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Foreword 

This Record contains papers on travel demand forecasting, travel behavior, and mode choice 
analysis. One paper discusses a method for coding transit system access links. Two papers 
discuss travel demand forecasting techniques, one using dynamic microsimulation, the other 
forecasting traffic in a large metropolitan area on the basis of trip diary information. One 
paper discusses a fixed-point approach to the problem of estimating freeway origin-destination 
matrices. Finally, five papers discuss aspects of travel behavior and mode choice, using 
multivariate cluster analysis, stated preference models, calibration of semicompensating mode 
choice models, variability of individual trip scheduling, and applications of teleworking in 
changing travel behavior. 

v 
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How To Code the Generalized Cost of 
Accessing a Transit System 

ANTTI T AL VITIE 

A method of coding generalized cost transit system access links 
is described, and the advantages of using large zones in trans­
portation planning are demonstrated. Use of large zone is mo­
tivated by the expen e (in time and money) of making travel 
demand forecasts . TI1e method was developed concurrently with 
the models for predicting the values o.f the acces link time for 
rail and bus trips. These supply models estimate the in-vehicle 
times on automobile and bus and the out-of-vehicle times for bus 
and rail access links using zonal and modal characteristics. Use 
of different zone sizes is evaluated by a correlation analysis be­
tween the predicted and the actual number of mil riders. The 
results indicate that there is a high correlation between the pre­
dicted and actual number of users; the error increases with the 
zone size, but the increase is small. Error sources independent 
of zone size also exist; these errors are discussed in detail. It 
appears that large zone izes can profitably be used in tran ·por­
tation planniilg. The acces · supply models used are very simple. 
A more complex et of model · ha been developed. The reason 
for reporting this simple model is validation. Data collected in 
extant transportation studies focus on the demand side and made 
the validation of supply ide models impo ible. In the present 
study the data are rich enough but date back to the late 1960s. 
Good methods are timeless, however. 

Today it is a common planning practice to use zone sizes of 
1 mi2 or less in area. The principal reason for using small 
zones is to reduce the inaccuracies deriving from the access 
links, to reduce the within-zone variance. However, the access 
links remain a large error source in travel demand forecasting 
(1). The purpose of this study is to describe a systematic 
method to calculate the values of the access links and show 
that larger zones can be used effectively in the planning pro­
cess. The soundness of using larger zones is made possible by 
supply models (2,3). The supply models are based on the 
characteristics of the zone and the transport system serving 
it and make explicit the intrazonal transportation system, which 
is needed to enable the use of large zones without losing 
accuracy. In fact, accuracy may be gained by the explicit 
modeling of intrazonal transportation system, not by using 
smaller zones. 

The use of large zones brings with it many advantages, 
including quicker coding of networks, less chances to make 
errors in network coding, less expensive traffic assignments 
( 4-~), interpretable assignment outputs, more accurate land 
use projections (7), better travel forecasts, and visual control 
of input data and other data errors. By using the supply models 
together with access mode/station choice models, reliable 
forecasts are also possible for access mode and station usage. 
This information is important for the design of public trans-

Viatek Ltd., Pohjantie 3, 02100 Espoo, Finland. 

portation systems. There has been renewed interest in mod­
eling transportation access networks and access mode choices. 
Recent work (8,9) in modeling transportation access choices 
and access systems is similar to the present work. 

METHOD AND DATA 

Consistent Calculation of Access Link Values 

The method to be described for calculating the values of the 
access links, and the subsequent decomposition of volumes 
on these links by mode and station, is based on a model system 
that is estimated in stages with each stage affecting the fol­
lowing stage (the nested logit model). 

