>20</td>
<td>0.82</td>
</tr>
<tr>
<td>30</td>
<td>0.50</td>
</tr>
<tr>
<td>40</td>
<td>0.21</td>
</tr>
<tr>
<td>50</td>
<td>0.06</td>
</tr>
<tr>
<td>60</td>
<td>0.01</td>
</tr>
<tr>
<td>70</td>
<td>0.0</td>
</tr>
</tbody>
</table>
These plans may not provide the quality that is desired. Many engineers in the transportation field believe that the ultimate performance of the final product is influenced by both the average and the variability of the construction process. The underlying rationale is discussed further in Part 3 of this paper and also in American Concrete Institute (ACI) Standard 214 (12).

Example 3: Inadequate Technical Aids

If SQA is to be promoted and widely adopted, it is up to its proponents to make it as user friendly as correct techniques will allow. Proper training can make SQA easy to understand, but a variety of technical aids is necessary to make it easy to use. As an example of a technical aid that is not properly designed, consider Table 4A in Method B of AASHTO Standard R9 (13). The heading of the table indicates that its purpose is to provide an estimate of the percentage of a lot falling within specification limits as a function of the quality index (Q-statistic). A portion of this table is reproduced here as Table 2.

What is obvious upon inspection is that this table is constructed in a backward manner. Whereas it is customary to construct such tables with the input variable around the perimeter and the output variable in the body of the table, exactly the reverse has been done here. Another major drawback is that not all potentially useful sample sizes have been included. To see how inconvenient this is for the user, just try determining the percent within limits for $Q = 1.46$ or $N = 6, Q = 1.53$. Both cases require interpolation, the latter one in two directions.

As an example of how such a table should be constructed, consider Table 3. Again try the same two examples to see how much more user friendly this version of the table is. Examples such as this stress the importance of having technical aids designed by individuals familiar with both theory and practice. It also is easy to understand how the users of the improved version of the table might end up being much more supportive of SQA methods.

Another very useful form for this table, generated by an appropriate computer algorithm, is presented as Figure 1. This particular version is based on percent defective (the complement of percent within limits). This is an extremely compact form of the table for a single sample size (useful in specification documents) in which the Q-values are listed in increments of 0.1 in the left-hand column and 0.01 across the top. A more extensive series of new tables is in preparation (14), and additional examples are provided in Part 3.

Example 4: An Inadequate Standard

Some further comments are warranted in regard to Method B of AASHTO Standard R9. This work dates back to the 1960s when the early development of SQA specifications was based more on trial and error than on an actual understanding of statistical principles. About the most diplomatic thing that can be said about Method B is that it simply is not mathematically sound (I; personal communications: C. Antle, Pennsylvania State University; P. Irick, consultant; E. Schilling, Rochester Institute of Technology; O. Pendleton, Texas Transportation Institute; W. Strawderman, Rutgers University). It is the hybrid of two methods (averages and variables) that should not be combined and it misuses both. If the quality assurance profession is to command the respect necessary to be widely supported, it must be uncompromising in the demands it places on itself for scientific integrity. If the transportation profession is to demand excellence of the construction industry through the use of SQA procedures, it must be no less demanding of itself in making these procedures clear, effective, and technically sound. Method B fails to meet this standard of excellence and, in our opinion, it is not salvageable as a valid procedure.

Example 5: Equitable and Defensible Pay Schedules

Adjusted pay schedules have been a source of controversy since they were first introduced in the 1960s. On the one hand, they provide the most practical way for transportation agencies to deal with marginal quality, which, like it or not, will occur from time to time. It usually makes more sense to accept a slightly deficient construction item for some fraction of the full price than it does to require that it be torn out and replaced. Adjusted pay schedules also provide an effective way to encourage and reward superior quality with bonus clauses. On the other hand, they have often been controversial because no clearcut scientific rationale has been universally accepted for determining the appropriate amount of pay adjustment. This is evident from the great disparity among pay schedules used by different transportation agencies across the country (3).

Table 2: Poorly Constructed Table for Estimating Percent Within Limits

<table>
<thead>
<tr>
<th>Percent</th>
<th>Q-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limits</td>
<td>N = 4</td>
</tr>
<tr>
<td>97</td>
<td>1.55</td>
</tr>
<tr>
<td>96</td>
<td>1.49</td>
</tr>
<tr>
<td>95</td>
<td>1.45</td>
</tr>
<tr>
<td>94</td>
<td>1.40</td>
</tr>
<tr>
<td>93</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Table 3: Proper Form for Table for Estimating Percent Within Limits

<table>
<thead>
<tr>
<th>Q-Value</th>
<th>N = 4</th>
<th>N = 5</th>
<th>N = 6</th>
<th>N = 7</th>
<th>N = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>1.46</td>
<td>…</td>
<td>95.40</td>
<td>94.50</td>
<td>94.07</td>
<td>…</td>
</tr>
<tr>
<td>1.47</td>
<td>…</td>
<td>95.61</td>
<td>94.67</td>
<td>94.23</td>
<td>…</td>
</tr>
<tr>
<td>1.48</td>
<td>…</td>
<td>95.81</td>
<td>94.85</td>
<td>94.40</td>
<td>…</td>
</tr>
<tr>
<td>1.49</td>
<td>96.01</td>
<td>95.02</td>
<td>94.56</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>1.50</td>
<td>96.20</td>
<td>95.19</td>
<td>94.72</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>1.51</td>
<td>96.39</td>
<td>95.56</td>
<td>94.87</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>1.52</td>
<td>96.58</td>
<td>95.53</td>
<td>95.03</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>1.53</td>
<td>96.77</td>
<td>95.69</td>
<td>95.18</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
The pay schedule is the transportation profession more than a little chagrin. The necessary engineering knowledge exists to develop rational based on the legal principle of liquidated damages, and the construction to cover the cost of future repairs made necessary designed to withhold sufficient payment at the time of construction to the complete development can be found in other recent publications.

Example 6: Importance of Operating Characteristic Curves

Perhaps the most common oversight in the development of SQA specifications is the failure to construct the operating characteristic curves to check whether in fact the acceptance plans will perform as desired. The following example is taken from a federal standard (17), and we understand that it will be included in the forthcoming WASHTO Model Quality Assurance Specifications. This particular generic acceptance procedure has some desirable features—it uses the more efficient standard deviation method and includes a bonus clause to reward superior performance—but it operates in a way that may be quite different from what most transportation agencies would consider appropriate.

In the text of the original standard, it is stated that the acceptable quality level (AQL) is defined as 95 percent within limits. The pay schedule provides for bonus pay factors up to 105 percent for still better quality and proportionally lower pay factors for lesser quality. However, to determine how the acceptance procedure will actually perform, it is necessary to construct the operating characteristic curves for the sample sizes that would be used. The operating characteristic curve in tabular form for this plan using a typical sample size of N = 5 is as follows:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Within</th>
<th>Tolerance</th>
<th>Pay Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>105.0</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>95 (AQL)</td>
<td>103.7</td>
<td></td>
<td>103.7</td>
</tr>
<tr>
<td>85</td>
<td>102.2</td>
<td></td>
<td>102.2</td>
</tr>
<tr>
<td>80</td>
<td>100.5</td>
<td></td>
<td>100.5</td>
</tr>
<tr>
<td>75</td>
<td>97.8</td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td>70</td>
<td>94.3</td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td>70</td>
<td>89.9</td>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

It can be seen that the contractor who performs consistently at a quality level of 95 percent within limits, the level that has been defined as acceptable, will receive an average pay factor of about 104 percent. Furthermore, the contractor who furnishes work that is approximately 85 percent within limits, substantially below the level that has been defined as acceptable, will still receive an average pay factor of 100 percent. At a time when most states are scrambling just to make ends meet, a known and predictable overpayment such as this would be regarded by many as highly inappropriate.

For this particular acceptance plan to be considered satisfactory, the AQL would have to be redefined as 85 percent within limits and the transportation agency would have to be convinced that the rate of pay adjustment for other levels of quality was appropriate for the construction items to which it was applied.
POOR TEACHING OF STATISTICAL METHODS

As noted earlier in this paper, a cause for increasing alarm in this country has been a persistent decline in academic achievement in virtually all subjects, especially science and mathematics. In a presentation at the 1990 TRB Annual Meeting, C. V. Wootan of the Texas Transportation Institute summed it up as follows: "We are rapidly progressing from a nation at risk in our educational system to a nation in crisis. . . . The once unchallenged preeminence of America in science and technology is being overtaken by well educated, highly motivated, and determined competition throughout the world."

In his critical and highly acclaimed book Out of the Crisis (5), Deming claims that one of the root causes for the dismal performance of quality assurance practices in this country is the poor teaching of statistical methods. To paraphrase slightly, he notes that no one should teach SQA without a thorough knowledge of statistical theory through at least the master's degree level, supplemented by actual, hands-on experience under a master. He adds that this observation is made on the basis of experience, having witnessed countless examples of incompetent teaching and faulty application.

Having participated in SQA training as both students and teachers over a period of several years, we believe that Deming's observations are particularly relevant. Although the training in SQA that has been offered in the transportation field has been excellent in many respects (18–20), its one consistent shortcoming has been its failure to delve more than superficially into the theory underlying statistical acceptance sampling.

Why is this so important? The primary reason is the need to make quality assurance programs perform as effectively as possible. Practitioners with a minimal amount of training are often unaware that some methods are considerably better than others. Inferior methods simply do not perform well in terms of making correct decisions—accepting good quality and rejecting poor quality. The knowledge necessary to understand which methods are the best is not especially difficult to acquire, but unfortunately it usually is not included in elementary SQA courses.

Although it might seem at first that almost anyone with a smattering of statistical knowledge could teach a beginners' course in SQA, a little reflection suggests why Deming considers such an arrangement unacceptable. SQA, like any mathematical discipline, requires logical and rigorous thinking. Because many beginners taking their first SQA course have not yet acquired this ability, it is vital that the first exposure be with an experienced instructor capable of instilling the necessary critical thinking skills. Once a sense of technical rigor is ingrained, it becomes almost instinctive to understand the subject and apply it correctly. In our opinion, the only reason SQA has the reputation of being a difficult subject is because it has not been taught as well as it might be.

Another important reason why top-level instruction is essential is the belief that open and inquiring minds are among the nation's most valuable resources. Some of the people attending SQA courses will be future managers and leaders who may someday have to make policy decisions on these matters. It is in the best interest of the transportation profession to provide them with a thorough understanding of these principles so that their future decisions will be wisely guided.

And finally, credibility is an important issue. The construction industry is often suspicious and distrustful of SQA methods, and this tends to produce an almost adversarial relationship when these procedures are introduced. To overcome this, transportation agencies must be prepared to quickly and forthrightly provide correct answers and plausible explanations for a wide variety of technical questions. Any delay or inability to answer will be interpreted as evasive. In this case, thorough training as advocated by Deming could be instrumental in fostering a more cooperative and productive relationship.

RESISTANCE FROM WITHIN THE TRANSPORTATION AGENCY

The adoption of a full-fledged quality assurance program will often be a significant departure from procedures with which transportation agency personnel are familiar and comfortable. For those who are accustomed to exercising control over the construction process through method-type specifications, it may be difficult to get used to the broad latitude of control given to contractors under end-result specifications. This requires new thinking, new inspection and acceptance techniques, and a willingness to adapt to the new procedures.

Some degree of resistance is only natural. It is not reasonable to expect widespread support for any new program until the reasons for its adoption are understood. Management that clearly sees the advantages of a quality assurance program is in a much better position to communicate this to the rest of the organization through a well-conceived action plan. This is discussed in more detail in Part 4.

The first step is to conduct a series of training sessions to acquaint managers and specification writers with the underlying logic and rationale. The training need not be highly theoretical and should cover such basic topics as normal process variation, the estimation of construction quality by random sampling, and the development of effective statistical acceptance procedures. The training should be gradually expanded to include construction and materials personnel, stressing the important role they play in implementing quality assurance specifications. And finally, it may be helpful at some point to open the training sessions to a limited number of contractors' personnel so that they too will develop an understanding of the basic requirements and how to meet them.

Ideally, a few engineers should receive some additional, college-level instruction so that at least one individual in the organization will have a thorough understanding of the statistical concepts involved. To provide the necessary combination of skills to support the NJDOT quality assurance program, an entirely new set of job specifications was created—the Statistical Engineer Series. A description of these positions is provided in Part 4.

