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Fixed-Point Approach To Estimating 
Freeway Origin-Destination Matrices and 
the Effect of Erroneous Data on Estimate 
Precision 

NANCY L. NIHAN AND MOHAMMAD M. HAMED 

A fixed-poi~H. 1ppro:1ch .was <1pplied to t.he problem of esrimating 
freeway ongrn-dcst111a11on (OD) matrices given historical se­
ql.•enccs of inpu.l and utput counts. Thi" estimator was compared 
wtth other previously tested estimator in imulation experiments 
that demon trated the propcrtie of rhe chosen estimator and the 
effect of crroneou data on the pre.ci j n of the D estimates. 
The simulation results indicated that the fixed-point estimator 
produced the mo t accurate OD e timates of those te ted and 
that data with mea urement error (e.g., from malfunctioning loop 
detectors) severely affect the precision of OD estimates. 

Research on improved methods of control and management 
of traffic on urban freeways has been gaining increased at­
tention because of growing freeway congestion coupled with 
limited foreseeable investment in new infrastructure. Atten­
tion is now concentrated on efforts to improve the efficiency 
of existing facilities through better means of freeway surveil­
lance, ramp metering, incident detection, and so forth. To 
achieve maximum effectiveness in these areas, we need the 
capability of anticipating traffic pxoblems, such as bottle­
necks, before they occur. Therefore, models that produce 
accurate short-term forecasts of freeway flow are a top prior­
ity . Such model usually require an accurate estimate of the 
freeway origin-destination (OD) matrix. An origin-destination 
matrix give· the magnitude of travel durin a given interval 
of time from each of the trip origins (on-ramps) lO each of 
the trip destinations (off-ramps). In practice, the true OD 
matrix is seldom available because the collection of OD data 
i costly, Lime con ·uming and Jess accurate than the more 
easily collected traffic volume data. nsequently there has 
been con ' iderable research interest in the development of 
models or techniques that are capable of estimating freeway 
OD matrices from input and output counts . Such data are 
usually collected automatically through loop detectors in­
stalled at different sections of the freeway. Since these counts 
are collected continuously, models that could use these counts 
to estimate OD patterns could also provide important infor­
mation on changes in trip patterns over time to traffic and 
transit planners. 

Research in this area of model development can be grouped 
into two main categories. In the first category (static models), 
only a single set of input and output counts is used for esti-
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mation. The estimation problem here is underdetermined, 
and a prior OD matrix is required to produce the "updated" 
e timate. The e timation proces involves updating the prior 
OD matrix in such a way that the updated estimate reproduces 
the selected set of input and output counts . However, the 
quality of such updated matrice dep nds on th quality of 
the prior estimate which , in most cases, i poor and difficult 
to obtain (J). Studies in this category of model development 
include Van Zuylen and Willumsen (2). Willum en (3) Van 
Zuylen (4) Nguyen (5) Cascetta (6) Maher (7) toke · and 
Morris (8) and I lendrickson and McNeil (9). ln the second 
category of model development research (dynamic models) , 
historical sequences of input and output count are consid­
ered . The use of time serie data her causes the e e~timation 
problems to be overdetermined. Studies in lhi category in­
clude Cremer and Keller (JO 11) and Nihan and Davis (1,12). 
These authors present a number of algorithms that are based 
on predi tion-error minimization methods to estimate move­
ment volumes for a single intersection given time series of 
entering and exiting counts at each intersection leg, There 
has been limited success, to date, in extending the application 
of the second category of models to more complicated net­
works. This paper addresses the application of such models 
to a simple freeway network_ 

Most of the models developed for estimating OD matrices 
assume the availability of error-free data. However, recent 
studies by Jacobson et al. (13) and Chen and May (14) indicate 
a number of ways in which loop detectors can malfunction 
and provide erroneou data [e.g., stuck sen ors chatting, 
pul e breakup, hanging (on or off) , and intermittent mal­
functioning) . Since our interest lies in estimating the OD ma­
trix parameters from time series of input and output counts 
and ince the estimation assumes con ervation of flow in each 
time period , it is important that the data observed be as error­
free as possible. This wa · the rnotivat ion for the second part 
of our tudy, which addre.sed th p tential impact of mea­
surement error in resulting OD estimates. 

