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Mixed-Integer Programming Model for 
AASHTO Flexible Pavement Design 

XIN CHEN, GERMAN CLAROS, AND w. RONALD HUDSON 

A mixed-integer programming model is described that is based 
on the AASHTO design procedure for flexible pavements and 
formulated for selecting pavement materials and determining sur­
face, base, and subbase course thicknesses. The objective of the 
model is to minimize the total cost of pavement structures while 
meeting the constraints of AASHTO flexible pavement design 
equations and user-defined criteria. The Flexible Pavement Op­
timal Design computer program that interfaces with the optimiza­
tion package LINDO has been developed to obtain quick solu­
tions. Two solutions are given by the program: nonintegers and 
integers. The program can be used for flexible pavement thickness 
design in cases in which one or more materials are available for 
each of three layers if the layer characteristics and material prop­
erties are known. 

In flexible pavement design, there are usually several material 
types available for surface, base, and subbase courses. There 
are many combinations of layer thicknesses for each of the 
three layers when AASHTO design equations (J) are used. 
In pavement construction, a small reduction in the unit cost 
of pavement structures can result in considerable savings for 
the entire project. Therefore, obtaining the best materials at 
minimum cost is important. 

Because the AASHTO DNPS86 program (2) has no optimi­
zation function, the solutions given by the program may not 
be the least expensive. Nicholls (3) developed a nonlinear 
optimization program (DNPS860) using DNPS86 as a sub­
routine. A minimum-cost solution for the whole design period 
is obtained by changing design reliability, performance period 
of initial pavement, and two of the three thicknesses of flexible 
pavements. Rouphail (4) formulated a mixed-integer-linear 
programming model for minimum-cost design of flexible 
pavements by changing the number, type, and thickness of 
paving materials. But the problem of material selection is not 
addressed in either model. 

The flexible pavement design problem is here formulated 
as a mixed-integer programming model (5). The model can 
select the best combination of different pavement materials 
for the three layers of pavement structure and give the 
minimum-cost solution for the selected materials accordingly, 
while meeting constraints of the AASHTO design equations 
and user-defined criteria (given a certain level of reliability, 
performance period of initial pavement, and other input data). 
A computer program interfacing with the optimization pack­
age LINDO (6) is developed to get quick solutions. Besides 
the minimum-cost noninteger solution (layer thicknesses are 
not rounded to nearest 1/2 in.), the minimum-cost integer 
solution (layer thicknesses are integers in inches) can also be 
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obtained from the program. Sensitivity analysis has demon­
strated that great benefits can be obtained by using this program. 

AASHTO FLEXIBLE PAVEMENT DFSIGN 
EQUATIONS 

In the design guide for flexible pavements, the following equa­
tions are used to compute the structural number and layer 
thicknesses: 

log(W18) = Z,S0 + 9.36 log(SN + 1) 

log[/; = f '.s J 
- 0.20 + -------

1,094 
0.40 + (SN + 1)~ . 111 

+ 2.32 log M, - 8.07 (1) 

(2) 

(3) 

(4) 

Di 2: SN2 - SNj 
021''2 

(5) 

(6) 

(7) 

SN (SN ""1 + SN2*)· Dj 2: __ 3 _ __.._~--~ 

0 3m3 
(8) 

where 

W18 = predicted number of 18-kip equivalent single 
axle load applications; 

Z, = standard normal deviate; 
S0 = combined standard error of the traffic predic­

tion and performance prediction; 
p0 = initial design serviceability index; 
p, = design terminal serviceability index; 

M, = resilient modulus (psi); 
SN = structural number indicative of total pave­

ment thickness required; 
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SN1 structural number corresponding to modulus 
of base (i = 1), subbase (i = 2) and roadbed 
soil (i = 3, SN3 = SN); 

a1 ith layer coefficient; 
m1 ith layer drainage coefficient; 
D 1 ith layer thickness in inches; and 

IJ;, SN,' = values actually used (i = 1, 2, 3). 