At NJDOT another activity was found to be extremely helpful in overcoming internal resistance. Field staff, who deal with the new procedures on a daily basis, often have very useful suggestions to make concerning what works, what
doesn't, and what might be improved. Although there are procedures for formally transmitting such suggestions upward through the chain of command, there are also various reasons why such suggestions often become distorted or lost in the process. In the course of developing the specification described in the case study in Part 1, a group of field staff was invited to come in and provide direct feedback to both top and middle management on any implementation problems they were having. The meeting was very successful in that it promoted a healthy dialogue and generated several suggestions, some of which were adopted. The participants left with the knowledge that their concerns had been heard, that they had played an important role in developing the specification, and that there were valid reasons why certain changes could not be made. This type of participation not only improved the specification but also improved the morale of the field staff.

Yet another general approach appears to be extremely effective whenever a new specification is implemented. The new procedure is first tested by simulation on field data from several ongoing jobs. Next, a partial implementation on one or two small projects is scheduled with certain provisions tempered slightly, such as reducing all pay adjustments by half. Finally, provided the pilot projects have been successful, a full-scale implementation is undertaken. Staging the implementation in this manner seems to be more acceptable to all concerned. It allows for a period of learning and adjustment for both state and contractors' personnel, and if there should be any technical or administrative difficulties, they can be corrected with a minimum amount of inconvenience.

OPPOSITION FROM THE CONSTRUCTION INDUSTRY

Virtually every agency that has adopted SQA methods has had to overcome considerable opposition from the construction industry. Although much of the resistance can be attributed to a general fear of the unknown, a substantial part has been due to the manner in which statistical specifications have evolved. Over the years, contractors have been forced to suffer through the growing pains of this discipline as statistical specification writers were learning their craft by trial and error. The state of the art has progressed considerably in recent years, and it is now possible to write quality assurance specifications that are simple, clear, technically sound, and fair to the seller while protective of the interests of the buyer. In our opinion, this has resulted in a gradual softening of the resistance that was typically encountered. If this progress can be continued to the point at which a more thorough, consistent, and scientific approach is adopted nationwide, it is conceivable that the construction industry might eventually come around to endorsing these methods, at least in a qualified way. A recent article (21) by an officer of a large highway construction firm indicates that contractors have begun to discover that SQA methods offer benefits to them as well.

POLITICAL FACTORS

Engineering decisions are often based on factors other than the purely technical. When the various engineering alternatives are approximately equivalent, this is both practical and desirable. But when there is a considerable difference in terms of performance and cost-effectiveness, decisions based on political considerations can sometimes work to the disadvantage of society as a whole. Such factors may be responsible for the failure of the transportation profession to take action that would be in its best interest, particularly in the area of quality assurance. For example, some administrations and standards-writing groups may be reluctant to phase out ineffective practices because of a fear that this would be interpreted as an admission of prior misfeasance.

Furthermore, administrators may view the establishment of sound quality assurance practices as having little political payback because there are few obvious short-term benefits. In fact, the immediate effects are often unfavorable, such as the resistance that is typically encountered from the construction industry. The real benefits, in terms of reduced maintenance and extended service lives, will not be realized until many years later.

Unfortunately, the converse of this is also true. An administration might be inclined to skimp on quality assurance during times of tight budgets, realizing that the real effects of this false economy are not likely to be felt for years. A preferred response to tight budgets would be to "work smarter" by using the most effective procedures available.

It is incumbent upon responsible leaders to put aside concerns of possible short-term criticism or failure to achieve immediate political gain in favor of the much greater long-term benefits to be derived from the adoption of technically sound, state-of-the-art practices. This decision could be made easier for individual agencies if it were carried out as part of a joint national effort. The establishment of a national policy on quality assurance, as advocated in Part 1 of this paper, would provide an ideal way to accomplish this.

WORK ETHIC AND CULTURAL ATTITUDES

The following example from Deming (5) is both incisive and revealing. William G. Ouchi, after observing the participants at a meeting of an American trade association adjourn early each day for a variety of recreational activities, commenced his presentation as follows:

> While you are out on the golf course this afternoon, waiting for your partner to tee up, I want you to think about something. Last month I was in Tokyo, where I visited your trade association counterpart. It represents the roughly two hundred Japanese companies who are your direct competitors. They are now holding meetings from eight each morning until nine each night, five days a week, for three months straight, so that one company's oscilloscope will connect to another company's analyzer, so that they can agree on product safety standards to recommend to the government (to speed up getting to the marketplace), so that they can agree on their needs for changes in regulation, export policy, and financing and then approach their government with one voice to ask for cooperation. Tell me who you think is going to be in better shape five years from now.

One must seriously question whether the work ethic and level of commitment in the transportation field are capable of meeting today's challenges with respect to quality assur-
 ance. Do transportation “trade association” meetings (those of AASHTO, TRB, etc.) suffer from any of the shortcomings noted by Ouchi? Are transportation professionals properly assessing the level of effort required to turn out standards and specifications of a high caliber, or are they willing to accept whatever can be hammered out in an hour or two at a committee meeting? Is the necessary expertise being brought to bear on these issues, or are transportation committees and agencies willing to settle for whatever talent happens to be readily available? Have transportation engineers insisted that all papers, standards, and specifications reflect a high level of technical competence, or have they been willing to accept whatever they get? Have the necessary formal review processes been established to ensure that technical standards receive a critical, independent evaluation, or has there been a willingness to gamble that the balloting process will uncover any deficiencies?

These are telling questions and, in our opinion, candid answers will reveal a process that is almost guaranteed to produce mediocre results. The necessary technology exists, the talent to use that technology exists, but the process that would ensure the proper use of that talent and technology does not exist.

It might seem that radical cultural changes would be necessary to dispel the old notion of “close enough for highway work” and replace it with an ingrained desire for excellence. Juran, however, argues for a different approach (6). He notes that, in actual practice, it is first necessary to bring about behavioral change in the form of new procedures and, after the new procedures have been demonstrated to be effective, the desired change in attitude will follow.

We believe that just such an approach is required to resolve the problems with transportation quality assurance. Leaders must first address the questions raised earlier in this section and then create a process that both fosters and demands excellence. This will produce improved standards and specifications and these, in turn, will ultimately provide the strongest testimonial to their own worth.

CONVEYING THE WRONG MESSAGES

Two of us recently attended a technical advisory meeting that had been convened to address the status of transportation quality assurance. The meeting began with a series of presentations to focus the group’s attention on several specific issues. The participants were then divided into smaller subgroups to brainstorm how these issues might be addressed. The meeting concluded with a series of summary presentations.

In one of the summary presentations, the speaker noted with an apparent sense of accomplishment that he had covered the topic of quality assurance without once mentioning statistics. Although it probably was not intended that way, such a remark could imply that a thorough understanding of statistical principles is not a prerequisite for an effective quality assurance program. In our opinion, this is not the message that should be conveyed, nor is it the message found in the TQM literature and the recent documentaries on TQM on the public broadcasting channels.

What, then, is the message that should be conveyed? We believe that the following points should be stressed to both state and contractors’ personnel alike:

1. It will be necessary to learn some new things, particularly in the areas of elementary statistics, process variability, and acceptance sampling.
2. Some formal training will be required. Something more than a single college-level course will be required for at least one member of an organization.
3. And finally, if a conscientious effort is made to understand and apply quality assurance technology, this will not only pay for itself in terms of quality achieved, reduction of rejections and rework, and a generally smoother-running operation.

There are still other ways in which the wrong message is sometimes conveyed. Management that does not visibly and actively support excellence in all aspects of engineering is communicating in a subtle way to its employees that excellence is not really that important. When organizations such as AASHTO publish SQA standards that are technically unsound, the message communicated to the transportation community at large is that it really is not essential that scientific principles be applied correctly. When the transportation profession as a whole is willing to tolerate the great disparity with which quality assurance is applied across the country, the message communicated to the construction industry is that the profession is either unconcerned about establishing consistent and valid practices or else is incapable of doing so.

If there is to be any chance of reversing what appears to be a long-term slide into technical mediocrity, it will be up to transportation leaders to begin communicating some distinctly different messages, much like those found in the writings of Crosby (22), Deming (5), and Juran (6). Although the advice of these authors has been directed primarily at the private sector, a substantial portion of it is equally applicable in the public sector. It is now up to transportation leaders to read it, assimilate it, and begin applying it.

SUMMARY AND PREVIEW

Several obstacles—technical, managerial, political, and cultural—could impede either the effective application of SQA procedures by individual agencies or the establishment of a sound national policy on quality assurance. Perhaps the biggest obstacles are a general lack of awareness of just how far behind the state of the art transportation quality assurance really is, the failure to insist that those involved with quality assurance be thoroughly educated in these matters, and a work ethic that seems to be devoid of any real pride in what it produces. Many of these issues have recently been addressed by TQM writers such as Crosby, Deming, and Juran, and transportation leaders need to become more familiar with their work and seek to apply it in the public sector. As recommended in Part 1, a national task force of “can do” leaders should be created to focus a multidisciplinary attack on these problems.

If the full potential of quality assurance techniques is to be realized, a number of basic concepts must be understood and
applied correctly. To aid in this effort, Part 3 presents a series of fundamental principles that underlie the type of acceptance sampling most suited for transportation applications. Part 4 then outlines a plan of action to effectively apply the concepts developed in the previous three sections of the paper.

REFERENCES (Part 2)

12. Recommended Practice for Evaluation of Strength Test Results of Concrete. ACI Standard 214-77. American Concrete Institute, Detroit, Mich., 1977.

PART 3: FUNDAMENTAL CONCEPTS

The purpose of Part 3 is to offer a series of fundamental principles as a starting point for the development of a consistent and sound national policy on transportation quality assurance. The concepts that follow have evolved and been proven by actual field application over a period of approximately 20 years.

The following sections deal with the fundamental concepts that pertain to the development of technically sound, defendable specifications:

1. Objectives of SQA specifications,
2. Relationship between quality and performance,
3. Choice of appropriate statistical parameter,
4. Acceptable and rejectable quality levels,
5. Attributes and variables plans,
6. Operating characteristic curves and risk analysis,
7. Computer simulation,
8. Lot sizes and sample sizes,
9. Random sampling procedures,
10. Basis for pay adjustments,
11. Justification for bonus clauses,
12. Advantage of continuous pay schedules, and

Some sources of possible confusion that could prevent transportation agencies from realizing the full potential that SQA has to offer are discussed in the following sections:

14. Accuracy, precision, and bias;
15. Sample coverage and quality assurance;
16. Averaging power of statistics;
17. Appropriate measures of variability;
18. Minor problem with variables plans;
19. Problem with variability known procedures;
20. Dual acceptance procedures;
21. Retesting provisions;
22. Zero pay factors;
23. Availability of statistical tables;
24. Classical versus Bayesian methods;
25. Moving averages;
26. Unbalanced bids;
27. Non-pay-adjustment items; and
28. Legal considerations.
1. OBJECTIVES OF SQA SPECIFICATIONS

For any program to be successful, there must be a clear understanding of the objectives. We consider the following objectives to be most important:

1. The primary objective is to communicate to the contractor in a clear and unambiguous manner exactly what is wanted. Various statistical measures provide a practical and convenient way to describe the desired end result.
2. In keeping with the end-result philosophy, the contractor should be given most of the responsibility for controlling the construction process, whereas the specifying agency should be primarily responsible for judging the acceptability of the finished work.
3. There should be sufficient incentive for the contractor to produce the desired quality (or better). This can be accomplished by means of adjusted pay schedules, which assess pay reductions for deficient quality and, when appropriate, award suitable bonuses for superior quality.
4. Ideally, the specification should pay 100 percent, on average, for acceptable work, and it should be fair and equitable in assigning pay factors for work that differs from the desired quality level.
5. The specification should be realistic in defining acceptable quality levels (AQLs) and rejectable quality levels (RQLs). The AQLs should be set high enough to satisfy design requirements but not so high that extraordinary methods or materials will be required. The RQLs should be set low enough that, when they occur, the option to require removal and replacement is truly justified.
6. It should be clear to the contractor what the appropriate target level of quality must be in order to receive 100 percent payment.

