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Identifying Error-Generating Factors in 
Infrastructure Condition Evaluations 

FRANNIE HUMPLICK 

Infrastructure surface inspection and condition rating systems used 
today r~nge from detailed automated inspections that use pho­
tographic and laser technologies to manual inspection that uses 
t~e human eye. Th.e capability of these systems in measuring 
d1~tr~ssed areas vanes because of several factors, including the 
prmc1ple of measurement, type of inspection strategy, manner of 
data reduction, and objectivity of data collection. The charac­
teristics of the objects being measured and the surroundings in 
which they are inspected also affect the results. The types of errors 
aff~cting inspection r~sults are presented, as is a set of hypotheses 
denved from theoretical expectations of the effect of the men­
tioned factors on the a~curacy of inspection systems. These hy­
potheses are tested usmg data from state-of-the-art inspection 
syste~s. The conclusions are useful for designing, improving, and 
choosmg systems and for adjusting inspection results for improved 
accuracy. 

A variety of infrastructure inspection systems currently exists 
(1-8). These systems range from detailed automated in­
spections using photographic and laser technologies to manual 
inspection using the human eye. The capabilities of such sys­
tems in locating, recognizing, discriminating, and distinguish­
ing among distresses, as well as scaling their size, extent, and 
severity, depend on a variety of factors. These include the 
principle of measurement, type of inspection strategy, and 
manner of data collection and reduction. Inspection results 
are also affected by the characteristics of the objects being 
measured, which create confounding measurement scenes for 
the inspection systems and hence limit their accuracy. Finally, 
the surroundings of the measured objects also affect inspec­
tion. 

This paper discusses the types of error affecting the results 
of inspection and presents a set of hypotheses derived from 
theoretical expectations of the effect of characteristics on the 
accuracy of inspection systems. These hypotheses are then 
tested using data from a FHW A study entitled Improved Meth­
ods and Equipment to Conduct Pavement Distress Surveys (4). 
This data set will be referred to as the FHW A data set. 

CLASSIFICATION OF ERRORS OF INSPECTION 

A typical inspection process consists of the facility under in­
spection and the inspection system. Inspection errors origi­
nate from the inspected facility and inspection system, as well 
as the interface between them. 
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Intrinsic or Inherent Errors 

Intrinsic errors are inherent in the inspected facility and the 
inspection system. They can be observed in laboratory or 
experimental conditions when all known influencing factors 
are controlled. In such situations the same object measured 
repeatedly by an inspection system can result in almost the 
s~~e measured quantity or in highly varying measured quan­
tities. 

The first case is characteristic of most mechanical gauges, 
such as roughness measurements on highway pavements, where 
the required response from the inspection system is well known 
and can be determined. The second situation occurs when the 
response from the inspection system is not well behaved­
that is, the results of measurement in the second situation 
are so varied that one cannot predict the underlying true value 
of the object without further knowledge about the distribution 
of the measured values or the causes of the discrepancies. 
The latter case is the most common in infrastructure condition 
evaluation, because the inspection systems used have multiple 
components, some of which are not well tested or designed. 
It has been observed that repeated measurements by the same 
s~stem are highly variable, and the measured values by 
different systems of the same sections are even more vari­
able ( 4). 

The following forms of error can cause differences in ob­
s~rved r~sults. These have been adapted from a work by 
Fmkelstem (9) and are generalized to account for the inspec­
tion systems common in infrastructure condition evaluations: 

1. Zero error occurs when the inspection system outputs a 
value even when there is no event present. For example, if a 
video inspection of an undistressed pavement results in a fixed 
or variable value of measured distress each time it is used, it 
is an indication of zero error. That is, the video inspection 
will always result in a value of distress even when it is not 
present. The analogy to a gauge-type measurement is that the 
gauge will have a misplaced zero position, reading a fixed 
value even before it has been applied in measurement. 

2. Dynamic error results during the operation of an in­
spection system such as inspecting pavement surfaces with 
truck-mounted photographic equipment. The error in data 
recording with respect to location on the pavement is consid­
ered a dynamic error. The measured value of distress in this 
case is a function of the speed of the data acquisition (e.g., 
the shutter speed of a camera) and the speed of the operating 
vehicle. 

3. Quantization or categorization errors result from in­
spection systems in which the measurement response changes 
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in discrete steps. For example, digitizing intensity values on 
a piece of film for future processing, by grouping observations 
into ranges of intensity values and assigning a value to each 
range, can result in a quantization error. This error type also 
appears in visual inspections in which distresses are categor­
ized into ranges, resulting in a categorization error. 

4. Viewing limitation errors occur when an inspection sys­
tem can view only a fixed portion of the inspected facility or 
when detection capability is limited to a certain range. For 
example, a photographic camera has a fixed field of view and 
resolution that can be achieved in practice, limiting the size 
of the facility surface that can be viewed and the size of the 
objects detected. An analysis of the impacts of such error 
types can be found elsewhere (10). 

Influence Errors 

Influence errors arise during interaction between the inspec­
tion and inspected systems. They are caused by factors in the 
inspection environment that were not controlled in an ex­
perimental setting during the design of an inspection system. 
For example, a film of water on a pavement surface being 
inspected after a rainy period can change the reflectance prop­
erty of the pavement surface. The system may not be designed 
to account for such a change. 