Thi paper attempt to accomplish two tasks . The fir t is 
the d vel pment of an estimation technique ba ed on the 
"fixed-point problem" (FPP) approach that i capable of es­
timating the freeway OD matrix given time serie of input 
and output count . The econd involves exploration of the 
effect of mea uremenl error in input and output counts (e.g., 
due to faulty loop detectors) on the precision of estimates 
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and the asymptotic properties of estimators used. The mal­
function of loop detectors is simulated by adding a measure­
ment error to traffic counts at selected entry or exit points. 
Loop detectors in good working condition (reliable traffic 
counts) are represented as having zero measurement error, 
whereas malfunctioning loop detectors are simulated by add­
ing a measurement error term to the data. 

PROBLEM DESCRIPTION AND MODEL 
FORMULATION 

Problem Description 

The objective of this research was the development of an 
algorithm that could accurately estimate the proportion of 
flow from each on-ramp to each off-ramp given a section of 
freeway and time-series of entering (on-ramp) and exiting 
(off-ramp) counts. Specifically, the objective was the esti­
mation of the OD matrix proportions b;;(t) given time series 
counts of q(t) and y(t) (input and output counts respectively) 
so that Constraints 1 and 2 are satisfied. 

N 

2: b;;(t) = i.o i = 1, 2, .. . , M (1) 
; - 1 

i=l,2, ... ,M j=l,2, ... ,N (2) 

where 

b;;(t) the proportion of vehicles originating at i and des­
tined for j at time t , 

M = total number of origin points (on-ramps and up­
stream mainline), and 

N = total number of destination points (off-ramps and 
downstream mainline). 

The first two constraints ensure conservation of flow during 
each time interval and elimination of any negative OD vol­
umes, respectively. A third constraint prohibits flow from an 
on-ramp to an upstream off-ramp: · 

b;;(t) = 0 (i, j) E Z (3) 

where Z is the set of OD pairs that are known a priori to 
have zero flow. 

Cremer and Keller (10,11) showed that the output counts 
can be expressed as weighted sums of input counts. 

y'(t) = q'(t)B(t) + e'(t) 

E[y;(t)] = 2.;b;1q;(t) 

(4) 

(5) 

where 

q(t) 
y(t) 
B(t) 

x(t) 
e'(t) 

= m x 1 vector of input counts for time t, 
= n x 1 vector of output counts for time t, 
= m x n matrix with elements b;1(t) = proportion of 

trips from i to j during time t, 
m x n matrix of OD volumes for time t, and 
transpose of the n x 1 vector of prediction errors 
(assumed independent and normally distributed). 
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Although this formulation was developed for intersection 
models, where the travel time from origin to destination is 
very short, it was assumed that this could also be applied to 
the freeway OD problem , provided that the time interval , t, 
were long enough to accommodate increased travel times. It 
was further assumed that an interval three or four times longer 
than the longest OD travel time for the study section would 
be acceptable. This would allow most trips that originated at 
some point in the freeway section during that interval to be 
completed within the same interval. This simple, first-stage 
assumption avoided the necessity for a more complex for­
mulation including lagged input variables . 

Previous Estimation Approaches 

Typically, there are two possible approaches to estimating the 
OD matrix parameters from time series counts: recursive (On­
line) and nonrecursive (off-line). In the nonrecursive ap­
proach it is assumed that the B(t) matrix is time invariant and 
that the OD parameter estimates apply for the entire period . 
In the recursive approach, the B(t) matrix is allowed to vary 
with time, and a new set of OD estimates is produced for 
each interval in the time period. 

Nonrecursive Estimators 

If the OD matrix can be assumed to be time invariant, Equa­
tion 4 becomes a standard linear regression equation, and, 
since the time series counts of inputs and outputs are known, 
the ordinary least squares (OLS) estimator can be used to 
estimate the OD matrix. The objective is to choose the B(t) = 
B matrix that minimizes the sum of the squared prediction 
errors: 

(6) 

A constrained least squares (CLS) approach that ensures 
that Equations 1 and 2 are satisfied can also be applied in the 
same manner . 