A joint decision for choosing to travel on access mode a 
via station s on line (or path) l, by priority mode m, during 
time h, to de tination d with frequency f, is a function of the 
level-of-service L provided by the system, the activity system 
attributes A, and socioeconomic attributes of the traveller S. 
It can be expressed as 

P(f, d, h, m, !, s, a) = F(L, A, S) (1) 

This model can be broken into any number of sequences using 
the theorem of total probability. For example, it can be ex­
pressed as a multiplication of models: 

P(f, d, h, m, !, s, a) = P(ajs, !, m, h, d, f) 

x P(sjl, m, h, d, f) x P(ljm, h, d, f) 

x P(mjh, d, f) x P(hjd, f) x P(djf) x P(f) 

where 

P(ajs, !, m, h, d, f) 
P(sjl, m, h, d, f) 

P(ljm, h, d, f) 
P(mjh, d, f) 

P(hjd, f) 
P(djf) 

P(f) 

access mode choice, 
station choice, 
line choice, 
main mode choice, 
hour-of-day choice, 
destination choice, and 
trip frequency. 

(2) 

This general model system provides a sound framework for 
estimating access mode, station loadings, transit line choice, 
choices of mode and destination, and so forth. If some ele­
ments are not present in the analysis (e.g., choice of travel 
hour), that segment of the model system can be dropped 
without ruining the model system. This paper focuses on the 
first two models: access mode and access station choices. Other 
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choices are dropped for clarity. The access mode and station 
selection models are logit models. 

Each model has a utility function that includes variables 
relevant to the choice being modeled. For example, function 
U-a describes the utility to travel to a station on Access Mode 
a. For the sake of example, this function may be made up of 
the trip time (T-a), cost or fare (C-a), and service headway 
(H-a). Mathematically, 

(3) 

Once the coefficients b and the values of the explanatory 
variables are known, U-a is a number, commonly called a 
"generalized price" of Mode a. The aggregate, ' logitly" con­
sistent generalized price to Station s by all modes is given by 
the following expression: 

U]s, I = log(Lexp U-aJs, I) (4) 

Similarly, the access station model may be expressed as 
follows: 

U-sJl = c1(PKG-s) + c2(T-ss') + c3(UJs, I) (5) 

where 

PKG-s = parking cost (or parking availability) at Station 
s, and 

T-ss' travel time on line haul from Stations to a com­
peting station, s'. 

The aggregate "logitly" consistent inclusive price to access a 
rail (transit) line is 

U-1 = log(Lexp U-sJI) 

Use of Access Mode and Station Selection Models 
in Network Coding 

(6) 

The objective of the access mode/station selection models is 
to give a number to be assigned to an access link in coding 
networks and provide information on access mode and station 
usage in the zone where travelers reside. This informati n 
can be obtained if the traffic zone is co.nnected to the network 
in a manner consistent with the travel demand models used 
to characterize not only travelers' access mode/station choice 
behavior but also the other travel dimensions such as mode 
and destination choices. In fact, the connection of traffic zones 
to the network is critical from the point of view of obtaining 
reliable traffic forecasts by line and mode. It is precisely the 
inclusive price, developed earlier, that hould be used to con­
nect the zone centroids to bus lines or rail stati ns ( U-sJI) or 
lines ( U-1). The difficulty introduced by the egress attributes 
will be addressed later. 

The following examples illustrate how in practice traffic 
zones should connect to the network in a systematic and con­
sistent manner. Consider a traffic zone served by rail and bus 
modes. Access to rail stations is by walk, automobile, and 
bus, whereas walk is the only access mode for bus (this re­
striction is solely for illustration). The connection of a zone 
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to each rail station (or rail line) is via an access link whose 
value is a weighted average that is a proper aggregation of 
the available access modes (and stations). The connection of 
the zone to bus lines is via a walk access link. In order not 
to confuse the two modes, presentations of bus and rail are 
worked separately to point out how U-l, the generalized line 
price, is calculated for coding the access link . 

The bus network is con idered fir t because it is simpler 
(see Figure 1). The example zone is served by three bus lines, 
1, 2, and 3, which are connected to the zone centroid by values 
U-1, U-2, and U-3. Because there is only one access mode, 
these are the average zonal walk times to these lines and will 
be denoted by U-1. These values depend on such factors as 
zone area, bus spacing, and bus frequency and are obtained 
directly from the supply models, to be explained shortly. 