Equation 1 shows that the structural number required for 
the total pavement structure can be uniquely determined under 
the same traffic condition and at a certain level of reliability, 
but that different materials for base and subbase courses with 
different resilient moduli will have different structural num­
bers. Equation 2 shows that the thicknesses of surface, base, 
and subbase courses depend on layer coefficients, drainage 
coefficients, and a structural number associated with different 
layers. Equations 3 through 8 are actually used for the com­
putation of layer thicknesses. 

It can be seen from these equations that there are many 
solutions to layer thicknesses for a particular problem with 
given traffic, environment, reliabi:lity, and materials. An op­
timal solution with minimum total cost for a pavement struc­
ture can be found with trial-and-error methods, but it may 
take much design time. There is no simple method such as 
using the ratio of SN to unit cost for quick thickness design. 

In cases in which several materials are available for each 
of the three layers, a simple method using the ratio of the 
layer coefficient multiplying by the drainage coefficient to unit 
cost can be used to select the types of materials for the design 
of noninteger layer thickness, but it may not be true for the 
design of integer layer thickness. This will be illustrated in a 
later example. 

MIXED INTEGER PROGRAMMING MODEL 

Let m, n, r be the number of types of surface, base, and 
subbase courses available for a project in which the resilient 
moduli, layer coefficients, drainage coefficients, and unit costs 
corresponding to each material are known. Then the material 
selection and thickness design problems can be formulated as 
follows: 

Objective function: 

Minimize 

m n r 

L C11D11 + L C2P21 + L C3kD3k (9) 
i=l j=l k=l 

In optimization, the objective value of Equation 9 is divided 
by 36 to get the unit cost of dollars per square yard. 

Subject to 

1. Constraints of AASHTO equations: 

m 

SNf = L a11D11 
i=l 

(10) 

(11) 

(12) 

(13) 
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2. Constraints of structural number 

m 

SN 1 ~ L SN 11X 11 
i =I 

" 
SN2 ~ L SN2~21 

1~1 

r 

SN3 ~ L SNX3k 
k~l 

3. Constraints of maximum thicknesses 

(i = 1, 2, ... , m) 

(j = 1, 2, ... , n) 

(k = 1, 2, ... , r) 

4. Constraints of minimum thicknesses 

m 

L Dli ~ Dlmin 
i=l 

n 

L D21 ~ D2min 
1~1 

' L D3k ~ D3min 
k - 1 

5. Constraints of surface, base and subbase course 

1 

1 

1 

where 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Cli = unit cost of ith type of surface course in dollars 
per cubic yard; 

C21 = unit cost of jth type of base course in dollars per 
cubic yard; 

C3k = unit cost of kth type of subbase course in dollars 
per cubic yard; 

D 11 layer thickness of ith type of surface course in 
inches; 
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D 2i = layer thickness ofjth type of base course in inches; 
D 3k = layer thickness of kth type of subbase course in 

inches; 
a11 = layer coefficient of ith type of surface course; 
a2i = layer coefficient of jth type of base course; 
a3k = layer coefficient of kth type of subbase course; 
m2i = drainage coefficient of jth type of base course; 
m 3k = drainage coefficient of kth type of subbase course; 

Ds max = maximum thicknesses of surface (s = 1), base 
(s = 2), and subbase (s = 3) course in inches; 

Ds min minimum thicknesses of surface (s = 1), base 
(s = 2), and subbase (s = 3) course in inches; 

SNs minimum structural number corresponding to 
modulus of selected types of base course (s 
= 1), subbase (s = 2) course, and effective re­
silient modulus of roadbed soil (s = 3); 

SN; = structural number actually used in the models 
(s = 1, 2, 3); 

SN11 = structural number corresponding to ith base 
course calculated using AASHTO Equation 1; 

SN2i = structural number corresponding to jth subbase 
course calculated using AASHTO Equation 1; 

SN = structural number corresponding to effective re­
silient of roadbed soil calculated using AASHTO 
Equation 1; 

Xii 1 if ith type of surface course is selected, other­
wise X 1, = O; 

X 2i 1 if jth type of base course is selected, otherwise 
X21 = O; 

X 3 k = 1 if kth type of subbase course is selected, other­
wise X 3 k = O; and 

m, n, r = number of surface, base, and subbase courses 
available, respectively (i = 1, 2, ... , m; j 
= 1, 2, ... , n; k = 1, 2, ... , r). 