Such errors can arise at the output interface and include 
the data reduction format used and whether individual, range 
estimates, or average values are reported. Alternatively, fac­
tors at the input interface such as the sampling strategy, char­
acteristics of the inspected facility (the nature of the measured 
surface), and properties of the measured objects (pattern of 
occurrence or dimensions of the objects) may cause errors. 
Finally, uncontrolled influences due to departure from design 
or calibrated conditions can result in influence errors. 

Uncontrolled influences affecting the results of inspec­
tion arise from the inspection environment. These include 
(a) mechanical vibrations during data collection affecting the 
relative position of measuring equipment; (b) electrical and 
thermal changes influencing the behavior of measuring equip­
ment; (c) events occurring on the inspected facility that were 
not planned for or are not part of the measurement, such as 
shadows, oil spots, and debris, which can confound automated 
systems; and (d) fatigue due to long hours of operation of 
equipment or humans, inducing measurement errors. 

Intrinsic and influence errors have a systematic component 
and a random component. Systematic errors are errors that 
can be predicted from past knowledge or use of an inspection 
system. For example, if it is known that a human inspector 
tends to add a fixed amount to all measurements, the measure­
ments can be corrected by this amount, which can be obtained 
from past observations. Random measurement errors, on the 
other hand, are those that cannot be predicted on an indi­
vidual measurement basis but that can be statistically esti­
mated from multiple measurements. These errors are due to 
short-term variations of factor influencing measurement. For 
example, if an inspection system is repeatedly measuring the 
same object using the same procedures, the scatter of the 
measured value, caused by temporal and local variations in 
influences, is a realization of random measurement errors. 
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Formulation of Measurement Problem 

The difference between the result of measurement and the 
true value of the measured quantity is an error of measure­
ment. This error can be defined as e, where 

E1 = d - d* (1) 

and d and d* represent the measured and true values, re­
spectively. 

The true value is the quantity that would be obtained from 
a perfect measurement. Because all measurements are subject 
to error, the true value is essentially unknown (latent). For 
calibration purposes, an approximation obtained from a mea­
surement deemed close enough to the true value for all prac­
tical purposes is often used. For example, inspection systems 
of moderate accuracy are calibrated against systems of high 
accuracy, by using the measured quantities by the high ac­
curacy system as the "true values" [see Jeyapalan, Cable, and 
Welper (JJ)]. 

Let us denote the values of the error-generating factors that 
an inspection system encounters during measurement by 6. 
Measuring an object with a true value d* with these settings 
of the error-generating factors results in 

d = f(d*, 6) (2) 

If we denote the values of the error-generating factors for 
which an inspection system has been designed and calibrated 
for by 6', then the influence error can be defined as the dif­
ference between the resulting measurements from the actual 
and design settings. This can be expressed as follows: 

E;nf = f(d*, 6) - f(d*, 6') (3) 

where E;ni measures the departure from design conditions. 
From the definition of total error in equation 1, and de­

noting the error due to the measuring principle as Em, we have 

These errors are additive, because they are assumed inde­
pendently of each other; that is, removing the effect of an 
influence error (such as the resolution limitation of a camera) 
does not result in a change in the error due to the measure­
ment principle, which remains essentially the same (indirect). 
Hence, the effect of the influence errors and the errors due 
to the measurement principle are additive. 

A measurement principle can be direct or indirect. In direct 
measurement the inspection system receives as input prop­
erties of the measured object (e.g, the length and width of a 
crack) and gives as output a measure of these properties (e.g., 
length in feet). Visual inspection by human beings is a form 
of direct measurement. In indirect measurement the inspec­
tion system receives as input the properties of the measured 
object, which it senses depending on the measurement prin­
ciple employed, and converts the information into signals that 
represent a proxy for these properties. These signals are then 
processed. The processing transforms the sensed proxy into 
measures or properties of the original object through some 
mapping function, which then outputs the measured value. 
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A rule system relates the numerical value obtained as output 
to the value of the properties of the object input. Transferring 
intensity values on a piece of film to measures of distress is 
an example of such mapping. 

This process leads to two components of errors due to mea­
suring principle: data acquisition and data processing. In gen­
eral, a measurement process can be represented as 

d* ~a~ d 

where B is a proxy of the actual object realized as an inter­
mediate step. Thus, the data acquisition error can be ex­
pressed as 

(4) 

and the data processing error can be expressed as 

(5) 

where h1 (.) is a transformation mapping the true distress 
value into a proxy (the measured value of distress) and h2(.) 

maps the measured proxy of distress into the inspection out­
put. 

Substituting Equation 4 into Equation 5 gives 

Assuming without loss of generality that the mapping from 
d* to B is linear, 

then 

hi(B) = (3 ; ex) and 

Defining the following, 

we obtain 

(6) 

where Em = Eda + Edp> and Eda> EdP' and Em are data acquisi­
tion, data processing, and measurement principle errors, 
respectively. 

Not all the errors in Equations 1 through 6 can be deter­
mined determined empirically. Particularly, the error due to 
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data acquisition in Equation 5 cannot be ascertained because 
it is related to an intermediate value whose relationship to 
the original input is not well studied. For photographic in­
spection of pavement surfaces, the relationships between the 
intensity values on a piece of film and the true values of 
distress on a surface are not well studied. Procedures to iden­
tify and classify these intensity values in terms of distresses 
occurring on a surface are still in an experimental stage (6). 
Therefore it is not possible to determine the data acquisition 
error for such systems from analytical deductions. 