An alternative estimation method, the expectation max­
imization (EM) algorithm (15), has also been applied to the 
time invariant OD problem . Given that we only observe q;(t) 
and y;(t), the EM algorithm lends itself nicely to this under­
determined problem. For nonrecursive estimators, assuming 
that the input counts are generated by random variables that 
are independent across time, the likelihood of the OD move­
ments [x;;(t) = b;;q;(t)] can be given by 

L; {x;1(t), b;1, i = 1, ... , M, j = 1, 2, ... , N} 

(7) 

It can be shown that the maximum likelihood estimator of 
log (L) is 

i = 1, 2, .. . , M 

j = 1, 2, ... , N (8) 

In an intersection application of the EM approach , Nihan 
and Davis (1) treated the turning movements x;;(t)'s as out-



20 

comes of multinomial random variables, one for each entering 
leg. This was under the assumptions that the B(t) matrix was 
time invariant, the input counts q;(t) were known, that each 
driver arriving at Leg i of the intersection during t made the 
turning movement decision independently of all other drivers 
arriving during t, and that all vehicles entering during Interval 
t also exited during t (conservation of flow). With these as­
sumptions the expected value for each movement from Origin 
i to Destination j was given by 

(9) 

where x;/t) is the number of vehicles entering at i and exiting 
at j during Interval ! . 

The EM algorithm begins by estimating the conditional 
expectation of the turning movements X;i(t)'s given an initial 
estimate of the B(t) matrix and all input and output counts. 

2: ,.X;/t) = L,{E[x;j(t)]IB(t), q(t), y(t), 

t = 1, 2, ... , T} (10) 

The B(t) matrix is then reestimated by replacing Lx;/t) in 
Equation 8 with Lxq(t). The EM algorithm iterates between 
Equations and 10 until convergence is achieved. 

Applied to a four-leg i olated inter. ection with 100 simu­
lated data sets the EM estimate f the B(t) matrix showed 
much lower variances than a least squares- based estimator. 
However, these estimates did have significant biases. More­
over, the EM algorithm required high computational demands 
because both the inverse of the random vector y(t)'s covari­
ance matrix and the covariance matrix between xii(t) and y(t) 
(shown below) had to be calculated at each iteration (J). 

Recursive Estimators 

Cremer and Keller (JO) developed an algorithm for dynamic 
estimation of intersection turning movements. The algorithm 
could be used to estimate the B(t) matrix using the recur­
sion equations, which have the form of a stochastic gradient 
algorithm: 

bq(t) = b;j(t - 1) + q;(t)[y;(t) - q'(t)bj(t - 1)] (11) 

b/t) = b/t - 1) + (l/t)(R - 1)[y/t) - q'(t)bi (t - 1) (12) 

R(t) = R(t - 1) + (1/t)[q(t)q'(t) - R(t - 1)] (13) 

Other dynamic approaches considered by Cremer and Keller 
(JO) and Nihan and Davis (J) include recursive least squares 
(RLS), which is basically the application of OLS to sequen­
tial least squares equations, and normalized recursive least 
squares (RLSN), which includes the satisfaction of Con­
straints 1 and 2. 

TRANSPORTATION RESEARCH RECORD 1357 

Preliminary Test Using Nonrecursive Estimators with 
Freeway Data 

To date, the preceding approaches have seen limited appli­
cation and have been primarily used in estimation of turning 
movements for isolated intersections. When used to estimate 
the B(t) = B matrix of an isolated intersection, the OLS and 
CLS methods gave consistent, unbiased estimates and low 
computational demands (J). This inspired us to adopt the 
standard linear regression model as a starting point for esti­
mating the B matrix of a freeway section. 

Figure 1 shows a schematic representation of a section of 
Interstate 5 in north Seattle. The section consists of six origins 
(01-06) and three destinations (Dl-D3). A data set for this 
section (one time series count for each point of input and 
output) was obtained from Traffic Systems Management Cen­
ter of the Washington State Department of Transportation. 
These counts were automatically collected through loop de­
tectors installed on the freeway. To account for traffic conges­
tion and travel times from origins to destinations, the data 
were aggregated to 15-min counts for 24 hr, thus giving a time 
series length of 96. 

/' .. 

FIGURE 1 Section of Interstate 5 in 
north Seattle. 
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Table 1 gives the estimates of the B(t) = B matrix using 
both OLS and CLS. Although the actual B matrix is not 
known, it is clear that OLS failed to produce reasonable es­
timates (both Constraints 1 and 2 were violated). The esti­
mates produced by CLS satisfy Constraints 1 and 2 but are 
not realistic. For example, they suggest that about 45 percent 
of traffic that originates from On-Ramp 2 is destined to Off­
Ramp 1 and the rest (55 percent) is destined to Off-Ramp 2. 
Examination of actual data indicated that conservation of flow 
was never achieved at most time periods, an obvious indi­
cation of loop detector error. This warranted conducting sim­
ulation scenarios to investigate the effect of erroneous data 
on the precision of estimates for the various estimators. Be­
fore conducting these simulation scenarios, an additional es­
timator based on the FPP was developed and included in 
subsequent evaluations. 