2. RELATIONSHIP BETWEEN QUALITY AND PERFORMANCE

In general, any construction specification should be applied to those parameters that are believed to be strongly related to the ultimate performance of the final product. In most cases, the qualitative relationship between commonly measured construction characteristics and performance has been well established. For example, compressive strength is known to be highly correlated with the performance of concrete structures even though the exact nature of this relationship may be somewhat vague. Furthermore, the relationship is a consistent one because at any reasonable level of strength, an increase in strength will provide still better performance.

In most cases, more than one quality characteristic must be considered. In the example just cited, concrete compressive strength alone may be insufficient to ensure the desired performance. To be durable, a concrete bridge deck must also have the necessary amount of entrained air. For concrete pavement, adequate thickness as well as strength must be achieved. For bituminous pavement, several requirements must be met simultaneously. It is the responsibility of the developer of the specification to include all important variables in a way that is logical and appropriate.

3. CHOICE OF APPROPRIATE STATISTICAL PARAMETER

Although various statistical measures of quality are available, transportation engineers have exhibited a strong preference for the concept of lot percent defective, the estimated percentage of the lot falling outside specification limits (or its counterpart, the percent within limits). This measure is particularly appealing for at least three reasons:

1. It can be applied to virtually any construction quality characteristic.
2. It encourages uniformity in that it controls both the average level and the variability of the product in a statistically efficient way.
3. Uniform quality, consistently within specification limits, is believed to be strongly associated with ultimate performance.

Figure 1 shows the concept of percent defective applied to both single-limit and double-limit specifications. The engineering rationale underlying this concept is discussed in American Concrete Institute (ACI) Standard 214 (1), for example, and is believed to be valid for a broad range of engineering applications.

4. ACCEPTABLE AND REJECTABLE QUALITY LEVELS

The AQL is the level of quality, usually defined in terms of some minimal degree of deficiency, that the specifying agency...
is willing to accept at 100 percent payment. The RQL is the level of quality that is so deficient that either repair or removal and replacement may be necessary. In between the AQL and the RQL, the work is considered to be marginally satisfactory and is accepted at reduced payment. (If, for practical reasons, an RQL item is left in place, it typically is assigned some minimum pay factor.)

Appropriate definitions of AQL and RQL are of considerable importance because this concept has far-reaching consequences. If the AQL is set at an unrealistically high level, the cost of such exceptional quality may far exceed its value to the transportation agency. At the other extreme, too low an AQL may produce lower bid prices, but the acceptability of consistently lower levels of quality may result in greatly increased maintenance costs and be more expensive in the long run. It is incumbent upon the transportation agency to exercise careful judgment in selecting AQL values that properly balance quality and economy in a realistic manner.

Whereas it is the prerogative of the transportation agency to define the AQL at any level it considers appropriate, there is somewhat less latitude in defining the RQL. Because of the severe consequences imposed upon the contractor when an item of RQL quality is detected, there may be litigation if the RQL is set at a level that does not clearly warrant such drastic action. Conceptually, at least, this poses no great problem. Since it is the purpose of the adjusted pay schedule to recoup losses expected from poor-quality work, it can be relied upon to perform its function down to some low level of quality that is defensible as the definition of the RQL.

Although the relationship between quality and performance of a construction item is usually known only in a vague, imprecise way, theoretical considerations can still provide some insight to aid in the selection of realistic AQL and RQL values. For example, ACI Standard 214 takes the following probabilistic approach regarding concrete compressive strength:

\[F_{\text{strength}} \leq F_{\text{required}} \]

If a small percentage of the test results fall below the design strength, a corresponding large percentage of the test results will be greater than the design strength with an equally large probability of being located in a critical area (of the structure).

This clearly implies that some small percentage of strength tests falling below the design strength can be tolerated. ASTM C-94 goes even further to suggest the following:

For concrete in structures designed by the ultimate strength method and in prestressed structures, not more than 10 percent of the strength tests shall have values less than the specified strength. (2, p. 65)

ASTM C-94 also goes on to state that as much as 20 percent of the strength tests may be below the specified strength for concrete designed by the working stress method. Standards such as these have been quite helpful and have led highway agencies to typically establish AQL values in the range of 5 to 10 percent defective.

ACI Standard 214 and ASTM C-94 have not addressed the question of defining the RQL, however, since the acceptance procedures that they advocate are strictly pass-or-fail methods. Anything that is not AQL is considered to be RQL. It is the concept of adjusted payment, which recognizes that there is an intermediate zone between clearly good and clearly poor quality, that requires distinct definitions of AQL and RQL.

When available, historical data can provide the basis upon which suitable definitions of AQL and RQL can be based. To be valid and useful, the data should have been gathered in a random fashion from a variety of projects spanning as broad a range of quality as possible. For example, if a highway agency found that pavements typically had performed satisfactorily when no more than 10 percent of the tests were less than the designed thickness and it was desired to develop a specification that would continue to produce this same level of quality, then the AQL could be defined as 10 percent defective. Similarly, if very troublesome maintenance problems were found to be associated with a percent defective level of approximately 50 percent, then this might be an appropriate RQL.

Although these particular values for AQL and RQL might be reasonable, they are presented here only as examples to suggest the type of association between quality and performance that should be sought from historical data. When such an analysis is actually performed, it is necessary to screen out the effects of other contributing factors such as the strength of the pavement layer. Finally, when the AQL and RQL are derived in an empirical manner such as this, some form of long-term monitoring of the acceptance procedure may be desirable. The random sampling plans will continue to produce valid historical data that can be used to review the effectiveness of the specification at some future date.

5. ATTRIBUTES AND VARIABLES PLANS

Percent defective (or its counterpart, percent within limits) can be controlled by either of two types of acceptance procedure—attributes plans or variables plans. Attributes plans typically involve the counting of some type of defect, or the number of failing tests, and lead to the classification of the inspected lot as either satisfactory or unsatisfactory. Variables plans apply to quality characteristics that are measured on a continuous scale and involve the computation of statistical parameters such as the mean and standard deviation. Either type of plan may be used for pass-or-fail decisions, but variables plans are somewhat more convenient as a basis for adjusted pay schedules.

As a general rule, variables plans are more discriminating than attributes plans. This means that, for a given sample size, greater protection is provided or, for a given level of protection, a smaller sampling effort is required. Either way, substantial economic benefits can be realized with the use of variables plans. This is demonstrated by the examples in Section 13.

A basic assumption of variables acceptance theory is that the population (lot) being sampled is normally distributed. Many construction characteristics have been found to closely approximate the normal distribution, thereby justifying the widespread use of variables procedures. When a situation occurs in which the construction characteristic is distinctly nonnormal, there are two possible remedies. Either the individual tests can be replaced with the averages of two or more tests, a step that greatly improves normality, or an at-
tributes procedure can be used, which requires no distributional assumptions.

Variables plans can use either the standard deviation or the range as the measure of variability. In the past, the range was often used because it was easier to understand and compute. Today, the standard deviation is a more commonly used statistical measure because it makes more efficient use of the available data. Just as variables plans are more discriminating than attributes plans, standard deviation plans are generally superior to range plans. An illustration of this is given in Section 17.

The book by Duncan (3) is an excellent general reference on attributes and variables sampling and some examples are given in Section 13 of this paper. A recent publication (4) provides certain tables in a more convenient form.

6. OPERATING CHARACTERISTIC CURVES AND RISK ANALYSIS

An absolutely vital step in the development of a statistical specification is the construction of the operating characteristic (OC) curve. This is the only way to know in advance whether or not the acceptance procedure will function as intended. It is through the study of such curves that the risks to both parties can be recognized and controlled at suitably low levels. This enables the highway agency to develop fair and effective specifications and may aid the contractor in determining the appropriate bidding and production strategies.

A conventional OC curve is shown in Figure 2. Probability of acceptance is indicated on the Y-axis for the range of quality levels (indicated schematically in this example) on the X-axis. The contractor’s risk of having good (AQL) material rejected and the agency’s risk of accepting poor (RQL) material are both illustrated.

Figure 3 presents an OC curve constructed for a statistical specification with an adjusted pay schedule. Quality levels are indicated on the X-axis in the usual manner, but, instead of probability of acceptance, the Y-axis gives the expected pay factor.

Although the risks have a slightly different interpretation when associated with the expected payment curve in Figure 3, essentially the same type of information is provided. In this particular example, AQL work receives an expected pay factor of 100 percent, as desired. At the other extreme, RQL work corresponds to an expected pay factor of 70 percent. Presumably the transportation agency has determined that this will cause sufficient money to be withheld to cover the anticipated cost of future repairs. For still lower levels of quality, the curve levels off at the minimum pay factor of 50 percent.

In the case of pass-or-fail acceptance procedures, OC curves of the type shown in Figure 2 can be computed directly or constructed with the aid of special tables such as those presented in Section 23. For acceptance procedures with adjusted pay schedules, OC curves of the type shown in Figure 3 can be obtained by using special software (5) or by developing relatively simple computer simulation programs.

7. COMPUTER SIMULATION

Computer simulation is one of the most powerful analysis methods available for handling a wide variety of complex problems and yet, contrary to what might be expected, it is one of the simplest to understand and apply (6,7). The ease of this approach appeals both to problem solvers and to those to whom the results of an analysis must be presented and explained. Most simulations require only the following basic steps:

- Generate random data simulating the real process,
- Apply the procedure that is to be tested, and
- Observe the results.

We routinely use computer simulation to test new statistical acceptance procedures before their actual implementation. A typical run is shown in Figure 4, in which it was desired to test a pay schedule for concrete compressive strength on 1,000
RUN SPECSIM
EXECUTION BEGINS...

ENTER COEFFICIENTS A AND B OF PAY EQUATION PF = A - B(PD) ?
102 0.2

ENTER SPECIFICATION LIMIT AND SAMPLE SIZE ?
4000 5

ENTER STANDARD DEVIATION (PRODUCT AND TESTING VARIABILITY) ?
300

ENTER PERCENT DEFECTIVE LEVEL AND RANDOM GENERATOR SEED NUMBER ?
10 123456789

DISTRIBUTION OF SIMULATED TEST RESULTS
N = 5000
MEAN = 4382
STANDARD DEVIATION = 305
PERCENT DEFECTIVE = 10.5

DISTRIBUTION OF PD ESTIMATES
N = 1000
MEAN = 10.6

AVERAGE PAY FACTOR = 99.9

FIGURE 4 Computer simulation test of a statistical acceptance procedure.

simulated lots at a quality level of 10 percent defective. In this example, it is seen that the computer generated a total of 5,000 random test results at a percent defective level of $PD = 10.5$, very close to the desired value of 10.0. The average estimated percent defective for the 1,000 lots was 10.6, also very close to the true value of 10.5, as would be expected of a valid statistical estimation procedure. For this example, the AQL is considered to be 10 percent defective and, accordingly, the average pay factor is almost exactly 100 percent, indicating that the acceptance procedure is performing properly at this quality level.

A simulation program such as this, because it uses several previously developed subroutines, requires only about an hour to prepare and enter on the computer. Whereas earlier efforts of this type were done primarily on mainframe computers, the increasing availability of Fortran compilers has now made it possible to do much of this work on relatively inexpensive personal computers. A run such as that shown in Figure 4 might require a fraction of a second on a mainframe and only a few seconds on a PC. The Fortran coding for a variety of useful simulation subroutines may be found in a recent report (8).

By using computer simulation in this manner, it is possible to ensure that statistical specifications will protect the interests of the transportation agency and also that they will be fair to the construction industry. This approach also provides an effective way to acquaint contractors with the degree of control that must be achieved to meet the requirements of a new specification.

8. LOT SIZES AND SAMPLE SIZES

The selection of lot size is dictated primarily by practicality and convenience, although, for variables acceptance procedures, care must be exercised in combining work produced at different times or under different conditions because this might violate the assumption of normality. Typically, either time or quantity limits are used to define lots, such as a day's production or 5,000 yd2.

The sample size is a more important consideration because this has a direct effect on the risks involved. Except for attributes sampling from discrete lots (items that are counted), the lot size plays no role in the development of the OC curve. Usually, but not always, larger sample sizes reduce the risks to both the contractor and the transportation agency, but to be sure the plan will perform as desired, the OC curves should be constructed for all sample sizes under consideration.

Attributes plans may be used with sample sizes as small as $N = 1$, although a plan with such a small sample will obviously be quite weak. For mathematical reasons, variables plans require a sample size of $N = 3$ or larger.