A generalized measurement error model specified from the 
error structures derived thus far is expressed as 

where 

(7) 

d;1k = measured distress on Section i of Distress 
Type k by Inspection System j; 

f(.) = function representing the relationship be­
tween the measured distress, the true value 
of distress, and factors affecting the mea­
surement; 

d;k = unobserved true value of distress of Type 
k on Section i; and 

0;, 61, and 6k = vectors representing error-generating fac­
tors from the inspection environment (sec­
tion), inspection system (technology), and 
the measured objects (distresses), respec­
tively. 

Without loss of generality, we can express the function f(.) 
in Equation 7 in a linear form with respect to the true distress, 
as is commonly done for calibration purposes. 

(8) 

where cx1k, J31k, and E;Jk are the systematic additive, systematic 
multiplicative, and additive random error of Inspection Sys­
tem j while measuring distress of Type k in Section i. 

HYPOTHESIS DEVELOPMENT AND TESTING 

The function in Equation 8 was estimated for a variety of 
inspection systems, distress types, and pavement sections us­
ing the FHWA data set (4). Details of the estimation can be 
found in unpublished data by Ben-Akiva and Humplick. Em­
pirical results from the estimation are used in this section to 
investigate the effects of error-generating factors on measure­
ments results. 

The FHW A data set included measurements by seven in­
spection systems measuring distresses in experimental units 
consisting of three pavement types (flexible, composite, and 
rigid) and three condition levels (good, moderate, and poor). 
The inspection systems are a manual mapping method, de­
tailed visual surveys using manual recording, automated data 
logging, the GERPHO device (Photol), the PASCO Road­
recon survey vehicle (Photo2), the ARAN survey vehicle 
(Video), and the Laser RST device (Laser). These systems 
will be referred to as "Mapping," "Manual," "Logging," 
"Photol," "Photo2," "Video," and "Laser." For a detailed 
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description of these systems and the type of measurements 
they performed, see the work by Hudson et al. (4). 

Hypotheses About Inspection System Characteristics 

Two hypotheses were developed to test for the impact of 
inspection system characteristics on measurement accuracy. 

Effects of Inspection Strategy and Data 
Reduction Format 

The manner in which data is reduced and the percentage area 
of pavement inspected are expected to affect measurement 
results . An inspection system that either views less than 100 
percent of the pavement surface or reports average values or 
ranges of distress values for a given section is expected to be 
less accurate than one that views 100 percent of the section 
and measures individual distress elements. The inspection sys­
tems used in the FHW A study can be grouped as 

• Total area observed, individual measures of distress made, 
or both (Manual, Photol, and Photo2); and 

• Sample area observed and range or average values re­
ported (Mapping, Logging, Video, and Laser). 

The distinction is made because the inspection systems fall­
ing into the second group require some kind of estimate to 
obtain the total value of distress on a section. The types of 
errors in the inspection results of the second group that are 
not present in those of the first group may be due to extrap­
olating from a small sample size , or averaging by eye. To test 
whether there is a difference between the inspection results 
of the systems in the two groups, the following hypothesis is 
set up 

Ho : J3Man = J3Photol = J3rhoto2 and 

J3Map = J3Log = J3video = J3Laser (9) 

Effect of Data Collection Process 

The type of data collection process employed, whether ob­
jective or subjective, is expected to affect the accuracy of the 
results of measurement. In particular, inspection systems 
making objective measurements are expected to have smaller 
random biases than those based on subjective rankings, unless 
they suffer from interpretation problems; then the random 
biases would be large. For example, objective measures of 
alligator cracking obtained by a photographic technique should 
have Jess variation than those obtained from an eye estimate 
by a human inspector. However, one expects more classifi­
cation errors to affect the photographic technique, because 
there is no visual verification of the types of distress present. 
Subjective evaluations are expected to measure the extent of 
distress less accurately, but they suffer Jess from interpretation 
and classification errors. Inspection systems using both sub­
jective and objective measures should, therefore, have more 
accurate results. 
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From the descriptions of the inspection systems in the FHW A 
study, they can be grouped as follows: 

•Objective: Mapping, Photo2; 
• Subjective: Manual, Logging; and 
•Objective and subjective: Photol, Video, Laser. 

The Photol, Video, and Laser used both subjective and 
objective measures to estimate the level of distress on a sec­
tion. The following hypotheses are set up: 

(3Photol = (3Video = (3Lascr (10) 

The hypotheses in Equations 9 and 10 can only be tested 
for inspection systems in which all other factors affecting mea­
surement accuracy are similar or insignificant. 

Table 1 shows the organization of the FHW A data accord­
ing to the factors mentioned . From this table we can test for 
the effect of the data reduction format and inspection strategy 
by comparing Manual to Logging and Photol to Video. We 
can test the data collection process by comparing Photol and 
Photo2 and Mapping to Logging. 

A paired Tukey test was selected to perform multiple com­
parisons of the estimated bias parameters. The Tukey test is 
constructed as follows: assume the multiplicative biases pi for 
the inspection systems j = 1, ... , J are distributed with a 
mean ~ and variance CT~. The range of the pis is 

R = max Pi - min Pi (11) 
) ) 

Lets~ have an estimator of CT~ having v degrees of freedom, 
and assume s~ and ~J are independent. Then QJ,v = R/S, 
where J is the number of inspection systems being compared 
and S, the standard error of the J3s, is Student t distributed. 
The confidence interval for the (J3i - ~'), where j ~ l, taking 
into account that all possible comparisons can be made, is 
given by Larsen and Marx (12) and Box et al. (13). 