Fixed-Point Estimation Approach 

As discussed earlier, the EM algorithm was successfully used 
(1) on an isolated four-leg intersection to estimate turning 
movements. However, the algorithm required high compu­
tational demands. Furthermore, to operationalize this algo­
rithm for the intersection problem, all U turns were prohibited 
to avoid having a singular covariance matrix of the random 
vector y(t) [since l;q;(t) = !.iyit)]. To operationalize the EM 
algorithm to estimate the OD matrix of a given freeway sec­
tion, one needs to prohibit at least one OD movement (e.g., 
0 4 to D2). This is realistic since on-off movements of such 
short distances are expected to be rare. 

To simplify calculations, the estimation problem was struc­
tured in such a way that each cell of the OD matrix could be 
estimated separately. This means replacing both the covari­
ance matrix of the random vector y(t) by its variance 
{!.,b1j(l - b11)q;(l)} and the covariance mat~i~ of X;it) and ~(t) 
by it variance fb1p - b;1)q;(t)}. The cond1ttonal expectation 
of the turning movements {x;/t)'s} are then given by 

TABLE I Performance of OLS and CLS 
Estimators on Actual Freeway Data 

Movement OLS CLS 
bij bij 

11 0.028 0.014 
12 0.090 0.005 
13 0.69S 0.977 

21 0.387 0.446 
22 O.S67 0.551 
23 -0.162 0.000 

32 -0.04S 0.000 
33 0.957 1.001 

42 -0.723 0.000 
43 2.366 1.002 

53 3.022 1.001 

63 1.056 1.004 

E{x;it)IB, q(t), y/t)} = b;/J;(t) + C{xij(t), Yi(t)} 

x Var- 1 {yi(t)}{y/t) 

- L;b;/1;(t)} 

where 

C{x;it), yi(t)} = {b;p - b;)q;(t)} and 

Var{y/t)} = L;bii(l - b;)q;(t) 

Equation 14 becomes 

E{x;it)IB, q(t), yi(t)} = b,1q;(t) + {b;i(l - bij)q;(t)} 

Summing overt, 

x {L;b;p - b;)q1(t)} - 1{yj(t) 

- L;b;/1;(t)} 

E[L,X;j(t)IB, q(t),y;(t)] = bijL,q;(t) 

+ 'L,{b1ic1 - b1)q;(t){yj(t) 

- 'L,b1/1;(t)} 

-T L,bijc1 - b1)q1(1)} 

21 

(14) 

(15) 

(16) 

Having structured the estimation problem in such a way 
that each cell in the B(t) matrix was estimated separately, it 
was decided to treat each function as an FPP (16,17). This 
essentially involves solving for the convergence point of a 
recursive estimation algorithm of the form bt ' 1 = g(bt) (i.e. , 
the poiot where b~+ a = b~ . Given f(b;) wh.ere 0 s b,1 s l , 
the objective is to find values s such that /(s) = 0. Let g(b 11) 

be an auxmary function such thats = g(s) wherever f(s) = 
0. The problem of finding s such that s = g(s) is known as 
the FPP, and s is said to be a fixed point of g(b;J. Thus, 
finding a fixed point for g(b11), 0 :S b;i :S 1, means finding a 
zero of f(b 1), 0 :S b;i :S 1. 

From equations 8 and 16, we can represent the recursive 
function as 

where 

Defining 

f(b;) = 'L,{biic1 - b;)q;(t)[y/t) 

- L,b;jq;(t)]IL;b;p - bi)q;(t)} 

form s = g(s) reduces to 

'L,{b;/l - b;)q;(t)[yj(t) - bi/J;(t)J 

-T L;bi/l - b;)q;(t)} = o 

(17) 

(18) 
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Thus, the problem is reduced to solution of a set of n nonlinear 
eq uations inn variables. A NAG routine C05NCF (18) that 
uses a modification of the Powel l hybrid iterative method is 
used to obtain a numerical solution, thereby giving the B(t) 
estimates . 