In the model above, Equations 10 through 15 correspond 
to Equations 3 through 8, which are used to compute layer 
thicknesses required once material types of the three layers 
are selected. Equations 16 through 18 are used to select the 
structural numbers computed by Equation 1 for different lay­
ers. Equations 19 through 21 ensure that the layer thicknesses 
of selected materials are no more than the maximum thick­
nesses specified for the materials, while those of materials not 
selected are equal to zero. Equations 22 through 24 ensure 
that the layer thicknesses of selected materials are no less 
than the minimum thicknesses specified for the materials. 
Equations 25 through 27 ensure that only one material is 
selected for surface, base, and subbase courses, respectively. 

This model is able to select the best combination of ma­
terials for the three layers and determine the optimal layer 
thicknesses for the selected materials. If there is only one 
available type of material for each layer, that is, m = n = k 
= 1, the problem is simplified only to the optimization of 
layer thicknesses; the formulation of the simplified model is 
then: 

Objective function: 

Minimize 

(28) 
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Subject to 

SN;';;:: SN1 (29) 

SN;" + SNj ;;:: SN2 (30) 

SN;" + SNj + SNj;;:: SN3 (31) 

SN;" = a1D1 (32) 

SNj a2m2D2 (33) 

SNj a3m3D3 (34) 

Dl;;:: Dlmin (35) 

D2;;:: D2min (36) 

D3;;:: D3min (37) 

Dl :S Dlmax (38) 

D2 :S D2max (39) 

D3 :S D3max (40) 

where C1 , C2 , C3 are the unit costs of surface, base, and 
sub base course (dollars per cubic yard), and all other variables 
are as defined before. 

A computer program-Flexible Pavement Optimal Design 
(FPOD)-was developed on the basis of AASHTO equations 
and the model. The program interfaces with the optimization 
package LINDO, which can obtain quick solutions. In terms 
of the AASHTO Guide for Design of Pavement Structures and 
from a practical point of view, all the layer thicknesses should 
be rounded to the nearest Yz in. (integer solution). For this 
reason, the program gives two types of solution (nonintegers 
and integers). It will be demonstrated next that integer so­
lutions always cost more than noninteger solutions. 

NUMERICAL EXAMPLE 

Consider a flexible pavement design for which three types of 
materials are available for each of the three layers, respec­
tively. The default data of DNPS86 program are used except 
for those of pavement layer characteristics, material prop­
erties, and costs. The minimum base and subbase thicknesses 
are set to 6 in. FPOD printouts are shown in Figures 1 through 
3. Figures 1 and 2 list all the input data, and Figure 3 presents 
the optimal solutions. 

As presented in Figure 3, for noninteger solution, FPOD 
selects Asphalt Concrete Type C, Aggregate Type A G4, and 
Aggregate Type F for surface, base, and subbase course ma­
terial. The thicknesses of the layers are 9.11, 6.00, and 17.31 
in., respectively. With regard to integer solution, the model 
selects Aggregate Type G instead of Aggregate Type F for 
subbase course material as in the case of the noninteger so­
lution. The total costs of the pavement structure for nonin­
teger solution and integer solution are $21.72/yd2 and $21.80/ 
yd2, respectively. In this case, the integer solution costs 0.37 
percent more than the noninteger solution. 