TABLE 1 INSPECTION SYSTEM CHARACTERISTICS 
INFHWADATA 

Inspection System Characteristics 

Inspection system 0) Measurement Data Reduction Data Collectlon 
Prlnciple & Process 

Inspection 
Strategy 

Mapping + 0 

Manual s 
Logging + s 
Photo1 + c 
Photo2 + 0 

Video + + c 
Laser + + c 

NOTE' 
Measurement Data reduction & Inspection Data collection 
principle strategy process 

- =direct - = indMdueJJtotal 0 = objective 
+~indirect + = average/range/sample S = subjective 

c =combined 
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(12) 

where 

q0, = a tabulated upper significant value of the Studentized 
range for J variables and v degrees of freedom. 

One would reject the hypothesis that the parameters are equal 
if zero is not contained within this interval. The Tukey test 
was performed using the estimated values of (3j in Table 2. 
The results of the Tukey test are shown in Table 3. 

The hypothesis on the equality of the multiplicative biases 
was rejected for all pairs of inspection systems except Mapping 
and Manual, Mapping and Logging, Mapping and Video, 
Mapping and Photol, Manual and Video, and Logging and 
Photol. The effect of the data reduction format and inspection 
strategy captured by the difference (f3Man - f3Log) and (f3Pho•ol 
- f3video) was found significant, as the hypothesis that these 
differences are zero was rejected. Similarly, the effect of the 
data collection process, represented by the difference (f3Pho•ol 
- f3rh0102), was found significant. However, it was found in­
significant for (f3Map - f3Log). This discrepancy may be because 
the Photol and Photo2 inspection systems employ photo­
graphic imaging techniques with the same measurement prin­
ciple, so the effect of the data collection process is more 
pronounced than when Mapping and Logging are compared. 
They are both direct measurement technologies that use hu­
man inspectors, but they differ extremely in the manner in 
which data is actually collected: Mapping uses a sampling 
strategy and measures each individual distress on a sample 
unit to get an estimate of distress on the section, whereas 
Logging observes the entire section but gives a range estimate 
of distresses on the section. 

Pairwise differences were computed for the random bias 
parameters using the results in Table 2. The Tukey interval 
was estimated, and the results are shown in Table 4. This test 
resulted in rejecting 6 out of 15 pairwise differences. The pairs 

TABLE 2 ESTIMATED BIASES FOR DIFFERENT 
INSPECTION SYSTEMS (ALLIGATOR CRACKING ON 
FLEXIBLE PAVEMENTS) 

Estimated Parameters 
(standard errors of the estimates) 

Inspection aj If, S. D . (<,1 ) - ~ CoeffA'? det. 
system 

g> !Sqftl ~ 
1. Mapping -73.0 0.83 396.9 

(474.2) (0.17) 

2. Manual 37.5 0.49 262.9 
(383.7) (0.10) 

3. Logging 570.0 1.29 646.2 
(845.1) (0.54) 

4. Photo1 -154.5 1.09 444.5 
(527,0) (0.21) 

5. Photo2 -501.3 1.85 551 .3 
(551.6) (0.23) 

6. Video 134.0 0.44 472.3 
(474.2) (0.17) 

7. Lase.a 

e Tho Lesor IMp(X;lion sysrom did nor repo'1 measures for all/gator 
cmcklng es denoted by - In tho t8blo. 

0.94 

0.94 

0.61 

0.95 

0.99 

0.77 
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TABLE 3 TUKEY TEST FOR EQUALITY OF 
MULTIPLICATIVE BIASES (ALLIGATOR 
CRACKING ON FLEXIBLE PAVEMENTS) 

Hrpothosls Tested 

'3map = '3 mon 

'3map - '3109 

J3 map = J3 pll!llo2 

~mo• - ~log 

'3ma n :c (3 pholol 

'3m1111 - '3u1dto 

'31011 - (3pll olol 

'31011 = (3pholo2 

(3 pholol - (3 pllolo2 

fl pholo l = '3 wt110 

(3 p holo2 :c f3 v1dto 

95% Tukey Interval 

99% Tukey Interval 

TABLE 4 TUKEY TEST FOR 
PARAMETER EQUALITY-

Resuhs of Test 

0.34Accepl 

-0.46 Accept 

-0.26 Accept 

-1.02 Reject 

0.39Accept 

-0.80 Reject 

-0.60 Reject 

-1 .36 Reject 

0.05Accept 

0.20 Accept 

-0.56 Relect 
(not significant) 

0.85 Reject 

-0. 76 Reject 

0.65 Reject 

1.41 Reject 

±0,57 

±0.71 

RANDOM BIAS (ALLIGATOR CRACKING ON 
FLEXIBLE PAVEMENTS) 

Hyf>othe8i8 Tested Results of Test 

99.5Accept 

-480.1 Reject 

76.3Accept 

423.3 Reject 

-200.8 Accept 

-380.6 Reject 

175.8 Accept 

522.8 Reject 

-101.3 Accept 

<1~011 - o~llolo/ 556.4 Reject 

903.4 Reject 

0~011 - <1 ~1d10 279.3 Accept 

C1 ~llolo/ - a !110102 
347.0 Accept 

-277 .1 Accept 

624. 1 Reject 

95% Tukey Interval ± 422.25 

99% Tukey Interval ±508 . 11 

a~ is !he variance of meesurement by inspection system i. 
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of inspection systems whose random biases are statistically 
different are 

• Mapping and Logging, 
• Mapping and Photo2, 
• Manual and Logging, 
•Manual and Photo2, 
•Logging and Photol, 
•Logging and Photo2, 
• Logging and Video, and 
• Photo2 and Video. 