In general, for a given sample size and level of protection, defining larger lot sizes will reduce the overall level of effort devoted to sampling and testing. Assuming that larger lot sizes are satisfactory from a statistical standpoint, a price may still have to be paid for this economy. If there were a problem with the quality being produced, a proportionally larger quantity of defective material would have been produced before the problem was discovered. For this reason, lot sizes in the transportation field tend to be relatively small, seldom including more than a day's production.

Although we don't advocate such an approach, there is no theoretical reason why an entire project cannot be treated as a single lot. If it is known that long-term production closely approximates a normal distribution, a variables procedure could be used to make more efficient use of the data. If long-term production cannot confidently be assumed to be normal, then an attributes procedure would be necessary. A sufficiently large sample would be required to be confident that this single decision on the entire project was correct. Examination of the OC curve might suggest the desirability of a sequential acceptance procedure under which, if the first set of tests did not provide a clear-cut accept or reject decision, a second set of tests would be obtained to clarify the issue.

9. RANDOM SAMPLING PROCEDURES

Of the various theoretical assumptions upon which statistical acceptance procedures are based, random sampling is one of the most important. Only when all vestiges of personal bias have been removed can the laws of probability be relied upon to function properly.

Random sampling is often defined as a manner of sampling that allows every member of the population (lot) to have an equal opportunity of appearing in the sample. Stratified random sampling, which requires the drawing of a single sample from each of a number of equal-sized sublots, satisfies this basic requirement and guarantees that the samples will never be clustered in one small portion of the lot. When the product to be sampled can be measured on a continuous scale, this procedure is relatively straightforward. Figure 5 shows a stratified random sampling procedure applied to highway pavement.
A careful analysis of this procedure would show that each truck in the total lot of 20 trucks has very nearly, but not exactly, the same probability of appearing in the sample. This slight imperfection is the result of the unequal subgroup sizes. If it were believed necessary to overcome this minor departure from pure randomness, this could be accomplished by choosing a random starting point for the sub grouping rather than beginning with the first truck. A variety of procedures of this type have been developed and are described in other publications. (8, 9).

10. BASIS FOR PAY ADJUSTMENTS

The major concern in the development of adjusted pay schedules is the determination of appropriate pay levels for various levels of quality. Over the years, several methods have been proposed (10–15), and when there was little or no information relating quality measures to performance, the methods were necessarily quite arbitrary. In cases for which quality-performance relationships have been established (or can be estimated), one of the more rational methods for developing pay schedules is based on the legal principle of liquidated damages. In this approach, the pay schedule is designed to withhold sufficient payment at the time of construction to cover the cost of future repairs made necessary by defective work.

The complete development of the liquidated-damages approach can be found in either of two recent publications (8, 13) and will be described only briefly here. In the case of highway pavement, for example, the thickness and material characteristics are chosen to carry the estimated loading for the desired service life. At the end of its useful service life, the pavement will commence receiving a series of overlays that, based on our experience, typically last about 10 years. If because of construction deficiencies the pavement is not capable of carrying the design loading, it will fail prematurely. When this happens, the series of overlays that follow the initial design period will be moved forward in time, resulting in an extra expense to the transportation agency. Using engineering economics principles, it is possible to develop an expression giving the appropriate pay factor for various levels of expected life, such as that given by Equation 1.

\[
P F = 100[1 + C_p(R^{t_d} - R^{t_e})/C_p(1 - R^{t_1})]
\]

where

- \(P F \) = appropriate pay factor (percent),
- \(C_p \) = present unit cost of pavement (bid item only),
- \(C_e \) = present unit cost of overlay (total in-place cost),
- \(L_d \) = design life of pavement,
- \(L_e \) = expected life of pavement,
- \(R = (1 + R_m/100)/(1 + R_{int}/100) \),
- \(R_m \) = annual inflation rate (percent), and
- \(R_{int} \) = annual interest rate (percent).

To illustrate the degree of pay adjustment that this approach produces, the following typical values have been assumed:

- \(C_p = \$40/\text{yd}^3 \) (typical bid for NJDOT-design concrete pavement),
EXAMPLE: Population Size = 20, Sample Size = 3

Sample Selection Table

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random Number Table

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions

1. In the sample selection table, cross out all numbers that are greater than the lot size.
2. Divide the remaining numbers in the sample selection table into as many approximately equal subgroups as there are samples to be drawn.
3. Using the random number table, select a sample from each of the subgroups.

FIGURE 6 Worksheet for selection of stratified random sample from a lot of as many as 100 items.
$C_0 = 40$/yd2 (total in-place cost of overlay),
$L_d = 30$ years,
$L_o = 10$ years,
$R_{int} = 4$ percent, and
$R_{out} = 8$ percent.

Substituting these values in Equation 1, with several possible values for expected life, produces the following results:

<table>
<thead>
<tr>
<th>Expected Life, L_e (years)</th>
<th>Fraction of Intended Design Life</th>
<th>Appropriate Pay Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1.17</td>
<td>104</td>
</tr>
<tr>
<td>30</td>
<td>1.00</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>0.83</td>
<td>95</td>
</tr>
<tr>
<td>20</td>
<td>0.67</td>
<td>88</td>
</tr>
<tr>
<td>15</td>
<td>0.50</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>0.33</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>0.17</td>
<td>60</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>46</td>
</tr>
</tbody>
</table>

Although Equation 1 was derived by summing a geometric series, a simple check calculation is possible. If the pavement in this example were to fail exactly 10 years prematurely, then the planned future overlays remain precisely as scheduled except for the addition of one new overlay at Year 20. Using the present in-place overlay cost of 10/yd2 and the inflation rate of 4 percent, Equation 2 gives the cost of this added overlay at the time it is installed.

\[\text{Future cost} = 10(1.04)^{20} = 21.91$/yd$^2 \] \hspace{1cm} (2)

Then, because the pay adjustment is applied at the time of initial construction, this value is converted back to present worth using the interest rate of 8 percent.

\[\text{Present worth} = 21.91/(1.08)^{20} = 4.70$/yd$^2 \] \hspace{1cm} (3)

Equation 3 gives the appropriate amount of pay adjustment to be withheld. Then, using the base price for the initial pavement of $C_0 = 40$/yd2, this is expressed as a percent pay factor in Equation 4. This is seen to agree exactly with the value calculated with Equation 1 for an expected life of $L_e = 20$ years.

\[PF = 100(40 - 4.70)/40 = 88 \] \hspace{1cm} (4)

The final step in the development of the pay schedule requires a suitable relationship between quality and performance. In the case of pavement, the fatigue relationships in the AASHTO Design Guide (16) can be used to estimate the expected life (L_e) as a function of the quality parameter. For highway structures, or other items for which quality-performance relationships are not readily available, engineering judgment and experience must be used to estimate service life as a function of quality. At the time of this writing, there is considerable ongoing research to better establish the performance relationships necessary for this type of approach.

There are some interesting consequences of the liquidated-damages approach. Because the pay adjustments are based on the economic impact of a departure from the specified quality level, they may be positive as well as negative. For quality in excess of the design level, the transportation agency receives a tangible benefit in terms of greater performance or service life, and accordingly this method awards a small bonus.

Because it has become conventional to apply pay adjustments in the form of pay factors that represent a percentage of the base price of the construction item, the pay schedule may appear to be more or less severe depending upon the actual magnitude of the base price. In reality, this procedure equates the pay adjustment directly to the estimated gain or loss experienced by the transportation agency, which, in our opinion, is a fair and equitable approach. And finally, because it is based on the well-established principle of liquidated damages, it is believed to be more defensible than some of the earlier methods. Some of the legal considerations underlying this approach are discussed further in Section 28.

11. JUSTIFICATION FOR BONUS CLAUSES

The bonus clause, sometimes referred to as an incentive provision, was supported for several years by FHWA on an experimental basis (17). It was eventually concluded that, in appropriate circumstances, this approach was not only cost-beneficial but decisively in the public interest. Subsequently, all restrictions were removed (18) and the bonus clause has come into more common use.

The foregoing refers to bonus clauses for either early completion or superior quality. For a quality assurance program, it is the latter application that is of interest. In the case of pavement, for example, well-established fatigue relationships (16) clearly demonstrate that improved quality extends the expected service life. Design and construction forces have expressed the opinion that similar benefits would result from higher-quality construction of structures, either by extending the life or reducing the amount of periodic maintenance, or both. A longer service life and reduced maintenance translate directly into cost savings for the transportation agency. The bonus provision provides additional incentive to accomplish this by sharing some of the economic benefit with the contractors who are capable of achieving higher levels of quality.

Another benefit that should not be overlooked is the positive psychological effect of providing a reward for excellent performance rather than just a penalty for poor performance. But the primary justification for a bonus provision has to do with fairness to the contractor. Acceptance procedures based on percent defective (or its counterpart, percent within limits) require at least a small bonus in order to award an average pay factor of 100 percent when the contractor produces quality precisely at the level that has been defined as acceptable. The technical explanation for this has been presented in another recent publication (15).

12. ADVANTAGE OF CONTINUOUS PAY SCHEDULES

Although continuous (equation-type) and stepped pay schedules can be constructed to have essentially the same long-term performance as indicated by their OC curves, there is a distinct advantage associated with the continuous form. When the true quality level of the work happens to lie close to a boundary in a stepped pay schedule, the quality estimate obtained from the sample may fall on either side of the boundary, primarily because of chance. Depending upon which side of the boundary the estimate falls, there may be a substantial
difference in pay level, which may lead to disputes over measurement precision, round-off rules, and so forth. This potential problem can be completely avoided with continuous pay schedules that provide a smooth progression of payment as the quality varies.

13. DEVELOPMENT OF ACCEPTANCE PLAN

The following is a simplified example to illustrate most of the foregoing concepts. The values chosen for this example are believed to be realistic but are presented primarily to demonstrate the logical sequence of steps that must be followed in developing a statistical specification.

Since pavement life is strongly related to thickness, it is desired to develop an acceptance procedure that will provide a strong incentive to the construction industry to achieve the desired thickness. The procedure must also protect against accepting pavement that is not of sufficient thickness. Pavement thickness will be determined by taking an appropriate number of cores at random locations and measuring their length in accordance with some standard procedure.

On the basis of engineering judgment and an analysis of historical data, it has been determined that the pavement will be considered satisfactory if at least 90 percent of it is greater than the design thickness. Therefore, the AQL may be considered to be 10 percent defective and it is desired that this level of quality have a relatively high probability of acceptance or have an expected pay factor close to 100 percent, depending upon which type of acceptance procedure is used. At the other extreme, if 50 percent or more of the pavement is less than the design thickness, it has been decided that this will be regarded as rejectable (RQL) and an appropriately low probability of acceptance, or a correspondingly low expected pay factor, is desired.

Plan A

If the simplest form of acceptance procedure is desired, requiring the user to make no statistical calculations or to consult no tables, an attributes procedure would be chosen. Only the developer of the acceptance plan would be required to make the necessary calculations or use appropriate tables to verify that the procedure has a satisfactory OC curve. One such plan might require that \(N = 15 \) cores be taken and, provided that no more than \(C = 4 \) are less than the design thickness, the lot would be judged acceptable. In lieu of plotting the OC curve, the same information is presented in Table 1. It can be seen that the basic requirements have been well satisfied, since AQL work will nearly always be accepted, whereas RQL work has a very low probability of acceptance.

Plan B

If the transportation agency has confirmed that pavement thickness is at least approximately normally distributed and is willing to use slightly more sophisticated procedures, significant economies can be realized by developing a variables plan. To illustrate the savings in sample size to achieve the same result, consider a variables plan with a sample size of \(N = 10 \). The quality index is computed in accordance with Equation 5 and the acceptance requirement is given by Equations 6, 7, or 8.

\[
Q = \frac{(\bar{X} - L)}{S}
\]

where

\[
Q = \text{quality index}, \\
\bar{X} = \text{sample mean,} \\
S = \text{sample standard deviation, and} \\
L = \text{specification limit (design thickness for this example).}
\]

Form 1:

\[
Q \geq 0.539
\]

Form 2:

\[
\bar{X} \geq L + 0.539S
\]

Form 3:

\[
PD \leq 30
\]

Form 2 does not actually require the computation of the quality index, and Form 3 requires the estimation of the lot percent defective \((PD)\) from an appropriate table, such as that shown in Figure 7. The value of 0.539 in Equations 6 and 7 is the acceptance constant selected to produce the desired OC curve. The maximum allowable estimated percent defective of 30 in Equation 8 serves the same purpose.