AASHTO Flexible Pavement Optimal Design Program 
FPOD Cv1 .0 June 1991] 

CTR UT Austin 

Input File: TEST11.DAT 
Report Date: 07/10/1991 

INPUT DATA REPORT (1) 

Time: 22:33:36 Page 3-1 
==::::==:r~~==-=.::=.:::-===-=========:::::i:=:u:=::c::::::::::·---===:::==="" ,....=·-

Project: Exa~le 
Road: XXXX From: XXXX To: XXXX 
Start Station: 100.000 End Station: 101.000 

Performance Period •• •..••.••...•.•••. ••. .•• • • • ••• •. • •• . 
Traffic Growth Rate •••.......••• •.. ••• •. ..• . • _ ..•. . . . •• 
Initial Yearly Two ~ay 18 kips ESAL ••••••.•.•.. . . . .. .•• 

15 Yrs 
2 x 

2000000 
Directional Distribution Factor ..... .. . .. . .... . ..... . . . 
Lane Distribution Factor ............ . ........... . .... . . 

50 x 
85 x 

DESIGN TRAFFIC (ESAL) •• •••• • •• •••••• • • •• .•. . . ••• . •••• • • 14699404 

Design Reliability ... .. . .. .. . .. . .. ... . ... . .... . ..... . . . 
Standard Deviation ...... ... . .... ... . ... .. .. .. . . . .. . ... . 

PSI after initial construction .. .. . . .. . .... .. ... .. .. . . 
PSI at end of performance .... ... ....... .... . . . .... . . .. . 

ROADBED SOIL S~ELLING 
Potential Vertical Rise ... . .. .... .. ... .... .. .. . .. .. ... . 
Swelling Probability . . . . .... ... . . . . . . .. . ......... . ... .. 
Swell Rate Constant . . . . .. .. .... .. . .. . ........... .. ... . . 

FROST HEAVE 
Maxi nun Potential Serviceability Loss • .. • • • ..•• .•. . .... 
Frost Heave Probability ........ . ....... ........... . .. .. 
Frost Heave Rate ........................ .. . . ... . .... . . . 

Total PSI Loss Due To Swelling & Frost Heave 

ROADBED SOIL RESILIENT MODULI 

No Moduli No Moduli No Moduli 
(psi) (psi) (psi) 

1 6500 7 5000 13 
2 30000 8 5000 14 
3 2500 9 5000 15 
4 4000 10 5000 16 
5 4000 11 6500 17 
6 5000 12 6500 18 

Effective Resilient Modulus of Roadbed Soil 4542 psi 

95 x 
0.49 

4.50 
2.50 

1.20 inch 
84 x 

0.075 

1.00 
10 x 

30.00 11111/d 

0. 33 

No Moduli 
(psi) 

19 
20 
21 
22 
23 
24 

=--=-==-:::===========:=====:::=====-=--------=========-==---===-=-=-=-=-==== 

FIGURE 1 FPOD input data report (1) . 

=m==-====-=-==-==:;:;;;;;i:::·:..-::r:l'::·:=:====-=::::.:::::=-=- ::r--=-=:= 

AASHTO Flexible Pavement Optimal Design Program 
FPOD Cv1. 0 June 1991] 

INPUT DATA REPORT (2) 

Input File : TEST11.DAT 
Report Date: 07/10/1991 

Project: Exa~le 

Time: 22:33:36 

Road: XXXX From: XXXX To: XXXX 
Start Station: 100.000 End Station: 101.000 

LAYERS MATERIAL MODULI LAYER 
DESCRIPTION (psi) COE FF 

Surface 1 ASPH CONC TY A 420000 0.40 
2 ASPH CONC TY B 430000 0.42 
3 ASPH CONC TY C 450000 0.44 

Base 1 AGGR(TY A GR4) 30000 0.10 
2 AGGR(TY B GR4) 32000 0.11 
3 AGGR(TY PB G4) 34000 0.12 

Subbase 1 AGGR TYPE E 11000 0.08 
2 AGGR TYPE F 13000 0.09 
3 AGGR TYPE G 14000 0.10 

FIGURE 2 FPOD input data report (2). 