This indicates that the Logging and Photo2 inspection sys­
tems have random biases that are significantly different in 
nature from those of the other inspection systems. For the 
Photo2 system this may be because alligator cracks and other 
crack types were jointly reported. For Logging, the difference 
may be due to the averaging of range estimates of distress 
that are reported instead of the individual values of distress 
on a section. However, more pairs of random biases were 
found statistically equal (9 out of 15 hypotheses were ac­
cepted) than were pairs of multiplicative biases (3 out of 15 
hypotheses on equality of pairs of biases were accepted). A 
possible explanation for this difference is that the impact of 
factors affecting measurement results may more seriously af­
fect multiplicative biases than random biases. This is a useful 
finding , because one can correct the measured results for 
systematic biases using the results of a calibration and hence 
only worry about minimizing random error. 

The results of these tests indicate that the inspection systems 
used in the FHW A data had varying capabilities in measuring 
alligator cracking (represented by the multiplicative bias 13). 
The most distinct inspection systems were Logging and Photd2; 
their parameters were statistically different from those of the 
other systems. The main differences between these inspection 
sys~ems and the others is the limitations of the Logging device, 
which cannot measure individual distresses and reports ranges 
of distress instead, and of the Photo2 system, which jointly 
measures alligator and other areal distresses such as block 
cracking and patched cracks. 

Hypotheses About Distress Characteristics 

The distress characteristic that could be tested using the FHW A 
data set is the dimension of distress, mainly whether linear, 
area, or volumetric. Table 5 compares the estimated multi­
plicative biases 13i for distresses with these dimensions on flex­
ible pavements. measures of volumetric distresses showed a 
range in values (0.34 to 2.09) larger than the ranges of linear 
(0.43 to 1.48) and areal (0.44 to 1.85) distresses. In general 
there was an increase in the range of parameter estimates as 
the number of distress dimensions increased, with the lowest 
range being for the case of linear distresses. This indicates 
that the inspection systems are measuring areal and volu­
metric distresses in a dissimilar way as compared to linear 
distresses. These differences are mainly due to the additional 
complexity of the measurement scene when volumetric dis­
tresses are involved. 

A Tukey test on the equality of the estimated multiplicative 
bias parameters when measuring different distress types was 

TABLE 5 HYPOTHESES ABOUT DISTRESS 
CHARACTERISTICS (VARIO US DISTRESSES ON 
FLEXIBLE PAVEMENTS) 

Inspection System 
Ol 

1. Mapping 

2. Manual 

3. Logging 

4. Photo1 

5. Photo2 

6. Video 

7, Laser 

Range In estimates 
of~ 1 (Max-Min ) 

Estimated MulUpllcative Biases 
(standard errors of the estimeles) 

Longttudinal and Alllga1or Cracking Polholes end 
Transverse (area!) Patches 
Cracking (volumetric) 
(linear) 

0.95 0.83 -
(0.26) (0.17) 

- 0.49 0.61 
(0.10) (0.36) 

1.48 1.29 0.37 
(0.65) (0.54) (0.15) 

0.43 1.09 2.09 
(0.40) (0.21) (0,20) 

- 1.65 1.59 
(0.23) (0.12) 

1.17 0.44 0.34 
(0.64) (0.17) (0.18) 

0.96 - .. 
(0.45) 

(0.43 • 1.48) (0.44 • 1.65) (0.34 • 2.09) 
1.05 1.41 1.65 

•• denotes no parameter estimates for the 9iven technology. 
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performed. This test involves the comparison of 7 x 7 = 49 
pairs of parameters for each distress dimension, which leads 
to 49 x 3 = 147 pairs. Only the differences between the same 
inspection systems for each distress dimension are of interest. 
These are presented in Table 6, in which they are c~mpared 
to the Tukey intervals at 95 and 99 percent confidence. 

The hypothesis on the equality of parameters was accepted 
for all the differences between multiplicative biases for linear 
versus areal distresses and rejected for all differences for lin­
ear versus volumetric distresses. This indicates that there is 
an effect of distress dimension on the results of measurement. 

The effect of distress dimension is statistically significant 
especially for the inspection systems employing optical tech­
niques (Photol , Photo2, and Video) . This result is expected, 
because the complexity of measurement due to distress di­
mension is supposed to affect optical techniques more than 
techniques (such as inspection by humans) that do not depend 

TABLE 6 TUKEY TEST FOR EFFECTS OF DISTRESS 
CHARACTERISTICS 

Results of Hypothesis Test 

Hypothesis Tested Linear Vs. Areal Linear Vs. Areal Vs. 
Volumelric Volumetric 

'3 map -1'3i map 0.12Accept 

'3man - j3 mgn ·0.12 Accept 

'310;-'31., 0.19Accept 1.11 Reject 0.92 Reject 

13 p ho/o/ - 13 p hol.ol 
-0.66 Accept ·1.66 Reject 1.00 Reject 

(3 phol.o2 - {3 p hofo2 
0.26Accept 

'311jdoo -{311/d 10 0.73Accept 0.83 Reject 0.10Accept 

l3 1aur -{3/aur 

Tukey 95% 
oonfldenoe interval 

.. o.s1 .. 0.54 .. o.51 

Tukey 99% 
oonfidenoe Interval 

"1.02 .. o.66 .. 0.65 

Ratio of number 0/4 3/3 2/5 
rejected 

- denotes no parameter estimates for the given technology pair. 
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on a signal (such as intensity of light) coming from the mea­
sured object. The nonoptical inspection systems (Mapping, 
Manual, and Logging) showed no significant difference be­
tween the estimated multiplicative biases. 