The calculation of the rail access links requires both access 
network supply and access mode/station choice models. Con­
sider the rail network in Figure 2. The two rail lines serving 
the zone can be accessed by walk, automobile, and bus. Bus 
Lines 1 and 3 can also be used for access purposes. The 
example zone is thus connected to Rail Lines 10 and 11 by 
Access Links U-10 and U-11, respectively. To calculate the 
value of these access links, the access mode/station selection 
models (Equations 3 and 5) and the values of T-a, C-a, H-a, 
PKG-s, and T-ss' are needed. The latter are calculated for 
each zone as a function of the transportation system serving 
or planoed for the zone. In the present example application 
a simple parametric access network model is used (10) as 
explained next. 

2 

I 

--t ---u- 2 I --...._ 
U-3 - 3 

FIGURE 1 Bus network. 
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i ----I 

STATION S 

FIGURE 2 Rail network. 



Talvitie 

Access Supply Models 

The access supply models give the mean values for automobile 
and bus in-vehicle times and bus out-of-vehicle (walk) time. 
Models for within-zone variances of these variables were also 
developed for other uses with explicit aggregation procedures, 
such as sample enumeration (6). Only the former models are 
used here. A summary of the models appears in Table l. The 
variables used in these models are shown and defined in 
Figure 3. 

The walk time to a bus stop depends on such variables as 
distance between stops, spacing between bus lines , and zone 
size. The model logically shows that increases in all these 
values increase the walk time to bus. The farther the station 
is from the zone centroid, the longer are bus ride and car 
drive times to station . The greater the speed of the vehicle, 
the shorter are bus ride and car drive times . Depending on 
whether lines run parallel or perpendicular, one of two equa­
tions is used in finding the bus out-of-vehicle and in-vehicle 
times. 

TABLE 1 Parametric Supply Models 

Walle to Bus Stop (Case 1) : 

3 

The available data did not permit the use of the more ad­
vanced versions of the models here; the use of the more 
sophisticated access supply models in a different modeling 
environment can be found elsewhere (4-6). 

Data Source 

The data come from the origin-destination survey conducted 
in 1969 by W. C. Gilman Company for the Southward Transit 
Area Coordination Committee (STAC) in Chicago. Three 
data sets with varying zone sizes are formed from the ST AC 
study. The first data set consists of sixty-eight 1-mi2 zones and 
twenty-nine 4-mi2 zones. This data set is denoted as A( l -4); 
these were the actual sizes in the original STAC study . The 
second data set combines 42 square mile zones into thirteen 
4-mi2 zones . This data set is denoted as A(4) . The third set 
of data is the combination of thirty-six 1-mi2 zones into four 
9-mi2 zones and sixteen 4-mi2 zones into four 16-mi2 zones. 
This data set is denoted as A(16) . The combined zones were 

MEAN T = .45 + .20 AREA -.60 YI + 3.35 SY + 2.25 STOPS 

Walle to Bus Stop (Case 2) : 

MEAN T = .45 + .IO AREA - .15(XI +YI)+ L13(SX +SY)+ 2.32 STOPS 

Bus Ride to Rail Station (Case 1) : 

MEAN T = 22.69 - 1.86 SPEED + 1.38 SIDE - .76 YI + 4.05(XCOR + YCOR) 

Bus Ride to Rail Station (Case 2) : 

MEAN T = 17.90 - 1.53 SPEED+ 1.81 SIDE+ 3.67(XCOR + YCOR) 

Drive to Rail Station : 

MEAN T = 10.55 + .37 AREA - .52 SPEED + 2.67 DUMMY + l.95(XCOR + YCOR) 

Variable definitions: 

AREA 
XCOR, 
YCOR 
SIDE 
SPEED 

SX, SY 
YI or XI 

STOPS 
DUMMY 

the area of the zone in square miles 
the coordinates of the station from the centroid 
of the zone in miles 
the side of the zone in miles 
speed on arterials in miles per hour 

spacing of the bus lines in miles 
the distance from zone boundary to the nearest bus line in 
milesi it is negative if the bus line is outside the zone 

the number of bus stops per mile 
a variable to identify whether or not the station is inside the 
zone, it equals 0 if station is inside the zone, and 1 if station is 
outside the zone 
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1 XI SX sx' 