CTR UT Austin 

Page 3-2 

DRAINAGE UNIT COST 
CDEFF ($/CY) 

1.00 51.61 
1.00 52.00 
1.00 54 . 00 

1.20 16.50 
1.20 19.40 
1.20 20.00 

1.20 9.80 
1.20 11 . 00 
1.20 12 . 50 



Chen et al. 143 

===========:::c:::i:::::::=:::::::n: ::-cc:== ==-===-=-=:::~== :i.===-=:=-:A:c::---=:::=:::::::.=== 

AASHTO Flexibl e Pavement Optimal Design Program 
FPOD [V1 .0 June 1991] 

CTR UT Austin 

OPTIMAL SOLUTION REPORT 

Input File: TEST11.DAT 
Report Date: 07/10/1991 Time: 22:33:36 Page 3-3 
==-===-=,=-=-=====--=·===:.:.:::i.::.::.z:·c==:=-~=====::::-=-==-=::i:s:c:i:::.~=:::=-=-== ::.= 

Project: Exa~le 
Road: XXXX From: XXXX To: XXXX 
Start Station: 100. 000 End Station: 101.000 

1. NON INTEGER SOLUTION 

NO LAYERS MATERIAL THICKNESS UNIT COST 
DESCRIPTION ( inches) ($/CY) 

1 3 Surface ASPH CON C TY C 9.11 54.00 
2 1 Base AGGR(TY A GR4) 6.00 16.50 
3 2 Subbase AGGR TYPE F 17.31 11.00 

Tota l Cos t : 21. 72 ($/SY) 

2. INTEGER SOLUTION 

NO LAYERS MATERIAL THICKNESS UNIT COST 
DESCRIPTION Cinches) ($/CY) 

1 3 Surface ASPH CONC TY C 9.00 54.00 
2 1 Base AGGR (TY A GR4) 6. 00 16.50 
3 3 Subbase AGGR TYPE G 16. 00 12.50 

Total Cost : 21.80 ($/SY) 

FIGURE 3 FPOD optimal solution report. 

From this example, it can be seen that the layer materials 
selected from the model may not be the same in the two 
solutions. Therefore, the ratio of layer coefficient to unit cost 
mentioned before cannot be used to select materials for in­
teger solution in some cases. 

SENSITIVITY ANALYSIS 

The differences between FPOD and other nonoptimization 
programs such as DNPS86 are (a) FPOD can select the best 
combination of the materials for a problem if more than one 
type of material is available for each of the three layers, and 
(b) FPOD takes unit costs of the three layers into account in 
the process of thickness design. In other words, the optimal 
solutions to the thicknesses should be sensitive to unit costs 
of the three layers. The major consideration is that optimal 
thicknesses change with the changes of unit costs in the model, 
so we focus on the sensitivity analysis of change of unit costs 
versus change of optimal thicknesses of the three layers and 
compare the FPOD solutions with DNPS86 solutions. In the 
sensitivity analysis, the default data (given in Figure 1) of 
AASHTO DNPS86 program is used by changing the moduli 
of elasticity, layer coefficients, and drainage coefficients of 
paving materials to average ones. Unit costs of paving ma­
terials for surface, base, and subbase courses range from $40/ 
yd3 to $60/yd3 , $15/yd3 to $25/yd3 , and $8/yd3 to $15/yd3 , re­
spectively (as shown in Table 1) . 