Hypotheses About Section Characteristics 

Section characteristics are captured by three factors: the pave­
ment type, the contrast between distresses and their back­
ground, and the pattern of distress occurrence. In the FHWA 
data there were three types of pavement: rigid, flexible, and 
composite. Rigid pavements can be categorized as having high 
contrast and a systematic pattern of distress occurrence. Flex­
ible and composite pavement can be categorized as having 
moderate to low contrast and a haphazard pattern of distress. 
To test for the joint effect of the contrast and pattern of 
distress occurrence, one can use the pavement type as a proxy. 

The following general hypothesis can be stated on the basis 
of these section characteristics: 

Inspection systems are equally e([icient in detecting and mea­
suring distresses (capabillty) but distresses differ in their " de­
tectability." Thac is, if a distress is in a section with high con­
trast and a systematic pattern of distress occurrence, it is more 
easily detectable by a given inspection system than U it is in a 
section with low contrast and a haphazard patte rn of distress. 

Therefore, the contrast and pattern of distress occurrence 
characterize the detectability, and capability is represented 
by the estimated measurement biases o.; and '3;· 

The hypothesis that can be tested is whether there is a 
difference in inspection system biases when measuring dis­
tresses from backgrounds with different contrast and pattern 
of distress occurrence. This hypothesis is tested for situations 
in which the distresses have the same dimension, to exclude 
the effects of interaction between distress and section char­
acteristics . Linear distresses on flexible, rigid, and composite 
pavements were used. 

The following unconstrained model system was specified: 

d;;2 = Ct;z + '3; 2d~ + E;;2 

d;;3 = 0'.;3 + (3;3d~ + E;p (13) 

where 

et;1 ,et12 ,et;3 ,'3;1,(3;z,'3;3 additive and multiplicative errors 
for inspection system j when mea­
suring distresses on pavement types 
1 (flexible), 2 (rigid), and 3 (com­
posite), respectively; and 

d/Ld;~,d,; = true value of distress on section i 
for pavement types 1, 2, and 3, re­
spectively. 

The hypothesis that there is no difference in inspection 
system biases when measuring distresses from backgrounds 
with different contrast and pattern of distress can be stated 
as follows: 
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(14) 

To test the hypothesis in Equation 14, the unconstrained 
model in Equation 13 is estimated to get the values of the 
parameters 13v7 and ljlv}. The true values of distress are ex­
tracted using latent variable estimation techniques described 
in the unpublished data by Ben-Akiva and Humplick, which 
will be denoted by (ct;)vc for each pavement type. Then the 
observed values of distress on the three pavement types are 
stacked and a constrained model is estimated, as shown. 

(15) 

where the superscript C denotes the results of estimation from 
the stacked data. 

The constrained model in Equation 15 represents the hy­
pothesis 

Ct2 

Similarly, the true values of distress (d'Dc can be extracted 
from estimated values of '3} and ljl}. Because the dis for 
the constrained and unconstrained models are estimated from 
the respective '3;s and lj!;s, one can compare the extracted d7s 
to make inferences about the '3;s and ljl;s. This is a preferred 
procedure because it does not require computation of the 
error sum of squares, which is tedious to calculate and is 
required for any test on the equality of the '3;s and lj!;s. 

The following regression is performed for all three pave­
ment types: 

where 

'Yd: + E 
(nz X 1) (11 2 X 1) 

z = l, 2, 3 pavement types, 
n, = n1 + n2 + n3 , and 

(16) 

n1 , n2 , n3 number of flexible, rigid, and composite pave­
ment segments, respectively. 

The hypothesis that 'Y = 1 is then tested. If 'Y 4' 1, then 
there is a difference in inspection system bias when measuring 
distresses from backgrounds with varying contrast and pattern 
of distresses. 

The results of the regression in Equation 16 are summarized 
in Figure 1. The hypothesis 'Y = 1 was accepted for the case 
of composite pavements and rejected for flexible and rigid 
pavements. This indicates that there is an effect of con­
trast and pattern of distress occurrence on the results of 
measurement. 



Hump lick 

Flexible Pavements 
r1ue- 0.61 de R-Squar•-0.79 

(O~IO) 

Rigid Pavementa 
due - 0.91 de R - Squar• - 0.89 

(0~ 11) 

Composite Pavements 
due - 1.18 de R - Squaro - 0.46 

(0 57) 

Hypotheses 

Ho:v,-v,-v, - 1 
f = ftexlble, r = rigid, c = composite 

The statlstic used for testing is: 
v-v. 

··-· - ---s;-
Results 

Flexible Pavements 
T-stalistic = -3.90 
Reject null hypothesis at 95% confidence Interval 

Rigid Pavements 
T-statistic = -0.82 
,Reject null hypothesis at 95% confidence level 

'Composite Pavements 
T-statistlc = 0.32 
Accept null hypothesis at 95% confidence interval 

FIGURE 1 Results of hypothesis 
tests on effects of section 
characteristics. 