For a single-limit specification, such as this example, any of these forms is equally suitable and will produce the OC curve shown in Table 1. For a double-limit specification, one having both lower and upper limits, only the third form is appropriate if a consistent OC curve is to be obtained.

Plan C

Plans A and B produce pass-or-fail decisions and do not use adjusted pay schedules. If the transportation agency desires the additional practicality of a plan that will permit the acceptance or marginally deficient work at reduced payment, it must first develop at least an approximate relationship between quality level and appropriate payment. For this example, it is assumed that the linear relationship given by

TABLE 1 COMPARISON OF OPERATING CHARACTERISTICS OF PLANS A, B, AND C

<table>
<thead>
<tr>
<th>Lot Percent Defective</th>
<th>Probability of Acceptance</th>
<th>Expected Pay Factor, Plan C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (AQL)</td>
<td>0.99</td>
<td>99.9</td>
</tr>
<tr>
<td>20</td>
<td>0.84</td>
<td>96.9</td>
</tr>
<tr>
<td>30</td>
<td>0.52</td>
<td>91.5</td>
</tr>
<tr>
<td>40</td>
<td>0.22</td>
<td>83.2</td>
</tr>
<tr>
<td>50 (RQL)</td>
<td>0.06</td>
<td>73.1</td>
</tr>
<tr>
<td>60</td>
<td>0.01</td>
<td>63.2</td>
</tr>
<tr>
<td>70</td>
<td>0.00</td>
<td>55.6</td>
</tr>
</tbody>
</table>
Equation 9 is a suitable approximation within the region in which most of the quality estimates are likely to fall. As in Plan B, the use of variables procedures (percent defective or percent within limits) assumes that the product being inspected is at least approximately normally distributed.

\[
PF = 102 - 0.2PD
\]
(9)

where \(PF\) is the appropriate pay factor (percent) and \(PD\) is the percent defective.

Equation 9 can also be used as the pay equation for the specification. It can be seen by inspection that the AQL has been taken to be \(PD = 10\) because when this value is substituted, it produces a pay factor of 100 percent. This equation also provides a small bonus for superior quality, awarding a maximum pay factor of 102 percent when the estimated percent defective is zero. At the other extreme, where the maximum value of \(PD = 100\), the minimum pay factor produced by Equation 9 is 82 percent. In actual practice, most transportation agencies would want to include an RQL provision to override this process at some unacceptably large level of percent defective. In order to compute the OC curve presented in Table 1, it was assumed that a pay factor of 50 percent was assigned in lieu of requiring removal and replacement whenever the percent defective equaled or exceeded \(PD = 50\).

Because of the tendency for averages to converge on the true population parameter (see Section 16), lower sample sizes can be used with pay adjustment procedures. For this example, a sample size of \(N = 5\) has been selected. The acceptance procedure would require that the quality index be computed with Equation 5, the percent defective estimate \((PD)\) be obtained from a table similar to that shown in Figure 7 (except designed for a sample size of \(N = 5\)), and the pay factor for the lot be computed with Equation 9.

The purpose of performing an analysis such as this is to ensure that the specification will be sound and defensible, that it will provide sufficient incentive to the construction industry to control the quality of the work, and that it will furnish adequate protection to the transportation agency against accepting defective work. Table 1 provides the information necessary to decide which, if any, of the plans is suitable and whether or not further refinements would be desirable.

14. ACCURACY, PRECISION, AND BIAS

Not all material test methods or statistical procedures perform equally well. In order to provide a quantitative means of comparing different procedures, statisticians have introduced the concepts of accuracy, precision, and bias.

- **Accuracy**: A procedure is said to be accurate if the mean of a distribution of measurements tends to coincide with the true mean of the population.
- **Precision**: A procedure is said to be precise if repeat tests or measurements on identical samples tend to reproduce the same value.
- **Bias**: Bias is a measure of inaccuracy, that is, the degree to which the mean of a distribution of measurements tends to be displaced from the true population value.

Perhaps the best visual impression of these terms can be obtained by imagining a marksman shooting at a target (19), as shown in Figure 8. The first case, in which the measurements are both accurate and precise, represents the conditions
enabling the transportation agency to make fair and appropriate acceptance decisions. The statistical acceptance procedures presented in this paper are known to be accurate, although some are more precise than others. A direct comparison of standard deviation, range, and attributes plans is presented in Part 2 and similar comparisons are made in both Sections 13 and 16 in this part of the paper.

The second example in Figure 8 shows a process that is accurate but not precise. This is less desirable, of course, but does not automatically rule out the use of such procedures. In fact, there are three ways in which the use of less precise procedures can be justified. First, if the criticality of the item being inspected is relatively low, such that the cost of making an incorrect acceptance decision is not particularly great (for either the transportation agency or the contractor), then a less precise procedure may be adequate. If the less precise procedure also happens to be simpler, faster, or less expensive, this would further justify its use. Second, if the item being inspected is a critical component that would warrant a greater degree of precision in the acceptance process, this can be accomplished with the use of a larger sample size. This, in effect, improves the precision of the overall process. Finally, if the acceptance procedure uses an adjusted pay schedule, somewhat poorer precision on individual lot determinations is not necessarily detrimental provided there are a sufficient number of lots to allow the overall pay factor for the project to average out to the value that is considered appropriate. This is discussed in more detail in Section 16.

The third example in Figure 8 is more problematical. Bias is a particularly insidious problem for two reasons: it can greatly distort the results that are obtained, and there usually is no obvious warning that it is present. Although there have been rare situations in which statisticians have been willing to tolerate a small amount of bias in exchange for a substantial improvement in precision, we doubt that such a compromise would be practical for most SQA applications. As a minimal defense against bias, we recommend using only standard and well-established test methods and statistical procedures.

A fourth case, in which the measurements are neither accurate nor precise, is not shown in Figure 8 and is of no practical use. To guard against such an undesirable situation, it is necessary to investigate the accuracy and precision of any procedures being considered for quality assurance applications.

15. SAMPLE COVERAGE AND QUALITY ASSURANCE

An idea that warrants reconsideration is the relatively common practice of relating sample size to lot size. For example, if it were customary to perform \(N = 3 \) tests on a lot of 100 yd\(^3\) of concrete, some might believe that \(N = 6 \) tests would be required for a lot of 200 yd\(^3\) in order to maintain the same level of quality assurance. However, as pointed out in Section 8, the level of protection is determined almost entirely by the sample size, not the lot size. Provided that the 200-yd\(^3\) lot is produced under one set of conditions and a suitable stratified random sampling procedure is used, the \(N = 3 \) tests will provide the same degree of quality assurance for the larger lot. For this reason, it makes more sense to base sample sizes on criticality rather than the volume of the item being constructed. For example, a prestressed beam of 50 yd\(^3\) might well warrant a sample size of \(N = 6 \) tests, whereas 300 yd\(^3\) of concrete pavement might be suitably controlled with \(N = 3 \) tests. Recognizing this fact may permit a reduction in overall sampling effort or at least allow the current effort to be used more effectively.

16. AVERAGING POWER OF STATISTICS

A criticism that is sometimes leveled against statistical specifications is that, with the relatively small sample sizes typically used by transportation agencies, there may be considerable uncertainty in the decisions made on individual lots. Although this observation is theoretically correct, it is largely mitigated by the manner in which statistical acceptance procedures have been applied. It is a well-known statistical principle that sample averages tend to fall closer to the true population values as the number of items making up the average increases. The conventional method of applying pay adjustments allows this statistical principle to operate in a very desirable way. Although the pay adjustment for any individual lot may be somewhat lower or higher than it ideally should be, the overall average pay factor for the project will be very close to the appropriate value, provided the project includes a sufficient number of lots to allow the averaging process to operate. Computer simulation (discussed in Section 7) provides an effective tool to demonstrate this principle.

One word of caution must be added, however. If the acceptance procedure includes an RQL provision to require the removal and replacement of a construction item at some seriously low level of quality, the averaging process is neither operative nor appropriate. In this case, the OC curves must
be analyzed to determine if the risk of accepting truly defective work is at a suitably low level.

17. APPROPRIATE MEASURES OF VARIABILITY

The use of variables procedures (percent defective or percent within limits) is motivated by the belief that it is important to control the variability as well as the mean level of the construction characteristic in question (as discussed in Sections 3 and 4). To this end, it is important that appropriate measures of variability be used. There are two caution to be offered—one pertaining to the statistical measure of variability and the other relating to the source of the variability.

In many of the earlier SOA specifications, the range was often used as the statistical measure of variability because it was easy to understand and compute. However, as engineers have become more familiar with statistical methods, they have begun to realize that this choice has resulted in a substantial loss of efficiency. The standard deviation, which can now be computed with a single keystroke on most modern scientific calculators, makes considerably more efficient use of the data. Table D3 in the textbook by Duncan (3) provides several illustrations of this. For example, the range computed from a sample of size \(N = 12 \) has \(v = 9 \) degrees of freedom, whereas the standard deviation computed from a sample of size \(N = 10 \) also has \(v = N - 1 = 9 \) degrees of freedom. Since the magnitude of the degrees of freedom provides an indication of the discriminating power of an acceptance plan, it is seen that a standard deviation plan can accomplish the same result as a range plan but with a significant savings in sampling and testing costs. To demonstrate that the two plans are equivalent, as indicated by their OC curves, tables such as those in the appendix of AASHTO Standard R9, Method A, are consulted (20). The appropriate values are reproduced in Table 2.

The other caution relates to the source of the variability, regardless of the parameter used to measure it. This question often arises in the assessment of the capability of the construction industry to meet a new acceptance procedure that is under development. Since statistical acceptance procedures are applied on a lot-by-lot basis, it is the typical within-lot variability plus the ability to control the mean that determine a contractor’s ability to meet the specification. It would be inappropriate, for example, to gather data from an entire construction season and compute an overall standard deviation. This result would be inflated by lot-to-lot variation and would be misleadingly large. For a more realistic assessment, the standard deviations within a large number of lots should be computed and pooled in the appropriate statistical manner (21, p. 113) as indicated by Equation 10. To this it would be necessary to add a relatively small component to account for the variability of the process mean.

\[
S_p = \left[\frac{\sum (N_i - 1) S_i^2}{\sum (N_i - 1)} \right]^{1/2} \tag{10}
\]

where
\[
S_p = \text{pooled standard deviation},
\]
\[
N_i = \text{sample sizes of individual lots, and}
\]
\[
S_i = \text{standard deviations of individual lots.}
\]

18. MINOR PROBLEM WITH VARIABLES PLANS

Although such occurrences are rare, it will occasionally happen when using variables acceptance procedures that a lot may be judged rejectable, or receive a pay reduction, even though none of the individual test results fall outside the specification limits. Provided that no fundamental assumptions such as a normal population or random sampling have been violated, this is a theoretically correct result. The proper interpretation is that, on the basis of the mean and standard deviation estimated from the sample, the population percent defective is unacceptably large.

In the case of a one-sided specification, this situation may also be caused by one or more outliers, test results that deviate unusually far from the norm because of some assignable cause such as equipment malfunction or operator error. The outliers could also be caused by a nonnormal population, such as would occur if two or more distinctly different normal populations were combined in the same lot. Because such a result has the appearance of being unfair, and may in fact be an indication of a breakdown in the sampling and testing process, an investigation of the cause would be warranted if it were to occur more than a very small percentage of the time.

19. PROBLEM WITH VARIABILITY-KNOWN PROCEDURES

The variables acceptance procedures described for Plan B in Section 13 are termed variability-unknown procedures because the variability of the lot is acknowledged to be unknown and is estimated by the sample standard deviation (5). Although it is possible to construct variability-known plans, in which the standard deviation is not computed but is assumed to equal some typical value for the item in question, we urge considerable caution in applying such an approach. We believe that there are a few, if any, construction items for which the variability can confidently be regarded as known. Variables approaches are usually selected when it is considered important to control the variability of the lot. Variability-known plans provide no particular incentive to do this and,
in our opinion, are not suitable for the majority of construction specification applications.