ALGORITHM TESTING 

In this section we investigate the accuracy of the estimators 
for freeway OD problems and the effect of detector mal­
function on the precision of the OD estimates and the prop­
erties of the estimators chosen. In addition to the newly de­
veloped estimator (FPP), other estimators already developed 
are considered. Cremer and Keller (JO) and Nihan and Davis 
(J) present a family of estimators based on the principle of 
prediction-error minimization that are also included. Thus, 
in this paper the following estimators are evaluated: 

1. OLS, 
2. CLS, 
3. FPP, 
4. RLS, and 
5. RLSN. 

Since these models require time series data of entering and 
exiting counts, it is important that the loop detectors provide 
us with accurate measurem~n t of traffic counts. To investigate 
the effect of measurement error on the estimates of the B(t) 
matrix, we consider two scenarios. The first d'eals with the 
case of no measurement error (i.e., no faulty or malfunc­
tioning loop detectors at entry or exit points). In the second 
scenario measurement error is introduced in both the input 
and the output counts. 

Scenario 1 

To test the properties of the algorithms with no measurement 
error in input or output counts, 50 simulated data sets were 
generated. Each data set consisted of five simulated days, for 
480 time periods. For the selected section shown in Figure 1, 
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inpu t counts (01-06) with a counting interval of 15 min were 
generated fo r 24 hr, giving . ix time ·eries of length 96 one 
for each origin. An OD matrix was assumed as part of the 
process to simulate the exi ting counts. Thi simulated matrix 
was taken a tbe " true' OD matrix. The OD volumes (x/ s) 
were generated by the IMSL subroutine GGMTN (IMSL) 
and summed to produce ·imulated exiting count y

1
(1). Hence , 

each simulated day consisted of the same entering counts but 
different ex iting counts. The difference between the total in­
puts and total outputs for each time period was zero (i.e., 
conservation of flow was attained). 

The FPP estimator was then applied using two simulated 
entering [q;(t)] and exiting Y;(t) counts to produce estimates 
of the true OD values. Table 2 gives the average of the OD 
estimates and the standard deviations determined across 50 
simulated data sets. These results indicate that the FPP es­
timator, in general, produced lower variances than did the 
least squares- based estimators. urthermore, the e, timates 
were genera lly unbia. ed and similar to th e produced by 
0 , CLS and RLS. Examining the averages of the B(t) 
matrix across 50 simulated data sets, we see that all estimators 
satisfied Constraints 1 and 2. Table 3 shows the absolute 

TABLE 3 Percent Absolute Difference Between bij and True by for 
Scenario 1 (No Measurement Error) 

Movement OLS CLS FPP RLS RLSN 

11 0.10 0.10 0.10 0.10 8.10 
12 0.80 1.00 0.70 0.80 9.50 
13 0.25 0.11 0.15 0.25 2.20 
21 1.20 1.20 0.40 1.20 19.4 
22 7.60 8.80 7.20 7.60 29.00 
23 0.60 0.60 0.60 0.60 0.60 
32 10.90 11.90 10.00 10.90 133.00 
33 1.56 1.32 1.44 1.56 14.79 
42 1.25 2.40 1.40 1.25 48.35 
43 1.00 0.60 0.75 1.00 12.09 
53 0.20 0.00 0.00 0.20 0.00 
63 0.30 0.00 0.00 0.30 0.00 

TABLE 2 Performance of Five Estimators on Simulated Data (No Measurement Error) 

OLS CLS FPP 

Movement True hij hij Sij hij Sij hij Sij 

11 0.100 0.0999 0.0028 0.0999 0.0028 0.0999 0.0025 
12 0.100 0.1008 0.00414 0.1010 0.0042* 0.1007 0.0037 
13 0.800 0.798 0.0061* 0.7991 0.0049 0.7988 0.0050• 

21 0.050 0.0506 0.0101 0.0506 0.0102 0.0502 0.009 
22 0.050 0.0538 0.0112• 0.0544 0.0121• 0.0536 0.0103• 
23 0.900 0.895 0.0164* 0.895 0.0145* 0.8950 0.0140• 

32 0.100 0.0891 0.0408* 0.0881 0.0422* 0.0900 0.039* 
33 0.900 0.914 0.0543* 0.9119 0.0421"' 0.913 0.0496* 

42 0.200 0.1975 0.0268 0.1952 0.0286 0.1972 0.024 
43 0.800 0.808 0.0469 0.8048 0.0287 0.8060 0.0345 

53 1.000 1.002 0.059 1.000 0.000 1.000 0.000 

63 1.000 0.997 0.020 1.000 0.000 1.000 0.000 

Results of Scenario 1. Averages (bjj) and standard deviations (Sij) for offline estimators. 

