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Adaptive Filter Forecasting System for 
Pavement Roughness 

}IAN Lu, CARL BERTRAND, W.R. HuDsoN, AND B. F. McCULLOUGH 

Forecasting pavement roughness conditions can facilitate decision 
making within a pavement management system at project and 
network levels. Because pavement roughness change over time 
is caused by some important conditions and certain stochastic 
factors, a parameter and dynamic forecasting model is more ap­
propriate for forecasting roughness with respect to linear, static, 
and nonparameter forecasting models. Thus, an adaptive filter 
forecasting system is presented that forecasts pavement roughness 
conditions by means of an adaptive filter using roughness history. 
The concept of an adaptive filter forecasting system is introduced, 
along with its mathematical derivation and least-mean-square al­
gorithm. In testing the system's validity, a given mathematical 
function is used to simulate changing pavement roughness con­
ditions. In addition, a practical application of the adaptive filter 
forecasting system is presented. The roughness index used is the 
root-mean-square vertical acceleration of a response-type road­
roughness measuring system. Finally, choice of the adaptive filter 
structure and its stability, based on roughness data collected from 
Austin Test Sections, are discussed. The structure of system should 
be decided before each application by experimental results with 
certain criteria. This is a major limitation of the system. 

Measurement of pavement roughness is an important exercise 
within a pavement management system (PMS) at project and 
network levels, because it relates to pavement evaluation, 
maintenance, and rehabilitation (1,2). In addition, pavement 
roughness measurements have been used in predicting vehicle 
operating cost, predicting road performance, evaluating road 
safety, and evaluating passenger degree of comfort (3-8; Dar­
lington, unpublished data). Since the AASHO Road Test, 
much roughness research has been conducted, including stud­
ies on measuring techniques, index development, evaluation, 
specification, and prediction. 

However, pavement roughness measurements can reflect 
only existing states. Unless adequate forecasting models are 
used to predict future roughness conditions, existing rough­
ness cannot provide reliable information on which to base 
future planning, maintenance, rehabilitation, and other PMS 
activities. 

Two concepts concerning roughness prediction must be dis­
tinguished. The first, which has been the subject of much 
research (5,9-11), can be described by the following equa­
tion: 
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where 

Rk = roughness at time k, 
Dk = pavement structure at time k, 
Mk = pavement materials at time k, 
Tk = traffic condition at time k, and 
Ek = environment at time k. 

Roughness at time k is estimated using these existing condi­
tions but disregarding past information. 

The second concept can be described by another equation: 

(2) 

Roughness at time k, Rk, is forecast using historical roughness 
records at time k - 1, k - 2, ... , k - N. This is a time­
series modeling problem. It appears that Equation 2 does not 
consider conditions affecting roughness except past rough­
ness. Conditions of pavement structure, materials, traffic, and 
environment are time-variable; certain changing trends over 
time are reflected in the past roughness data sequence. Con­
ditions thus are forecast by understanding the changing pro­
cesses of past conditions of pavement structure, materials, 
traffic, environment, and such. In this study, this concept is 
called time-series forecasting of roughness. It provides better 
information for decision making in planning, maintenance, 
and rehabilitation because the future roughness state has been 
forecast. 

Traditionally, linear regression and extrapolation models 
have been used for forecasting (12-15). These are nonpar­
ameter estimation models and are usually considered static 
estimators. It is understood that the changing process of pave­
ment roughness consists of certain trend caused by some con­
ditions and unpredictable stochastic factors. These stochastic 
factors make a linear static estimator inadequate for fore­
casting. Linear regression and extrapolation models also have 
limitations in forecasting pavement roughness. 

In the past two decades, several important parameter fore­
casting models and probability-based models have been ap­
plied to transportation areas (15-17). Mathematically, the 
parameter forecasting models most often used are Kalman 
filtering (18), time-series prediction (19), spectral analysis (20), 
and adaptive forecasting (21). 

Recent studies have used an adaptive filter model to fore­
cast roughness. This can be considered a dynamic parameter 
estimation model-that is, the pavement roughness condition 
forecast at time step k is a function of past conditions at time 
step k - 1, k - 2, ... , k - M where M < k, and Mand 
k are positive integers and a set of parameters estimated by 
the adaptive filter forecasting system. 
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Mathematically, the objective function of this system, min­
imizing the resulting mean-square error, might be similar to 
that of the Kalman filtering and time-series prediction models. 
However, it uses a simplified least-mean-square (LMS) al­
gorithm to search for optimal filter weights or states. This 
difference means that dynamic response of the system could 
be better, needing less data storage space than the earlier 
prediction models. Intuitively speaking, an adaptive filter 
forecasting system is viewed as one whose structure is ad­
justable in such a way that its performance improves through 
contact with its environment. 