Optimal Solutions Versus Unit Costs 

Table 2 presents the sensitivity analysis results for the 8-in. 
minimum base and subbase thickness. In this case, the layer 
thicknesses of surface, base, and subbase courses obtained 
from the DNPS86 program are 9.97, 11.41, and 21.75 in . , 

respectively . In Table 2, the first column lists the unit costs 
of the three layer materials, Column 2 lists the total costs of 
DNPS86 solutions, and Column 7 and Column 12 list the total 
cost changes of FPOD noninteger solutions and integer so­
lutions as compared with DNPS86 solutions. Finally, Column 
13 lists the total cost increase of integer solutions as compared 
with noninteger solutions. In Part 1 of Table 2, the unit costs 
of base and subbase courses are fixed to $20/yd3 and $10/yd3 , 

respectively; the unit cost of surface course changes from $40/ 
yd3 to $60/yd3 . In Part 2 of Table 2, the unit costs of surface 
and sub base courses are fixed to $50/yd3 and $10/yd3 , re­
spectively; the unit cost of base course changes from $15/yd3 

to $25/yd3 • Finally, in Part 3 of Table 2, the unit costs of 
surface and base courses are fixed to $50/yd3 and $20/yd3, 
respectively; the unit cost of the subbase course changes from 
$8/yd3 to $15/yd3

• 

Table 2 shows that optimal noninteger and integer solutions 
change two or more times when the unit costs of the materials 
for any two layers are fixed and the unit cost of the material 
for another layer changes within the unit cost range specified. 
The thickness of the surface course decreases and the thick­
nesses of the base and subbase courses increase with the in­
crease of unit cost of surface course. As a general rule, the 
degree of change depends on layer coefficients, drainage coef­
ficients, and resilient moduli. The smaller the layer and drain-

TABLE 1 INPUT DATA FOR SENSITIVITY 
ANALYSIS 

Layers Elastic Layer Drainage Range of 
Modulus Coelllclents Coefficients Unit Costs 
(psi) ($/CY) 

Surface 450000 0.35 1.00 40 . 60 
B8.5e 30000 0.12 1.00 15 . 25 
Subbase 15000 0.08 1.00 8-15 



TABLE 2 SENSITIVITY ANALYSIS (BASE AND SUBBASE 2: 8 in.) 

DNPS86 
FPOD Nonlnteger Solutions FPOD Integer Solutions 

~ Solutions 

~ Layer Thickness (In) Layer Thickness (in) 
8 Total 

Total 
(6)-(2) 

Total 
(11)-(2) (11)-(6) 

0 Costs 
·"' Cost -- Cost -- --
c ($/SY) (2) (2) (6) 
:::i Surface Base Subbase ($/SY) Surface Base SubbasE ($/SY) 

% % % 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1. SURFACE COURSE COST CHANGES, BASE COURSE COST 20$/CY, SUBBASE COURSE COST 10$/CY 