*Significant difference (0.05 level) betwee11 hij and true hij. 

RLS RLSN 

h ij Sij "bii Sij 

0.0999 0.0028 0.0919 0.0083. 
0.1008 0.00414 0.0905 0.0042• 
0.798 0.0061* 0.8176 0.0011• 

0.0506 0.0101 0.0597 0.0053* 
0.0538 0.0112• 0.0355 0.0098* 
0.8953 0.0164* 0.905 0.0146* 

0.0891 0.0408* 0.233 0.0374* 
0.9141 0.0543* 0.7669 0.0374* 

0.1975 0.0268 0.2967 0.0301"' 
0.8080 0.0469 0.7033 0.0301. 

1.002 0.059 1.000 0.0000 

0.9973 0.0200 1.000 0.0000 
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percentage difference between b,i and the true b,i for each 
movement. In general, the FPP estimator showed lower dif­
ferences compared with the least squares-based estimators. 
The normalized recursive lea t squares estimators produced 
the highest differences. Figures 2 and 3 show that both the 
recursive least squares and the normalized recursive least 
squares estimators were asymptotically unbiased. However, 
RLSN had a slower convergence than the RLS. This was to 
be expected, since the constraints had to be satisfied each 
time period. Figures 4 and 5 show that both the RLS and 
RLSN were asymptotically consistent since the variances ap­
proached zero. Again the RLSN had lower convergence. 

Scenario 2 

In this scenario, measurement error was added to selected 
entry and exit counts. It was assumed that the loop detectors 
at Origins 1 and 3 and Destinations 1 and 3 (see Figure 1) 
were malfunctioning. The measurement error at each entry 
and exit point was generated separately by an IMSL subrou­
tine GGNML, such that the variance of the measurement 
error at Origin 1 and Exit 3 was set to be 1.5 times the mean 
of the input counts, whereas the variance at Origin 3 and Exit 
1 was designed to be equal to the mean of the input counts. 
With the introduction of measurement error, the conservation 
of flow was no longer satisfied at each time period (i.e., the 
difference between the total inputs and total outputs at each 
time period was not zero). Table 4 gives the averages of the 
OD estimates and the standard deviations determined across 
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all data set . The results indicate that all e timato.rs produced 
biased estimates. The FPP e Limator, however, gave the low­
est variances compared with other e timators. FurtJ1ermore, 
the unconstrained estimators (OLS, RLS, and FPP) produced 
estimates that did not satisfy Constraints 1 and 2. Figures 6 
and 7 how the effect of mea urernent en-or on the asymp­
tomatic properties of RLS and RLSN. Although RLSN had 
slower convergence to the true value, it did not have a per­
sistent bias a did the RLS. ln terms of consi tency , Figures 
8 and 9 show that both estimators RLS and RLSN bad low 
convergence to zero compared with the case of no measure­
ment error (Figures 4 and 5). However, the RLS estimator 
showed faster convergence to zero than did the RLS (at least 
for movement b13). Although CLS provided the smallest sum 
of the absolute difference (Ilb11 - b1A). it produced very large 
percentage differences, particularly for Movement 22, 32, 
alld 42. Table 5 gives the ab olute percentage difference 
(lbq - b1Jlfbij) between the estimated and true OD parameters. 
The FPP estimator produced the econd-lowest sum of ab­
solute difference and generally the smallest percentage dif­
ference. 

CONCLUDING REMARKS 

In addres ·ing the problem of estimating freeway OD matrices 
from sets of input/output counts, several estimators were tested. 
The fixed-point estimator developed in this paper showed 
generally lower variances and more accurate estimates com­
pared with four least squares-based estimators. The paper 
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FIGURE 2 Average across simulations of Movement b12 computed by two recursive 
estimators for Scenario 1. 
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FIGURE 3 Average across simulations of Movement b13 computed by two recursive 
estimators for Scenario 1. 
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FIGURE 4 Standard deviation across simulations for estimates of Movement b12 

for Scenario 1. 
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FIGURE S Standard deviation across simulations for estimates of Movement b13 

for Scenario 1. 