20. DUAL ACCEPTANCE PROCEDURES

Some specifications in current use contain dual acceptance criteria. In addition to the primary requirement applied to some parameter computed from the entire sample (mean, percent defective, etc.), there may be a secondary requirement applied to the individual values. A dual acceptance procedure in common use requires the mean of the sample to exceed some limit and each individual value of the sample to exceed some lower limit. Often, the primary requirement is intended to dominate, and the secondary requirement comes into play less frequently.

The probabilities of passing the two requirements separately are readily calculated by conventional statistical techniques. However, although it may be tempting to assume that the probability of passing both requirements is simply the product of these two separate probabilities, this is not the case. Because the chance occurrence of unusually low or high test values will have a similar effect on the likelihood of passing either requirement, the two probabilities are not independent but are positively correlated to some unknown degree. This lack of independence requires that a different approach be taken.

Although it is not possible to compute the desired probability directly, it can be approximated by computing lower and upper bounds. This furnishes interval estimates that, in most cases, are sufficiently narrow to be of practical use. Figure 9 shows typical bounding OC curves obtained by this method. The theoretical development may be found in either of two recent publications (8,22), in which the following expression is derived:

\[P_1 P_2 \leq P(\text{Accept}) \leq \text{Min}(P_1, P_2) \]

(11)

where

\[P_1 = \text{probability of passing the first requirement}, \]
\[P_2 = \text{probability of passing the second requirement}, \]
\[P(\text{Accept}) = \text{overall probability of acceptance}. \]

21. RETESTING PROVISIONS

Retesting provisions have generated an inordinate amount of confusion. This may be due to the different reasons for their use, the different ways in which the retest results can be processed, and the advantages and disadvantages associated with each.

There are at least four reasons why a retesting provision might be made an integral part of an acceptance plan:

1. To confirm that the work is truly defective before imposing a severe consequence, such as requiring removal and replacement or assigning a minimum pay factor.
2. To produce a more desirable OC curve that properly balances the risks between the transportation agency and the contractor.
3. To make more efficient use of limited sampling and testing resources. A reduced sampling effort may be sufficient to identify work that is clearly good or clearly defective. When the work falls in the marginal area between these two extremes, the additional information provided by the retest enables the transportation agency to make an appropriate acceptance decision.
4. To guard against a possible breakdown in any of the steps of the sampling and testing process.

If a retest provision is to be used, it must be described explicitly in the contract documents, including precisely how the retest results are to be processed. There are two distinctly different ways to do this: they may be combined with the original test results or they may be used in place of the original test results.

An advantage of the first method is that it makes maximum use of all the available information. Advocates of this method argue that there is a cost associated with each sample and that it is wasteful to discard any valid information. An opposing viewpoint would question whether the original sample was truly valid. If the low quality level is the result of some malfunction of the testing process, then it would be more appropriate to disregard the contaminated data.

This is a question of philosophy that each agency must answer for itself. However, if the decision is made to combine the retest results with those obtained from the initial sample, caution must be exercised in computing the OC curve for this procedure. Since the probabilities of failing the original test and passing the retest are correlated to some degree, the overall probability must be determined either by the boundary method (Section 20) or by computer simulation (Section 7).

If the first and second series of tests are designated by the letters A and B, Equation 12 gives the bounds for the overall probability of acceptance by this procedure (8,22).

\[\text{Max}(P_A P_B) \leq P(\text{Accept}) \leq P_A + (1 - P_A)P_B \]

(12)
There will occasionally be situations in which it is judged more practical to accept a limited amount of performance than to undertake a major repair at the time of construction. However, if a major repair were eventually required and were a direct consequence of inferior workmanship, and the extra expense that must be borne by the transportation agency were to equal or exceed the initial cost of the construction item, then we believe that the legal concept of liquidated damages would support a pay factor of zero or less (see Section 10).

22. ZERO PAY FACTORS

Over the years, as statistical acceptance procedures have evolved, the argument has occasionally been heard that a zero pay factor is inappropriate. The position has been stated that, when a transportation agency chooses, for practical reasons, not to require the removal and replacement of an extremely defective item, this is an acknowledgment that the item can provide some limited degree of service and that therefore it has some minimum value greater than zero.

We offer a counterargument. Although the approach that we advocate for quantifying pay adjustments (Section 10) has not yet resulted in a pay schedule with a zero pay factor, we see no theoretical reason why this would be inappropriate. There will occasionally be situations in which it is judged more practical to accept a limited amount of performance than to undertake a major repair at the time of construction. However, if a major repair were eventually required and were a direct consequence of inferior workmanship, and the extra expense that must be borne by the transportation agency were to equal or exceed the initial cost of the construction item, then we believe that the legal concept of liquidated damages would support a pay factor of zero or less (see Section 10).

23. AVAILABILITY OF STATISTICAL TABLES

If SQA methods are to be promoted, they must be made as easy to understand and implement as possible. Unfortunately, some of the earlier attempts were hindered by the necessity of using statistical tables that were not in the most useful form for transportation applications. Other tables that would have been extremely useful simply did not exist. Several new tables have recently been developed (4, 20) that greatly simplify the construction of OC curves for both attributes and variables acceptance plans. A still more extensive series of tables is currently in preparation (23). Computer programs have been developed that are capable of generating a wide variety of useful tables, some examples of which are given in Figures 10–12 as well as in Figure 7.

24. CLASSICAL VERSUS BAYESIAN METHODS

One of the oldest debates in the field of statistics concerns the relative merits of classical versus Bayesian procedures. Some statisticians choose to align themselves in one camp or the other, whereas others seem to believe that both methods have their appropriate uses. We wish to offer an argument for this latter point of view as it applies to quality control and quality assurance.

The term “quality control” is generally interpreted to refer to those actions taken by the contractor or producer to maintain the necessary quality of production to meet the requirement of the specification. The term “quality assurance” may refer to the entire system involving both quality control and acceptance testing but usually is associated more strongly with the acceptance testing activities of the transportation agency.

In judging the quality of a lot, for example, Bayesian procedures would use not only the results from that particular lot but also data from previous lots, combined in an appropriate manner (24). Proponents of this method argue that it is both logical and useful to make formal use of existing prior knowledge (not necessarily data alone) in order to improve the likelihood of making a correct decision. Classical statisticians, on the other hand, would argue that the use of any information other than that from the particular lot in question has the potential for biasing the decision on that lot and that, in the long run, fewer correct decisions would be made.

We believe that in order for prior knowledge to be useful, the assumption must be made that the process has remained essentially unchanged with time, that is, that there has been no actual drift in the process mean or standard deviation and that any fluctuations in the quality of the output are simply the result of inherent random variation. The only problem with this approach, at least as far as acceptance testing is concerned, is that it assumes away the very problem that acceptance procedures are designed to guard against—a true shift in quality level, whether accidental or intentional. Consequently, we favor the classical approach to acceptance testing.

However, we think the Bayesian approach might be superior in the area of process control, that portion of the overall quality assurance program that is traditionally the responsibility of the contractor. To keep the process under control, the contractor must continually react to information from the field and make timely adjustments as necessary. Because of the random variation of individual lots, however, no single lot provides a very reliable indicator of the need for a process adjustment. The Bayesian procedure, because it integrates current lot information with previous production data, may provide a more reliable basis upon which process control decisions could be made. This application seems particularly appropriate because it is the contractor who has both ready access to process data and the motivation to control the process effectively. Perhaps the academic community, whose consulting services are frequently engaged by the construction industry, could develop a simple and practical way to accomplish this.

25. MOVING AVERAGES

More generally, the concept of moving averages could be referred to as a “moving sample,” because its use is not limited just to the average of the test values. Although it has a certain appeal, the use of this approach as the basis for an acceptance procedure is of questionable value.

Because small sample sizes often do not provide the desired reliability for individual acceptance decisions, especially for pass-or-fail applications that do not benefit from the averaging process discussed in Section 16, it may be desirable to combine current lots with previous lots to produce a larger total sample size. This will usually be satisfactory when it is accomplished...
by defining new, larger lot sizes and evaluating them independently (see Section 8). It may not be satisfactory, however, when it is accomplished by evaluating the work on the basis of the most recent series of tests of the desired sample size. By this procedure, if the desired sample size were \(N = 5 \), then Tests 1–5 would be evaluated as an acceptance lot, Tests 2–6 would make up a second lot, and so forth.

There are two problems with this latter approach. First, because each subplot appears in several different acceptance lots, there is a lack of statistical independence and the ordinary analytical tools do not apply. To date, the only way to develop the OC curve for such a procedure is by computer simulation. Second, on the basis of computer simulation tests by one of us, the use of moving averages provides no real gain in discriminating power. Because each subplot is subject to the “double jeopardy” of having several opportunities to be rejected, somewhat broader acceptance limits must be used. The net result is an OC curve almost identical to that obtained for independent lots using the same overall sampling rate.

Like the Bayesian approach discussed in Section 24, we believe that the moving average is better suited as a process control device. Because it tends to damp out statistical vari-

![OC Table for Attributes Acceptance Plans with an Infinite (nondiscrete) Lot Size](https://example.com/oc_table.png)

FIGURE 10 OC table for attributes acceptance plans with an infinite (nondiscrete) lot size.
ability and make long-term trends easier to discern, it has the ability to provide extremely useful guidance to contractors who must continually monitor their processes to stay within specification limits.

26. UNBALANCED BIDS

A potential problem that can affect the proper application of an adjusted pay schedule is an unbalanced bid. There are various reasons, often related to cash flow, for which contractors choose to bid unusually low on some items and unusually high on others. At one time, it was NJDOT practice to reject bids that were obviously unbalanced. In recent years, it has come to be regarded as in the public interest to accept such a bid if it is otherwise valid and is not likely to cause major cost increases due to subsequent change orders. Because it would be possible for a contractor to virtually nullify the effect of an adjusted pay schedule by underbidding on those items to which the pay schedule applies, NJDOT has
32

columns, prestressed beams, and occasional other items are considered to be the most critical, and accordingly, larger sample sizes are required and acceptance is by pay adjustment. For each project, the items to be accepted in this manner are specifically listed in the contract documents. The remaining items are referred to as non-pay-adjustment items and are subject to less stringent acceptance requirements that lead to a pass-or-fail decision.

Recently, a minor refinement was made that provides a very practical way to deal with the occasional failure of a non-pay-adjustment item. If a non-pay-adjustment item is rejected, NJDOT has the option to regard it as a pay-adjustment item and to reevaluate it with cores at the higher sampling rate prescribed for the more critical items. This provision is seldom necessary, but it provides a formal procedure for handling such rejections if and when they occur.

27. NON-PAY-ADJUSTMENT ITEMS

In any area of construction, some items are more critical than others and warrant more discerning acceptance procedures. The contractor is paid in accordance with the bid price, but any pay adjustments are computed using the base unit price.

defined a “base unit price” for some pay adjustment items. In essence, this is a weighted unit price based on recent construction cost information. The contractor is paid in accordance with the bid price, but any pay adjustments are computed using the base unit price.

FIGURE 12 Alternative format for OC table for variables acceptance plans.
28. LEGAL CONSIDERATIONS

The legal concept of liquidated damages was mentioned in connection with the development of adjusted pay schedules in Section 10. This concept may properly be applied whenever it is impossible or impractical to quantify the actual damages. Because pay schedules are designed to recoup future losses that can only be estimated, they would appear to clearly qualify for this approach.

As a general rule, liquidated-damages clauses are considered acceptable, whereas penalty clauses are not. According to Sweet,

If enforcement of a clause would punish a breaching party by awarding an amount disproportionately high to anticipated or actual damages, the clause will not be enforced even if labeled as a damage liquidation clause. Conversely, a clause labeled a penalty will be enforced if it otherwise meets the test of damage liquidation. (25, p. 404)

In other words, no matter how a transportation agency chooses to label a pay adjustment clause, the magnitude of the adjustment must be reasonably commensurate with the amount of damage actually suffered. This stresses the importance of developing the necessary quality-performance relationships, as discussed in Sections 2 and 10. However, this need not be interpreted to mean that the amount of damage must be estimated with great precision. Sweet goes on to cite a Supreme Court decision that includes the following commentary on liquidated-damages clauses:

When that intention is clearly ascertainable from the writing, effect will be given to the provision, as freely as to any other, where damages are uncertain in nature or amount or are difficult of ascertainment or where the amount stipulated for is not so extravagant, or disproportionate to the amount of property loss, as to show that compensation was not the object aimed at or as to imply fraud, mistake, circumvention or oppression. There is no sound reason why persons competent and free to contract may not agree upon this subject as fully as upon any other, or why their agreement, when fairly and understandably entered into with a view to just compensation for the anticipated loss, should not be enforced. (25, pp. 403–404)

In simpler language, what this appears to say is that two contracting parties may agree on the amount to be withheld in the event of noncompliance, and the courts will uphold this agreement provided that the stipulated amount is reasonably appropriate for the damages actually suffered and there is no element of deception, either consciously or inadvertently. This rationale provides a solid basis for the pay-adjustment concept in general and for the liquidated-damages approach described in Section 10 in particular.