40 23.46 14.28 8.00 8.00 22.53 -3.96 14 8 10 22.78 -2.90 +1 .11 

41 23.74 14.28 8.00 8.00 22.93 -3.41 12 8 18 23.11 -2.70 +0.78 

42 24.01 14.28 8.00 8.00 23.33 -2.83 12 8 18 23.44 -2.37 +0.47 

43 24.29 14.28 8.00 8.00 23.73 -2.31 12 8 18 23.77 -2.14 +0.16 

44 24.57 11.14 8.00 21.75 24.10 -1.91 12 8 18 24.11 -1.87 +0.04 

45 24.84 11 .14 8.00 21.75 24.41 -1.73 12 8 18 24.44 -1.61 +0.12 

46 25.12 11 .14 8.00 21.75 24.72 -1.59 12 8 18 24.78 -1.35 +0.24 

47 25.40 11.14 8.00 21 .75 25.03 -1.46 12 8 18 25.11 -1.14 +0.32 

48 25.67 11 .14 8.00 21 .75 25.34 -1.29 12 8 18 25.44 -0.90 +0.39 

49 25.95 11.14 8.00 21.75 25.65 -1 .16 12 8 16 25.78 -0.66 +0.47 

50 26.23 11.14 8.00 21.75 25.96 -1.03 12 8 18 26.11 -0.46 +0.58 

51 26.50 11.14 8.00 21.75 26.27 -0.87 11 9 21 26.42 -0.30 +0.57 

52 26.78 11 .14 8.00 21.75 28.58 -0.75 11 9 21 26.72 -0.22 +0.53 

53 27.06 11 .14 8.00 21.75 28.8!1 -0.63 11 9 21 27.02 -0.15 +0.48 

54 27.34 11.14 8.00 21.75 27.19 -0.55 11 9 21 27.33 -0.04 +0.51 

55 27.61 11.14 8.00 21.75 27.50 -0.40 11 9 21 27.64 +0.11 +050 

56 27.89 11.14 8.00 21.75 27.81 -0.29 11 9 21 27.94 +0.18 +0.47 

57 28.17 11.14 8.00 21.75 28.12 -0.18 11 9 21 28.25 +0.28 +0.46 

58 28.44 11.14 8.00 21.75 28.43 -0.04 11 9 21 28.56 +0.42 +0.45 

59 28.72 9.97 11 .41 21.75 28.74 0 11 9 21 28.86 +0.49 +0.42 

60 29.00 9.97 11 .41 21.75 29.02 0 11 9 21 29.17 +0.59 +0.52 

2. BASE COURSE COST CHANGES, SURl'ACE COURSE COST 50$/CY, SUB BASE COURSE COST 10$/CY 

15 24.64 9.97 20.58 8.00 24.84 0 10 20 9 24.73 +0.37 +0.37 

16 24.96 9.97 11.41 21.75 24.96 0 10 12 21 25.06 +0.40 +0.40 

17 25.28 9.97 11.41 21.75 25.28 0 11 9 21 25.36 +0.32 +0.32 

18 25.59 11.14 8.00 21.75 25.51 -0.27 11 9 21 25.61 +0.12 +0.39 

19 25.91 11 .14 8.00 21.75 25.74 -0.66 11 9 21 25.86 -0.19 +0.47 

20 26.23 11.14 8.00 21.75 25.!16 -1.03 12 8 18 26.11 -0.46 +0.58 

21 26.54 11.14 8.00 21.75 26.18 -1.36 12 8 18 26.33 -0.79 +0.57 

22 26.86 11 .14 8.00 21.75 26.40 -1.71 12 8 18 26.56 -1.12 +0.61 

23 27.18 11.14 8.00 21.75 26.63 -2.02 12 8 18 26.78 -1.47 +0.56 

24 27.50 11.14 8.00 21.75 26.84 -2.40 12 8 18 27.00 -1.82 +0.60 

25 27.81 11.14 8.00 21.75 27.07 -2.67 12 8 18 27.22 -2.12 +0.55 

3. SUBBASE COURSE COST CHANGES, SURFACE COURSE COST 50$/CY, BASE COURSE COST 20$/CY 

8 25.02 11 .14 8.00 21.75 24.75 -1.08 11 9 21 24.95 -0.28 +0.81 

9 25.62 11 .14 8.00 21.75 25.35 -1.05 11 9 21 25.53 -0.35 +0.70 

10 26.23 11 .14 8.00 21.75 25.96 -1.03 12 8 18 26.11 -0.46 +0.58 

11 28.83 11.14 8.00 21.75 26.58 -0.93 12 8 18 26.62 -0.78 +0.15 

12 27.44 14.28 8.00 8.00 26.94 -1.82 12 8 18 27.11 -1.20 +0.63 

13 28.04 14.28 8.00 6.00 27.17 -3.10 14 9 8 27.33 -2.53 +0.59 

14 28.64 14.28 8.00 8.00 27.39 -4.36 14 9 8 27.56 -3.77 +0.62 

15 29.25 14.28 8.00 8.00 27.61 -5.61 14 9 8 27.78 -5.03 +0.61 

DNPS86 SOLUTION: Surface Course: 9.97 Inches 

Base Course: 11.41 Inches 

Subbase Course: 21. 75 Inches 
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age coefficients and the larger the resilient moduli, the more 
the magnitude of change. 