This paper focuses on a time-series forecasting method for 
pavement roughness using an adaptive filter forecasting sys­
tem. The basic concept of the system is introduced, and then 
its mathematical derivation is described. Results of experi­
ments based on simulation and real roughness data, which is 
root-mean-square vertical acceleration (RMSV A) (22) col­
lected by the Automatic Road Analyzer (ARAN) (23), are 
presented and discussed. 

BASIC PRINCIPLES OF ADAPTIVE 
FORECASTING SYSTEM 

Figures 1 and 2 show an adaptive forecasting system and its 
processors, respectively. In these figures, z- 1 is an one-step 
delay factor, and z-s is an s-step delay factor (where s is a 
positive integer). Mathematically, q(k)z- 1 = q(k - 1), and 
q(k)z-s = q(k - s). As can be seen from Figure 1, the 
system's core is the adaptive processors, in which all of the 
parameters (weights) at step k are adjustable. The error of 
forecast e(k) controls adjustment of the system. From Figures 
1 and 2, the following equation can be derived: 

N 

q(k) = .2: wjkq(k - s - j) (k = s + 1, 
j~O 

s + 2, ... ) (3) 

Equation 3 indicates that q(k) is the linear weighted com­
bination of q(k - s), q(k - s - 1), ... , q(k - s - N). 
The weights are Wok> w,k, ... , w Nk, and the index k denotes 
the time step. If q(k) is used to forecast q(k), then the error 

Wok 
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FIGURE 1 Adaptive forecasting system. 

of forecast at step k is 

e(k) = q(k) - q(k) (k = s + 1, s + 2, ... ) (4) 

The purpose of using an adaptive processors is to adjust 
the weights at each step k so that the mean square error 
E[e2(k)] is minimized. The vectors Wk and Qk-s are defined 
as follows: 

Qk-s = [q(k - s), q(k - S - 1), ... , q(k - S - N)V 

With these definitions, Equation 3 can be expressed using 
vector notation: 

q(k) = Q[_sWk = W[Qk-s (5) 

Now that operation of the adaptive processor has been 
described, one can consider how the adaptive processor 
adapts-that is, how the vector Wk is adjusted as the time­
step index k changes. 

From Equations 4 and 5, Equation 6 can be derived: 

e(k) = q(k) - W[Qk-s = q(k) - Q[_sWk (6) 

By squaring Equation 6, the instantaneous squared error 
can be obtained. 

(7) 

e(k) 

FIGURE 2 Adaptive processors [W1k is adjusted by e(k), i = 0 to N]. 
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To find the expected value of Equation 7 over k, it is as­
sumed that e(k) and q(k) are statistically stationary. This as­
sumption can usually be approximately satisfied for the par­
ticular pavement roughness conditions. Then the expectation 
of e2(k) is 

E[e2(k)J = E[q2(k)J + W[E[Qk-sQT-sJWk 

- 2E[q(k)Q[_sJWk 

Let R be defined as the square matrix 

(8) 

(9) 

Thus R is the correlation matrix of q(k - s) with dimension 
N x N. Let P be defined as the column vector 

P = E[q(k)Q[_sJ 

= E[q(k)q(k - s), q(k)q(k - s - 1), .. . , 

q(k)q)k - s - NW (10) 

This vector is the set of autocorrelation of q(k). Rand P thus 
are the second-order statistics of the random variable q(k - s) 
at step k. By the definitions of R and P, Equation 6 can be 
expressed as 

(11) 

According to the assumption that q(k) is statistically sta­
tionary, R and P are a constant matrix and vector, respec­
tively. In this case, E[e 2(k)J is a quadratic function of the 
weight vector Wk· If the adaptive processor has the ability of 
"self-study" to seek the minimum E[e2(k)J by adjusting Wk, 
and if E[e2(k)J tends to be minimal when Wk tends to be 
optimal solution w;;, then the forecast of the processors will 
be optimal. The question is how to find the optimal solution 
of Wk so that E[e2(k)J is minimized at each step k. This can 
be solved by the gradient method. The gradient of the mean 
square error E[e2(k)J is designated "ilk and can be expressed 
by 

To obtain the optimal solution W!; so that E[e2(k)J is min­
imized, it is necessary to let 

V k = 0 = 2RWZ - 2P 

or 

(12) 

Equation 12 is the optimal solution of Wk· By substituting 
Equation 12 into Equation 11, and noting that the correlation 
matrix is symmetric, then 

E[e2(k)Jmin = E[q2(k)J + [R - 1P)TRR- 1P - 2P1R- 1 P 

= E[q 2(k)J + PTR- 1P - 2PTR- 1P 

= E[q2(k)J - PTR- 1P (13) 
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Although Equation 12 is the optimal solution of Wk, in a 
practical sense w;; is not estimated by Equation 12. In the 
next section, the algorithm to estimate W); is discussed. 