SUMMARY AND PREVIEW

A series of fundamental concepts was presented in the belief that reliable quality assurance technology must be based on sound scientific, mathematical, and legal principles. These concepts—proven by actual field application over a period

of approximately 20 years—provide the basic building blocks with which practical and effective quality assurance programs can be constructed. The guidance they provide will be useful both to individual agencies and to a task force contemplating a national policy on transportation quality assurance.

We invite a rigorous scrutiny of these concepts to accomplish either of two objectives: to confirm their validity or to improve upon them. The resulting body of knowledge can then form the technical core for an effective national policy. A series of steps that will aid in achieving this goal is developed in Part 4.

REFERENCES (Part 3)

1. Recommended Practice for Evaluation of Strength Test Results of Concrete. ACI Standard 214-77. American Concrete Institute, Detroit, Mich., 1977.
17. Use of Incentive and Disincentive Provisions Regarding Quality and Completion Time for Federal Aid Highway Construction.
PART 4: PLAN OF ACTION

The purpose of Part 4 is to build upon the material presented in Parts 1–3 to formulate a sound and workable plan of action that will significantly increase the effectiveness of transportation quality assurance practices nationwide.

LEADERSHIP NEEDED

If this goal is to be achieved, effective leadership is essential. The fundamental values of the leaders will be reflected in the performance of their subordinates. If the leadership is determined that the organization will produce an excellent product (whether it be roads and bridges or the standards and specifications that govern these items), then that product will tend to be of consistently high quality. Conversely, if the leaders neither appreciate nor understand the value of high quality, one can be sure that producing a quality product will not be foremost in the minds of their employees. If the full benefits of SQA are to be realized, leaders must take the following steps:

1. First become aware that present SQA practices are well behind the state of the art, exacting a very real price in terms of wasted effort and false security.
2. Then make the commitment to bring the necessary talent and technology to bear upon these issues.
3. Communicate this commitment to all members of their respective organizations and create an organizational culture that both fosters and demands excellence in what it does.
4. Arrange for competent training in basic SQA methods and encourage at least a few members of their organizations to acquire more advanced training.
5. Develop qualified staff and establish the necessary administrative procedures to ensure that their goals will be met.
6. Direct that all quality assurance applications are to use modern, state-of-the-art methods.
7. Reexamine the process by which voluntary consensus standards are developed to ensure that fundamental quality assurance principles will be applied correctly.
8. Take appropriate administrative action to ensure that the quality assurance program has credibility, both within the agency it serves and among the industrial organizations whose work it governs.
9. Provide visible and active support and set the direction for continued improvement.

If these steps seem to put the burden for resolving the problem squarely on the shoulders of transportation leaders, this is exactly what is intended. Quality assurance is not a problem that can be solved by lower or middle management, even with the best of intentions. If quality assurance is to be applied effectively in the transportation field, some distinct changes in both attitude and policy—backed up by the necessary resources—will have to come from the highest levels. In the remainder of this part of the paper we will elaborate on this obligation and how it might best be met.

1. BECOMING AWARE

It is almost axiomatic that before a problem can be solved, there has to be an awareness that the problem exists. It was noted in Part 1 that many current quality assurance standards and specifications are far from optimal, and Part 2 provided several examples of this. The use of inferior methods undermines the effectiveness of any quality assurance program and the long-term cost—based on the number of construction items involved nationwide—may be enormous.

Those who have begun to read the total quality management (TQM) literature know that this material is generally critical and disturbingly accurate. Collectively, these writers are sounding a warning that national leaders would do well to heed. If the United States is to avoid falling even farther behind in the ability to create and apply modern technology, Americans must be prepared to learn from those who have a clearly demonstrated superiority in this area. Those in the transportation profession seem to be open-minded enough in some cases—as evidenced by the recent European Asphalt Study Tour—and a similar approach must be taken with transportation quality assurance. The only difference is that the necessary statistical tools are already predominantly an American invention; all that is needed is to cultivate the good sense to use them to their fullest advantage.

But before this advice can be acted upon, it must be heard by leaders who are in a position to initiate the necessary changes. A means must be found to persuade top-level management to read this material and give it the thoughtful consideration it deserves. In our opinion, all transportation leaders who have an involvement with quality assurance should read Crosby (1), Deming (2), and Juran (3) as a minimum, with the primary emphasis being to gain an appreciation of

References:

the cultural values and work ethic that have proven so successful for the nation's foreign competition. These leaders must then take a hard look at how the transportation profession measures up in this respect. If their assessment is made objectively, we believe that they will begin to see the need for major reforms.

2. MAKING THE COMMITMENT

Ever since a few pioneering states first began experimenting with SQA in the 1960s, transportation leaders at various conferences and conventions have eloquently expressed all the usual platitudes regarding the benefits of quality assurance. This must have been effective, because about three-fourths of the states now use SQA to varying degrees. However, when viewed from the standpoint of efficiency and effectiveness, the picture is very different. The transportation profession has hardly progressed beyond where it was 20 years ago, and current practices lag well behind the state of the art.

What is needed today in order for truly effective quality assurance practices to be established nationwide is a greater level of commitment. To be meaningful and effective, it must come from the highest levels—probably from within such organizations as AASHTO and FHWA—and it must involve more than reiterating the old platitudes. We believe that AASHTO, FHWA, and individual transportation agencies as well should voluntarily undertake a thorough examination of their own quality assurance activities with an earnest intent to seek out weaknesses and remedy them. This action, if conscientiously pursued, almost certainly would yield enormous long-term benefits in terms of better quality and better performance of the nation’s highways and bridges.

3. CHANGING THE ORGANIZATIONAL CULTURE

One of the most difficult things to change is the way people think. But if sound quality assurance practices are to be established nationwide, this will require new thinking, new procedures, and a willingness to “work smarter” by discarding the older, less efficient methods with which many transportation agencies have grown comfortable. For some, these changes may seem to be quite radical.

Because this will be a significant departure from what most agencies are now doing, it must have the full cooperation and support of top management. First, the concept must be presented in a general way to explain why the changes are necessary and how they will benefit the organization and its employees. An increasingly obvious reason for such changes is the fact that the majority of states are experiencing serious financial shortfalls (4), making it necessary to use more effective methods and eliminate as much waste as possible. When construction quality is managed more effectively, this is clearly beneficial to both the transportation agency and the public it serves. Next, a series of training sessions on SQA must be conducted. Well-designed courses will explain the importance of the various techniques, present several examples of statistical acceptance procedures, demonstrate the superiority of correct methods, and provide numerous useful technical aids. Most employees will appreciate that this training provides them with additional marketable skills. And finally, management must remain actively involved to allay the concerns of the construction industry and deal with any opposition that might be encountered.

But management has an additional responsibility besides the duties just outlined. If an effective quality assurance program is to be established and maintained, it must have credibility both within the transportation agency it serves and among the various contractors’ associations that it affects. To build a reputation for both competence and fairness, management must place qualified individuals in charge of these activities and empower them to apply their knowledge appropriately. In this way and in other, more subtle ways, management must create the type of professional environment that is conducive to the development of a first-rate program.

4. ESTABLISHING EFFECTIVE TRAINING PROGRAMS

Effective training accomplishes two very important objectives. In addition to providing the necessary skills to perform the assigned tasks, it provides the technical understanding necessary to instill a desire to do the job well. Employees who understand the importance of their function are more likely to be conscientious in performing it.

There have been some excellent training programs in transportation quality assurance (5-7) and a new one is in the developmental stages (8). Although these programs have been extremely useful in providing a familiarity with the basics of quality assurance, it has generally been beyond their scope to deal with the issues addressed in this paper—to encourage the use of the most effective, technically sound methods and to discourage the use of many current practices that are less effective and, in some cases, technically unsound (9,10).

The following quote from Deming indicates the importance he places on effective training in quality assurance:

American management have resorted to mass assemblies for crash courses in statistical methods, employing hacks for teachers, being unable to discriminate between competence and ignorance. The result is that hundreds of people are learning what is wrong. . . . I make this statement on the basis of experience, seeing every day the devastating effects of incompetent teaching and faulty application. (2)

These are strong words from a highly respected source and they warrant careful consideration. Although there might be some measure of consolation in the fact that the private sector seems to be having similar difficulties in applying statistical principles correctly, this will not resolve the immediate problems with transportation quality assurance. Instead, consideration must be given to how current educational efforts can be supplemented and improved.

Deming makes an extremely valid point about the caliber of instruction. Although it might be thought that extensive statistical credentials are not required to teach an introductory course in SQA, this belief may be particularly shortsighted. Beginners, perhaps more than advanced students, need lucid explanations and careful guidance in the proper application of statistical principles. Like any mathematics course, the basics
must be clearly understood before the student can move on to more advanced concepts. In our opinion, the primary reason that current practices lag so far behind the state of the art is that qualified statisticians have not been routinely involved in either the development or the teaching of transportation quality assurance. The solution to this part of the problem is simple enough—leaders and managers must insist that future educational efforts in SQA involve all the necessary technical professions.

What should a comprehensive course in transportation SQA cover? As a minimum, it should include most of the fundamental concepts that are presented in Part 3 of this paper, with a special emphasis on the concept in Section 6 on operating characteristic (OC) curves. If it had been routine practice to construct OC curves, most of the problems cited in the section headed Inadequate Procedures and Practices in Part 2 could have been avoided.

5. DEVELOPING QUALIFIED STAFF

The effectiveness of a quality assurance program will be strongly dependent upon the knowledge and ability of those who administer it. Since top-level management cannot be expected to concern themselves with the day-to-day operation of the program, it is essential that they place competent staff in charge of these operations. This usually poses no problem as far as design, construction, inspection, and testing are concerned, because transportation agencies already have many employees well trained in these areas. A critical area of expertise that has been neglected, however, is statistical engineering. As already noted in the discussion of Step 4, we believe that this oversight is responsible for the many standard quality assurance practices in existence today. Just as bridge design requires at least one member of an organization to have extensive training in structural analysis, the development of sound statistical specifications requires that at least one individual have a thorough understanding of applied statistics.

Because this was recognized as a vital prerequisite for a sound quality assurance program, the New Jersey Department of Transportation (NJDOT) created a new set of job specifications—the Statistical Engineer Series—to provide this necessary area of expertise. It was made an engineering series because the individuals in these positions must have a thorough understanding of the design and construction activities with which the SQA procedures must be coordinated. Beyond this basic knowledge, a substantial number of credit hours in statistical theory, acceptance sampling, and computer science is required.

Although the Department has not found it necessary to fill all the positions at any given time, the Statistical Engineer Series consists of three different positions, ranging from entry level to supervisor. This allows entry-level staff to advance as they gain more education and experience. Table 1 gives the educational and experience requirements for these positions.

The success of the NJDOT quality assurance program has been due in large measure to the in-house expertise provided by this group. The Department believes that the specifications developed (using the concepts outlined in Part 3) are practical, effective, fair to both parties, and legally defensible. In addition to developing statistical acceptance procedures, the statistical engineering group is responsible for preparing and conducting training courses on SQA methods, making presentations to contractors’ associations and fielding the many technical questions that arise, giving expert testimony when required, and providing statistical assistance to many units throughout NJDOT. In our opinion, the decision to create a specialist group such as this is one of the strongest indicators of an agency’s commitment to develop a sound quality assurance program.

6. APPLYING THE TECHNOLOGY

It is well recognized that in order to achieve a permanent solution, it is necessary to identify and attack the root cause of a problem, not just the symptoms. For the problems associated with transportation quality assurance, the root cause clearly is not technical, because all the necessary technical tools are readily available. The three basic types of acceptance plans described in Section 13 of Part 3 utilize well-established, technically sound statistical procedures. They are suitable for virtually all transportation applications and could hardly be simpler to understand and apply.