Similarly, the thickness of the base course decreases and 
the thicknesses of the surface and subbase courses increase 
with the increase of unit cost of base course. 

With the increase of the unit cost of the subbase course, 
for noninteger solutions, the thickness of the base course 
remains the same; thicknesses of surface and subbase courses 
increase and decrease, respectively: for integer solutions, base 
course thickness decreases from $9/yd3, and then increases 
from $13/yd3

; surface and subbase course thicknesses change 
in the same way they do for noninteger solutions. 

Optimal Integer Versus Optimal Noninteger Solutions 

Table 2 and Figures 4 through 6 show that integer solutions 
always cost more than noninteger solutions. In this example, 
the total costs of an integer solution increase up to 1.3 percent 
compared with a noninteger solution (Figure 6, minimum base 
and subbase thickness of 10 in .). As a rule, the thicker the 
minimum thicknesses of base and subbase courses specified, 
the larger the difference between the two types of solution . 

Optimal Versus Nonoptimal Solutions 

Figures 7 through 9 show the percentage reduction of total 
costs of optimal noninteger solutions given by FPOD com­
pared with nonoptimal solutions given by DNPS86. Within a 
certain range of unit costs, DNPS86 and FPOD get the same 
solutions; in other words, DNPS86 can also give optimal so­
lutions sometimes. For example, if the unit cost of the surface 
course is equal to or above $58/yd3 (Table 2 and Figure 7) , 
or the unit cost of the base course is between $15/yd3 and $17/ 
yd3 (Table 2 and Figure 8), both DNPS86 and FPOD give 
the same solutions, regardless of the minimum thicknesses of 
base and subbase courses specified. That means DNPS86 so-
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lutions are also optimal for those cases. The savings realized 
by using FPOD is determined by the minimum thicknesses of 
the base and subbase courses. Generally speaking, the thinner 
the base course , the larger the savings will be . Figure 7 shows 
the reduction of total costs can be as large as 5.8 percent for 
cases in which the minimum thickness is 6 in. If no base course 
is allowed, the largest saving can be obtained in some cases . 

For noninteger solutions, at least one of the optimal thick­
nesses of base and subbase is the minimum value specified in 
most cases, but this may not be true for integer solutions. 

Figures 10 through 12 show the percentage change of total 
costs of optimal integer solutions given by FPOD as compared 
with nonoptimal solutions given by DNPS86. In some cases , 
the total costs are more than those of the nonoptimal non­
integer solutions. 

SUMMARY AND CONCLUSIONS 

A mixed-integer programming model was formulated for flex­
ible pavement design problems, and an FPOD computer pro-
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gram was developed accordingly. The FPOD program can 
give the best combination of various paving materials for all 
three layers and at the minimum-cost thicknesses . It searches 
for the minimum-cost solution when the costs of the paving 
materials change. This capability is desirable when the 
minimum-cost solution is required (the DNPS86 program gives 
only one solution, regardless of the costs of the paving 
materials). FPOD gives two types of solution: noninteger 
and integer. In terms of the AASHTO Guide for Design of 
Pavement Structures and from a practical point of view, an 
integer solution should be used, but it costs more than a 
noninteger solution. The additional cost of using integer so­
lutions depends on the minimum thickness of the base and 
subbase courses and differs from problem to problem. It is 
recommended that the decision to select one of the solutions 
be made in terms of the cost ratio of the two solutions and 
construction experience. 

The minimum-cost solutions for flexible pavements very 
much depend on the minimum thicknesses of the base and 
subbase courses set by users . As mentioned in the AASHTO 
guide, the minimum thickness of all the three layers depends 
somewhat on local practice and conditions. 

The present version of FPOD is used only in the design of 
new flexible pavement; life-cycle analysis has not been taken 
into account. 
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