LEAST-MEAN-SQUARE ALGORITHM 

Recall in Equation 12 that 

or 

By combining these equations, Equation 14 is obtained: 

(14) 

It can be changed into an adaptive algorithm as follows: 

(15) 

If the vector of weight Wk is adjusted in the direction of 
the gradient at each step k and a constant µ (0 < µ < 1) is 
defined, then Equation 15 can be simplified as follows: 

(16) 

where µ regulates step size (from k to k + 1) and has di­
mensions of reciprocal signal power. 

To develop the LMS algorithm, e2(k) itself can be taken as 
an estimate of E[e2(k)J; then the estimate of the gradient "ilk 

can be expressed by 

ae2(k) ae(k) 

a wok a wok 

ti = = 2e(k) = -2e(k)Qk-s 

ae2(k) ae(k) 

awNk awNk (17) 

With this simple estimate of the gradient, the LMS algo­
rithm can be specified by Equations 16 and 17: 

(18) 

In this research effort, another parameter-ALI-was de­
fined: 

ALl 
1 

2µ 

where ALl is called an attenuate factor. Thus Equations 5 
and 18 constitute the adaptive forecast model. Equation 18 
indicates that the LMS algorithm can be implemented in a 
practical system without squaring, averaging, or differentia­
tion and is elegant in its simplicity and efficiency. 
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FIGURE 3 Comparison between simulated and forecast RMSV A. 

SIMULATION OF ADAPTIVE FILTER 
FORECASTING SYSTEM 

A simulation experiment was conducted to evaluate the per­
formance of the adaptive filter forecasting system. The ex­
periment was conducted by inputing a given mathematical 
function as a simulation of RMSV A to the system. This was 
done to prove the applicability of the system for practical 
purposes. In the experiment, a mathematical function was 
used to simulate RMSV A as a function of time, or RMSV A(t): 

RMSV A(t) = 500 - 300 cos( '7Tt/100) 

(t: month, t = 1, 2, ... , 100) (19) 

The experimental results are shown in Figure 3, with ALl 
= 6.52 x 105 , N = 3, and S = 1. It is clear from the graph 
that the forecast RMSV A follows the true (simulated) RMSV A. 
For this kind of deterministic RMSV A, the system can pre­
cisely predict future characteristics of RMSV A by understand­
ing the past process of RMSV A. This ability could be due to 
the continuously differentiable nature of the sine function 
input. 

APPLICATIONS OF SYSTEM 

As stated in the introduction, roughness conditions are fore­
cast by using past roughness data, RMSV A. The amount of 
past data that must be stored in the forecasting system de­
pends on the order of the adaptive filter. To forecast future 
roughness, a certain quantity of initial roughness data should 
be available. Then, after the forecasting system is in use, 
initial data will be continuously updated by measured data. 

Field Data Collection and Preparation 

During the study, the adaptive filter forecasting system was 
applied to forecasts of RMSV A of Austin Test Sections (ATS). 
Roughness conditions have been monitored by a K. J. Law 
profilometer at 20 mph since July 1982. The original index is 
serviceability index (SI) collected every 3 months. However, 
because the forecasting system is designed for forecasting 
RMSV A with past RMSV A data measured by the ARAN 
unit, original data had to be changed to corresponding RMSV A 

data by a correlation model between the Law profilometer 
and the ARAN unit. The correlation model has the following 
form (23): 

SI (profilometer) 5.297 - 4.742 10-3 RMSVA (ARAN) 

or 

RMSVA(ARAN) = 1117 - 210.9SI(profilometer) (20) 

General experience indicates that the measured data include 
certain systematic and operational errors. A good data pro­
cessing technique to reduce the errors is data smoothing. In 
this study, a three-order smoothing filter was used to smooth 
the measured data sequence. 

Results of Forecasting Roughness Data, RMSV A 

Although past roughness had been measured, it was impos­
sible to forecast pavement conditions precisely. This result is 
different from the simulation experiment. The adaptive filter 
forecasting system can figure statistical characteristics of pave­
ment roughness conditions using the adaptive processor and 
past roughness data, RMSV A, for optimal forecasting of 
roughness conditions; that is, statistically the adaptive filter 
forecasting system's performance is optimal. 