To quote Crosby (1), “If something is easy to understand and makes sense, and yet isn’t always done, there has to be a reason for it.” He goes on to state that the usual reason is that management does not understand the value of a high-quality operation. Deming (2) laments, “Practically all of our major corporations were started by technical men—inventors, mechanics, engineers, and chemists—who had a sincere interest in quality of products. Now these companies are largely run by men interested in profit, not product.”

This leads us to conclude that the real root causes are primarily cultural, behavioral, and managerial—precisely the topics that have received so much attention from the TQM writers—and this emphasizes all the more strongly the need for top-level management to begin to read and comprehend this material. If the benefits of sound quality assurance practices are to be realized, management has to do more than sit idly by and condone current practices. To paraphrase some additional advice from Crosby (1), it is essential that management have some understanding of the quality assurance process in order to have a realistic sense of what can and should be done.

<table>
<thead>
<tr>
<th>TABLE 1 REQUIREMENTS FOR STATISTICAL ENGINEER POSITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Engineer Series</td>
</tr>
<tr>
<td>Entry</td>
</tr>
<tr>
<td>Position</td>
</tr>
<tr>
<td>Engineering degree</td>
</tr>
<tr>
<td>Applied Statistics (credits)</td>
</tr>
<tr>
<td>Computer Science (credits)</td>
</tr>
<tr>
<td>Experience (years)</td>
</tr>
</tbody>
</table>
7. IMPROVING TECHNICAL STANDARDS

In our opinion, much of what has been published in the way of national standards and guidelines on SQA in the transportation field is woefully inadequate. Some of the procedures have no rational mathematical basis (see Example 4 under Inadequate Procedures and Practices in Part 2) and most have not been subjected to any formal test to demonstrate their adequacy (see Section 6 on OC curves in Part 3).

Both Crosby and Deming make comments that, although directed at quality management in general, can be seen to apply to the standards-writing process in particular. First Crosby:

Top managers may or may not realize what has to be done to achieve quality. Or worse, they may feel, mistakenly, that they do understand what has to be done. Those types can cause the most harm. (1)

Then Deming:

Best efforts are essential. Unfortunately, best efforts, people charging this way and that way without guidance of principles, can do a lot of damage. Think of the chaos that would come if everyone did his best, not knowing what to do. (2)

If national quality assurance standards are to be improved, the process by which they are developed must be improved. It would be highly desirable, of course, for committee chairmen to be sufficiently knowledgeable in SQA procedures to know the level of competence that should be insisted upon. Lacking this, they must at least be leaders who will demand technical competence in anything for which they are responsible. This will require seeking out the necessary expertise, even if it means going outside the committee membership. It will also require inviting an open and thorough scrutiny of the finished product. This can best be accomplished by arranging for an independent review by qualified individuals to ensure that standards are technically sound before they are balloted. These are not difficult steps to accomplish and it is up to high-level leaders to insist that this approach, or something very similar, be made an integral part of the standards-writing process.

Both the correct development and the review of any SQA standard can be further facilitated by requiring the underlying mathematical principles to be explicitly covered in an appendix. This forces the writers of the standard to fully grasp the subject matter and it enables the reviewers to know precisely what the writers had in mind. An excellent example of this is in Method A of AASHTO Standard R9 (11).

A recent example illustrates how successful this overall approach can be. A new sequential sampling standard was prepared by one of us as part of a technical support group for AASHTO Technical Section 5c, Quality Assurance, Data Evaluation, and Acceptance Plans. The draft was then sent to two reviewers, also noncommittee members, who had expertise in this area. Although no major errors were found in this particular case, a number of minor errors were corrected that probably would have escaped detection had the balloting process been relied upon to provide the technical review. As a final safeguard, the draft was also sent to TRB Task Force A3T51, Statistical Methods in Transportation, for further review. A comprehensive and thorough approach such as this, which involved both engineering and statistical expertise in both the writing and review stages, has almost certainly produced a valid and effective standard that can be used with confidence. We remain convinced that had a process such as this been used routinely in the past, most of the problems in existing quality assurance standards would have been avoided altogether.

8. ESTABLISHING CREDIBILITY

As already noted in the discussion of Step 3, the long-term success of a quality assurance program will be strongly dependent upon its degree of credibility, both within the transportation agency and among the industrial organizations whose work it governs. People will generally support (or at least offer less resistance to) programs that seem to make sense and in which they have confidence. Three essential factors in achieving credibility are effectiveness, administrative thoroughness, and fairness.

To be perceived as effective, quality assurance programs must be applied to construction items that are clearly of importance and for which the failure to achieve high quality is known to be costly, either in terms of economics or safety. They need not necessarily be items that have an obvious quality problem because, as discussed in Part 2, serious quality problems often do not become evident until several years after construction. A second requirement for effectiveness is a demonstrated improvement in those properties that are believed to be closely linked to performance. For example, if quality assurance programs tend to encourage stronger concrete, thicker pavements, or greater uniformity in a variety of construction processes, they will be perceived as effective. As also noted in Part 2, results of this sort have typically been observed when quality assurance programs have been implemented.

By administrative thoroughness we are referring to the degree to which the transportation agency is attentive to the various details that are characteristic of a carefully conceived implementation plan. These details include the following:

1. Presentations by top management to outline organizational goals;
2. Broad training to acquaint design, construction, and materials personnel with SQA methods;
3. Specialized training for a few individuals (such as those in the statistical engineer positions);
4. Meetings with contractors' associations to give them advance notice of the new procedures that are being developed;
5. The thorough testing (usually by computer simulation) of all prototype statistical acceptance procedures before actual field trials are attempted;
6. The development of instructional bullets and other technical aids to guide field personnel in day-to-day operations;
7. The scheduling of small pilot projects, possibly with relaxed pay-adjustment plans, to field-test the new specifications;
8. Feedback sessions, conducted separately with agency and contractors' personnel, to evaluate the outcome of the field trials;
9. The prompt correction of any deficiencies and, if major changes are involved, the rescheduling of additional field trials; and

10. Broad implementation once the pilot projects have been demonstrated to be successful.

NJDOT has used this approach for several years and found it to be effective. At the very least, it will minimize the difficulties normally associated with the implementation of a new SQA specification. It increases the likelihood that the initial procedure will be technically sound and effective, it allows time for all parties to become familiar with the new program, and it provides a mechanism to address any concerns that transportation agency and contractors' personnel might have.

The third factor in establishing credibility is fairness. SQA specifications must protect the interests of the transportation agency and at the same time treat the contractor in a fair-minded fashion. Only through the development of OC curves (explained in Section 6 of Part 3) is it possible to determine whether the acceptance procedure will properly accept good quality and reject poor quality. It also is necessary to communicate to the contractor what level of quality is desired, and when that level of quality is consistently supplied, the contractor has a right to expect an average pay factor of 100 percent. In a recent paper (12), it is noted that many existing specifications fail to accomplish this and an explanation is given for how bonus provisions provide a convenient way to correct this flaw. Still another aspect of fairness relates to the amount of payment withheld when the quality is substandard. A rationale believed to be both equitable and defensible is described in Section 10 of Part 3.

Although the attitude of the majority of contractors toward SQA is still very apprehensive, there definitely has been a mellowing in recent years (13). If additional progress can be made toward the establishment of a consistent national policy—using only procedures that have been proven to be effective, efficient, and fair—it is possible that the construction industry might eventually see this as beneficial to them in that it would provide a consistent basis for both bidding and production. At the very least, it would enhance the credibility of transportation agencies and SQA practices in general.

9. PROVIDING FUTURE DIRECTION

One of the "managerial myths" cited by Juran (3) is that quality will get top priority if upper management so decrees. He goes on to state that nothing of the sort will happen unless management follows through with fundamental changes: specific goals, the resources necessary to meet those goals, realistic timetables, and an administrative process to make sure the goals are met.

One way the problems in transportation quality assurance could be resolved would involve a fundamental change in the Intermodal Surface Transportation Efficiency Act (ISTEA). In its present form, it provides for the management of pavements, bridges, congestion, and safety. Conspicuous by its absence is any provision for the management of quality. To quote a statement from a recent FHWA Administrative Memorandum (14), "Very simply, research can only be effective if it finds its way to the road." One of the best ways to make sure that present and future research results do reach the road is to establish thorough quality assurance programs that will guarantee that what is called for in the plans and specifications is, in fact, received. The most effective way to bring this about would be to make quality the fifth management mandate in a future version of the ISTEA.

One of the directives in the newly enacted ISTEA calls for the Secretary of Transportation to undertake a study of state procurement practices, including statistical acceptance procedures, and to prepare a report that, among other things, will examine the need for a national policy on transportation quality assurance. This is an important step in the right direction, but if it is to be effective, we think it should be strengthened by specifically requiring the study group to be composed of individuals from the transportation, academic, and industrial fields who have specialized training in SQA. Both Crosby (1) and Deming (2) caution in the early pages of their books that the results of such an effort may be less than useless if it is not conducted by individuals having the necessary expertise.

As noted in the discussion of Step 7, the way to improve quality assurance standards is to improve the process by which they are developed. This is generally true of all aspects of quality assurance. The problems in the transportation profession today are largely the result of faulty processes, and to correct these problems, the processes themselves must be changed. If new efforts—whether they be standards, specifications, or training programs—are to achieve their full potential, they must be more than carbon copies of the past. If leadership has been ineffective or nonexistent, then new leadership must be found that can provide the direction necessary to reach these goals.

What can individual leaders do? For one thing, they can decide to become more knowledgeable by reading current literature on TQM and SQA. They can then begin to discuss these issues with their counterparts in other states and organizations, building the vocal advocacy necessary to get this topic on the agendas of various policy-making and law-making bodies. Ultimately, if a sufficient number of transportation leaders can be convinced to focus their attention on the issue of transportation quality assurance, we believe that they will realize the need for a consistent national policy.

SUMMARY AND CONCLUSIONS

In Part 1 of this paper we noted that the highway system represents an investment valued in trillions of dollars and that any measure that could improve its performance by even a few percent would result in savings of billions of dollars. SQA—currently in use or under development in approximately three-fourths of the states—has proven to be a very effective tool to encourage high-quality construction. Unfortunately, there is great disparity in the manner in which it is applied from state to state, and many current practices are far from optimal. It was concluded that sweeping reforms are needed and that a consistent, scientifically sound national policy on transportation quality assurance should be established.

In Part 2 we warned of several obstacles—technical, managerial, political, and cultural—that could impede either the effective application of SQA procedures by individual agen-
cies or the establishment of a sound national policy. Perhaps the biggest obstacles are a general lack of awareness of just how far behind the state of the art transportation quality assurance really is, the failure to insist that those involved with quality assurance be thoroughly educated in these matters, and a work ethic that seems to be devoid of any real pride in what it produces.

In Part 3 we presented a series of fundamental concepts in the belief that reliable quality assurance technology must be based on sound scientific, mathematical, and legal principles. These principles, proven by actual field application over a period of approximately 20 years, provide the basic technical building blocks from which practical and effective quality assurance programs can be developed. The guidance they provide will be useful both to individual agencies and to a task force contemplating a national policy on transportation quality assurance.

In Part 4 we outlined a series of steps that transportation leaders must take if truly effective quality assurance practices are to be established nationwide. They must first read the appropriate literature to begin to understand how backward many current practices are and to learn that better practices can produce significant savings in both cost and performance. They must then make a firm commitment to bring about the necessary changes and begin to create an organizational culture that understands and appreciates the value of total quality management (TQM). They must arrange for the necessary education and training, which is an absolutely essential part of such a program. And finally, they must set a reasonable timetable for the conversion to state-of-the-art methods, establish the necessary administrative procedures to keep this effort on track, and remain actively involved to lend support when it is needed.

At the national level, responsible leaders have an obligation to thoroughly explore the benefits that might be derived from a more rigorous application of modern quality assurance methods. They must insist that this topic be placed on the agendas of policy-making and law-making bodies and be made the subject of serious study by individuals with the appropriate technical expertise. We believe that such a study will conclude that a national policy on transportation quality assurance will pay huge dividends in terms of better quality and better performance of the nation's highways and bridges.

REFERENCES (Part 4)