CONCLUSIONS 

A methodology for identifying the factors affecting the results 
of measurement was developed and tested using highway in­
spection data. The success of such a methodology depends 
on scientifically collected data, such as were generated by the 
experimental design presented by Hudson et al. (4). The 
methodology can be used to identify directions for future 
development of inspection technologies, to choose among ex­
isting inspection systems, and to correct inspection results for 
measurement errors. 
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DISCUSSION 

W AHEED UDDIN 
Department of Civil Engineering, University of Mississippi, 
University, Miss. 38677. 

The author has done an excellent job of presenting and ap­
plying a hypothesis-testing methodology to identify sources 
of error in the subjective manual, semiautomatic, and high­
speed noncontact-type inspection systems for monitoring and 
evaluating pavement condition. The results discussed in this 
paper have important implications for selecting equipment 
and collecting data to evaluate pavement condition for infra­
structure maintenance, preservation, and development. The 
following comments and discussion are related to the FHW A 
distress data base, on which the author relied to formulate 
the measurement error analysis problem and hypothesis test­
ing. 

The writer was one of the principal team members of the 
comprehensive FHW A study of pavement condition evalua­
tion equipment (1-3) for which pavement test section selec­
tion and data collection were carried out with strict adherence 
to statistical experiment designs. The writer was primarily 
responsible for site selection and all field data collection. 

This scientific study of equipment for and methods of mon­
itoring pavement condition consisted of separate experiment 
designs for the following equipment categories: deflection, 
void detection, and distress survey. 

Pavement nondestructive testing structural condition eval­
uation equipment included eight deflection devices (1): 
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• Slow-moving wheel load with manual data recording (dial 
gauge) and manual processing, requiring stops at the test 
locations (Benkelman beam). 

• Continuously moving equipment with automated data 
recording by seismic geophone and automated data processing 
( Curviameter). 

• Harmonic dynamic load equipment with automated de­
flection sensing by seismic geophone and automated pro­
cessing, requiring stops at the tests locations (Dynaflect and 
Road Rater). 

• Impact dynamic load falling weight deflectometer (FWD) 
equipment with automated data recording by seismometers 
or geophones and automated data processing, requiring stops 
at the test locations (three models of FWD and one replicate 
FWD unit). 

The measurement of voids under concrete pavement for 
evaluation of structural integrity and assessment of concrete 
pavement restoration needs required very special equipmynt 
(2). The following devices were investigated for evaluating 
their capability of void detection and measurement of void 
size: 

• Proof rolling and visual inspection, 
• Deflection survey, 
• Ground-penetrating radar equipment, 
• Infrared thermography, and 
•Transient dynamic response method. 

Unfortunately, all of these methods required intensive manual 
data interpretation and special operator skills . 

Seven varieties of equipment and methods were investi­
gated for their suitability and reliability in distress survey and 
condition evaluation (3). Table 1 describes and groups the 
inspection system characteristics of these methods. Because 
the distress survey equipment is the subject of the paper, the 
measurement and processing principles of different distress 
data elements are summarized for the readers. The main dif­
ferences among these methods are also highlighted. 

• Mapping: Detailed direct manual measurements of all 
distress types including rutting by walking on selected in­
spection units within the pavement test section; procedure 
based on the AASHO Road Test distress mapping procedure; 
manual data processing. This is the method coded as Mapping. 

•Manual visual surveys (PAVER/COPES): Detailed di­
rect manual severity rating and extent measurement by walk­
ing using specific sampling and visual inspection guidelines 
for all distress types including rutting on selected inspection 
units within the pavement sections; manual data processing. 
This is the method coded as Manual. 

• Semiautomated data logger: Measurements similar to de­
tailed manual visual surveys by walking survey and entering 
data directly on a hand-held data logger (portable PC); au­
tomated data processing. This is the method coded as 
Logging. 

• GERPHO: High-speed automatic imaging of pavement 
surface on continuous 35-mm photo film, at night only; man­
ual distress data interpretation on full section length; no rut­
ting data; automatic data processing. This is the method coded 
as Photol. 
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• PASCO-Roadrecon survey vehicle: Multifunction high­
speed automatic data collection; automatic data processing. 
Imaging of pavement surface on continuous 35-mm photo 
films at night only; manual distress data interpretation on full 
section length; automatic rutting data processing from digi­
tized photo records of transverse profiles; longitudinal profile 
measurement by laser sensors. This is the method coded as 
Photo2. 

• ARAN video condition inventory survey vehicle: Mul­
tifunction high-speed automatic data collection; automatic data 
processing; video imaging of perspective view and pavement 
surface; no interpretation of distress data from video. Wind­
shield visual manual distress data collection, using integrated 
data logger on full section length; automatic rutting data pro­
cessing from transverse profiles measured by ultrasonic sen­
sors; longitudinal roughness measurement by accelerometer. 
This is the method coded as Video. 

•Laser RST survey vehicle: Multifunction high-speed au­
tomatic data collection; automatic data processing; laser sur­
vey of pavement surface for measuring longitudinal and trans­
verse profiles and texture data processing (only some transverse 
cracking data were produced from laser survey and no other 
distress data were interpreted from laser survey). Windshield 
visual manual survey for alligator, longitudinal, and edge 
cracking data and other distress data collection, using inte­
grated data logger on full section length; automatic rutting 
data processing from transverse profiles measured by laser 
sensors. This is the method coded as Laser. 