Figures 4 and 5 show results of forecasting RMSV A at 
Austin Test Sections ATS36 and ATS40, with given adaptive 
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FIGURE 4 Comparison between measured and forecast 
RMSVA of ATS36. 
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FIGURE 5 Comparison between measured and forecast 
RMSVA of ATS40. 

filter structures (N = 3, ALl = 5.42 x 105, S = 1) and (N 
= 3, ALl = 1.82 x 10 5

, S = 1), respectively. Averaged 
absolute forecast errors are 9.777 for ATS36 and 5.359 for 
ATS40. 

Figures 6 and 7 show results of forecasting RMSV A of 
ATS07 and ATS38 by the adaptive filter forecasting system 
with the structures (N = 3, ALl = 1.02 x 105 , S = 1) and 
(N = 3, ALl = 1.118 x 106

, S = 1), respectively. These 
graphs show that some maintenance or rehabilitation activi­
ties, such as overlay, took place during the monitoring period, 
so that the roughness level RMSV A dropped after that work. 
However, it should be mentioned that the historical roughness 
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FIGURE 6 Comparison between measured and forecast 
RMSVA of ATS07. 
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FIGURE 7 Comparison between measured and forecast 
RMSV A of ATS38. 
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data before major maintenance or rehabilitation should not 
be used to forecast subsequent roughness. Averaged absolute 
forecast errors for ATS07 and ATS38 are 3.949 and 11.082, 
respectively. 

ADAPTIVE FILTER STRUCTURE 
CHOICE AND STABILITY 

For given pavement roughness conditions, the forecast is af­
fected mainly by the adaptive filter structure (N, ALl). In 
this study, performance was associated with forecast errors, 
stability, and such. Adequate choice of the order N and at­
tenuate factor ALl of the adaptive filter can result in a rel­
atively accurate forecast and good stability. For a given pave­
ment section, tests thus should be conducted to choose the 
optimal pair of N and ALl by minimizing the forecast errors, 
and N and ALl must be updated further when data on the 
new roughness condition RMSV A are collected. Table 1 gives 
optimal pairs of N and ALl for ATS40. The resulting optimal 
N and ALl are based on roughness data RMSV A collected 
since July 1982. The index Eis the averaged absolute forecast 
error. Any other choice of N and ALl will result in larger E. 

It can be understood that for a new pavement without any 
existing roughness data, the optimal pairs of N and ALl can­
not be decided and certain initial readings are needed for 
forecasting. However, roughness readings from other pave­
ment with closely similar conditions can be used to predict 
roughness of this new pavement. After several readings have 
been obtained, the forecasting system will gradually get into 
optimal state by continuously updating its structure. 

Like other dynamic systems, the adaptive filter forecasting 
system also has the problem of stability. A simple definition 
of stability adopted in this study is that if the averaged absolute 
forecast error E is always smaller than a given number or 
critical value, A, the adaptive filter forecasting system is said 
to be stable; otherwise it is unstable. 

Stability of the system depends mainly on ALl and N. In 
the plane of (ALl, N) a zone should exist where the system 
should be stable, or it would be unstable. Figure 8 shows the 
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TABLE 1 OPTIMAL PAIRS OF N AND ALl TO 
MINIMIZE FORECAST ERROR FOR ATS40 

N 2 3 4 5 6 

AL1 350000 542000 750000 958000 1154000 

E 5.3624 5.3594 5.3664 5.3942 5.4185 
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FIGURE 8 Stable and unstable areas in (ALI, N) plane. 
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stable and unstable· zones based on RMSV A data collected 
from ATS40 and A = 20. If (ALl, N) belongs to the area 
above the straight line, the system is stable; otherwise it is 
unstable. In fact, as long as the system is continuously up­
dated, stability will not be a problem because the optimal N 
and ALl guarantee that the system is in stable zone. 

CONCLUSIONS 

The adaptive filter forecasting system can be used as a dy­
namic time-series predictor of pavement roughness condi­
tions. System performance depends both on roughness con­
ditions and structure of the adaptive filter (ALl and N). In 
choosing ALl and N, consideration should be given to sta­
bility of the system. To forecast roughness conditions on a 
specific pavement section, an adequate number of tests should 
be run to obtain optimal ALl and N. 

The system, like other forecasting models mentioned in this 
paper, has some limitations for practical application. One of 
the most critical problems seems to be the convergence that 
has been discussed in some works (15,19). Although in certain 
situations, the adaptive filter forecasting system could con­
verge to the optimal states with given model structures (i.e., 
ALl and N), in others the adaptive prediction system might 
not converge with the same model structures. 

In this study the direct application of the adaptive filter 
forecasting system is to forecast RMSVA. However, in prin­
ciple this system can be applied to forecasts of other roughness 
indices, such as SI, international roughness index, and mean 
absolute slope. 
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