TABLE 4 Performance of Five Estimators on Simulated Data with Measurement Error at Entry Points 1 and 3 and 
Exit Points 1 and 3 

OLS CLS FPP RLS RLSN 
Movement True bij 'bij sii 'bij Sij 'bij Sjj 

11 0.100 0.099 0.0027* 0.105 0.004* 0.098 0.0026* 
12 0.100 0.097 0.004• 0.105 0.008* 0.096 0.003"' 
13 0.800 0.769 0.022* 0.787 0.012* 0.773 0.018* 

21 0.050 0.055 0.009* 0.032 0.013* 0.058 0.009• 
22 0.050 0.056 0.013* 0.031 0.023* 0.056 0.0102• 
23 0.900 0.981 0.055* 0.940 0.031* 0.967 0.052* 

32 0.100 0.088 0.038* 0.170 0.086* 0.091 0.030"' 
33 0.900 0.744 0.191 * 0.831 0.086* 0.760 0.162* 

42 0.200 0.228 0.032* 0.122 0.063"' 0.231 0.027"' 
43 0.800 0.884 0.165* 0.878 0.064* 1.005 0.129* 

53 1.000 1.250 0.261* 1.000 0.001 1.000 0.000 

63 1.000 0.993 0.059* 1.000 0.003 1.000 0.000 

Results of Scenario 2. Averages (bjj) and standard deYiations (Sij) for offline estimators. 

*Significant difference (0.05 level) between Gij and true bij. 

" bij Sij bij Sij 

0.099 0.0027* 0.101 0.015* 
0.097 0.004* 0.089 0.005* 
0.769 0.022* 0.810 0.014* 

0.055 0.009* 0.051 0.017 
0.056 0.013* 0.035 0.019* 
0.981 0.055* 0.914 0.022• 

0.088 0.038* 0.278 0.108* 
0.900 0.191* 0.722 0.108• 

0.228 0.032"' 0.297 0.063• 
0.884 0.165* 0.703 0.063* 

1.250 0.261* 1.000 0.0000 

0.993 0.059 1.000 0.0000 
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FIGURE 6 Average across simulations of Movement b12 computed by two 
recursive estimators for Scenario 2. 
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FIGURE 7 Average across simulations of Movement b13 computed by two 
recursive estimators for Scenario 2. 
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for Scenario 2. 
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TABLE 5 Percent Absolute Difference Between f," and True bu for 
Scenario 2 

Movement OLS CLS FPP RLS RLSN 

11 1.20 4.50 1.90 1.20 1.20 
12 3.50 5.00 4.40 3.50 ll.40 
13 3.90 1.60 3.40 3.90 1.30 
21 9.80 35.60 16.00 9.80 1.60 
22 12.40 37.80 12.40 12.40 29.80 
23 9.00 4.40 7.40 9.00 1.60 
32 12.00 69.60 8.80 12.00 17.80 
33 17.30 7.70 15.60 17.30 19.80 
42 14.00 39.0 15.50 14.00 48.50 
43 10.50 9.80 26.60 10.50 12.20 
53 25.00 0.00 0.00 25.00 0.00 
63 0.70 0.20 0.00 0.70 0.00 

also inve ligated the effect of erroneous dat.a on the precision 
of the estimates and the properties of th estimators used by 
con idering two scenarios. T he fir t ·cenario repre ented loop 
detectors that produce accurate traffic count.· in the second 
scenario selected entry a nd exit points were cho, e n as having 
faulty or malfunctioning loop detect r ·. Results indicated that 
mea ure menl error severely influenced the precision of OD 
matrix paramete r es timates (percentage error. we re ignifi ­
cant ly increa. ed; oastraints land 2 were no lo nger atisfied) 
and the asymptotic prope r tie of these e timators. For ex­
ample, the RLS became persistently bia. ed when measure­
ment error was introduced. Although these prelimi1iary re­
sults are based on simulated scenarios, they highlight the need 
for theoretical models that account for erroneous data. 

With present loop detector techno l gy erroneous traffic 
volume counts can be expected from time to tim . As illu. -
trated here, the presence of erroneous data severely affects 
the preci ion of OD matrix estimates. Therefore to obtain 
reasonab le e timates, e timators mu t be capable of handling 
data with measurement error. Another alternative would be 
the use of technology that does not inherit the same proble ms 
as loop detectors do. Resea rch in Lhis area is active in the 
Uniced States and E urope. On othe r a lternative currently 
pursued at different institutions is the d etection and diagnos­
ing of erroneous data from loop detector (13,14) before use 
in forecasting models. 
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