It is obvious from these comments that the alligator crack­
ing, longitudinal cracking, and edge cracking data from both 
Video and Laser devices are essentially collected in the 
windshield-type visual survey mode using on-board integrated 
data loggers. These and other distress data, excluding rutting 
data, are visual, manual, subjective measurements reported 
by these high-speed multifunction devices. Therefore, these 
data are not expected to be of the same quality as the distress 
data processed from the Photol and Photo2 equipment, Log­
ging, Manual, and Mapping methods. 

The author is encouraged to examine rutting data for hy­
pothesis testing. As described, rutting data were collected by 
objective measurements by Photo2, Video, and Laser. Direct 
manual objective measurement was used in Mapping, and 
subjective data collection procedures were used for rutting 
survey in Manual and Logging methods. 

Pavement management system (PMS) development and im­
plementation is a top priority area on federal-aid highway 
systems throughout the United States. Pavement condition 
data monitoring and evaluation, particularly distress data and 
rutting data, are integral components of the PMS process. 
Multifunction and high-speed equipment providing objective 
measurements of pavement condition data are attractive and 
cost-effective alternatives during the PMS equipment selec­
tion process (4). However, speed and productivity should not 
be the only selection criteria; quality and accuracy of pave­
ment condition evaluation and prediction are important as 
well. Note that the maintenance need assessment and the 
maintenance work program and budgets depend on the qual­
ity of pavement condition data. The author is commended for 
bringing the subject of data quality and sources of error in 
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distress survey methods and equipment to the attention of 
pavement community. 
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AUTHOR'S CLOSURE 

The discussant has provided a valuable description of the 
inspection technologies that is useful for interpreting the sig­
nificance of the results of this paper. As mentioned in the 
conclusion, scientifically collected data, gathered by the meth­
ods used in the background papers presented by the discus­
sant, are necessary input to the success of the methodology 
developed in this paper. 

As suggested by the discussant, bias parameters were es­
timated for rutting data. The results are presented in Table 
7. As can be seen from these results , all systems perform very 
well with respect to the standard error of measurement (which 
is practically zero for all systems). However, the inspection 
system with the lowest additive bias is Photo2, which under­
estimates rutting by only 0.01 in. 

The impact of lack of objectivity is seen by an underesti­
mation by Manual of 0.11 in. , and the impact of system lim­
itations (resolution) is exemplified by a 0.32 in. overestima­
tion by Video. The systems with the least multiplicative bias, 
however, are Mapping, which underestimates rutting by a 
factor of only 0.02, and Logging, which overestimates rutting 
by a factor of 0.02. The seriousness of over- or underesti­
mation depends on the use to which the data are put . A 
methodology for choosing among inspection technologies on 
the basis of their accuracy of measurement and whether the 
data are used to predict performance or make maintenance 
decisions can be found elsewhere (J). 

The Photo2 technology has the highest multiplicative bias 
for rutting measurements, overestimating them by a factor of 
1.23. However, this is not a problem, because the inspection 
results can be corrected for using the results of the calibration 
in Table 7. The results in Table 7 indicate that the benefits 

TABLE 7 ESTIMATED BIASES FOR DIFFERENT 
INSPECTION SYSTEMS (RUTIING ON FLEXIBLE 
PAVEMENTS) 

Estimated Parameters 
(slllnderd erront of the estimates) 

Inspection ci, ~I S . D . (E.,)-~ CoeffR'i det. 
system 

!il ~l ~ 
1. Mapping -0.20 0.85 0.00 

(0.36) 

2. Manual -0.11 0.81 0.00 
(0.30) 

3. Logging 0.07 1.14 0.00 
(0.18) 

4. Photo1 

5. Photo2 -0.01 2.11 0.00 
(0.21) 

6. Video 0.32 0.31 o.oo 
(0.09) 

7. Laser -0.06 0.78 0.00 
(0.27) 

- Thit PhoroT lnspfKlllon S)IStom did not report mNSUtltS for rutting es 
denoted by - In tho tabla. Addltlonll/y, lhit standanl itrrors ol lhe 
eddltivo biases iwro not calculat&d as this Is o very ttmit consuming 
activity. 

0.82 

0.88 

0.85 

0.88 

0.78 

0.86 

Since an unbiased system has a multiplicative bias of one, the degree of over or 
underestimation is celculaled as (13 1 - I ) 2

, which is 0.02 for Mapping, 0.04for 
Manual, 0.02 for Logging, -·for Pholo1, 1.23 lor Photo2, 0.48 lor Video, and 0.05 
for Laser respocWely. 
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of direct measurement are undermined by the spatial variation 
of measurements that cannot be captured by sampling strategy 
employed by Mapping. However, these effects are additive 
in nature and hence can be factored out using the results of 
calibration. On the other hand, the advantages of automation 
(such as when using Photo2) can be achieved only if the results 
of measurement are corrected for error of inspection. The 
advantage of the rutting data is that all the technologies at 
the moment have insignificant random errors and, because 
one can correct for systematic errors , there should be no 
advantage other than cost and speed of data collection. 

The author suggests the use of spatial models to estimate 
the impact of spatial effects on measurement errors. Such 
work is ongoing; preliminary results have been published by 
Koutsopoulos and Mishalani (2). 
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