BUS 
LINE 
SPACING 

Definition variables: 

XCOR 

ZONE 

STAT ION 

l VCOR 
SIDE 

AREA 
XCOR, 
YCOR 
SIDE 
SPEED 

the area of the zone in square miles 
the coordinates of the station from the centroid 
of the zone in miles 
the side of the zone in miles 
speed on arterials in miles per hour 

spacing of the bus lines in miles SX, SY 
YI, XI the distance from zone boundary to the nearest bus line 

in miles; it is negative if the bus line is outside the zone 

STOPS the number of bus stops per mile 

DUMMY a variable to identify whether or not the station is inside the zone, it equals 
0 if station is inside the zone, and 1 if station is outside the zone 

FIGURE 3 Variables used in supply equations. 

picked at random with the criteria that the zones were con­
nected to one another. Also taken from the ST AC report are 
the number of people going to each rail station by mode (walk, 
automobile, or bus). 

ESTIMATION OF MODELS AND EVALUATION 
OF RESULTS 

In this section the travel demand model system and the supply 
models just described are evaluated in various ways to gauge 
how well equations portray supply and, in particular, whether 
zone sizes can be increased without compromising accuracy. 
First, the access mode/station choice models are developed. 
Second, the travel demand model system is applied; this model 
incorporates the supply models and the access mode/station 
choice models. Third, several indices are used to evaluate the 
results with the three data sets. 

Access Mode Model 

Logit access mode models were developed for choices be­
tween walk, automobile, and bus access modes. Alternative 
model specifications were considered even though no socio­
economic data were available. The most satisfactory model 
resulted when it was assumed, as suggested by data, that 
persons who reside within a V2-mi radius of a rail station walk 
to that station. This three-mode model is given by 

{

Walk if distance to station< Vz mi 
Mode choice: P(m = automobile, bus is, l) 

if distance to station > Vz mi 
(7) 

Two of the estimated models are given in Table 2. The 
difference between the models is that in Model I there is a 
constant bus fare of 30 cents, whereas in Model II the bus 
fare is zero. The values of the time variables, with the ex­
ception of the automobile out-of-vehicle time (which was set 
to a constant 2.5 min), were generated by the supply equations 
reported earlier. 

Statistical tests indicate that all the variables in Models I 
and II are significant at a .99 level of confidence. Similarity 
is also found in comparisons of the residuals and the implied 
values of time for out-of-vehicle and in-vehicle times from the 
two models. Model I was used in this research. 

Station Choice Model 

The functional form of the station choice model is given by 
Equation 5. The results in Table 3 indicate two models whose 
difference is in the value of Vis, l. In Model I, Vis, l is the 
composite of automobile and bus modes, and in Model II U-sll 
is the composite of all three modes (walk, automobile, and 
bus). For Model II, the walk utility was computed by using 
the relationship 

P(w) exp(U-w)/~exp(U-a) 

a = walk, automobile, bus (8) 

exp(U-w) = (1 - Cov)[exp(U-a) + exp(U-b)]/Cov (9) 

where 

P(w) the probability that walk was chosen as the access 
mode, 



TABLE 2 Two Estimated Access Mode and Station Choice Models 

Coefficients and Relevant Information of the Access Mode Models 

Model I Model n 
Variable Coefficient Standard Error Coefficient Standard Error 

Out-of-vehicle time 
In-vehicle time 
Cost 
Auto bias 

-0.115 
-0.027 
-0.082 
-0.293 

0.011 
0.007 
0.007 
0.228 

#of observations for both models 291 

Model I 

-0.108 
-0.045 
-0.094 
2.855 

L (0) = -3890 (log likelihood for coefficient of zero) 

Model II 

L (0) = -1310 (log likelihood for estimated coefficients) 

L (0) = -3890 (log likelihood for coefficients of zero) 
L (0) = -1280 (log likelihood for estimated coefficient) 

Coefficients and Relevant Information of the Station Choice Models 

Model I Model ll 

0.011 
0.008 
0.009 
0.200 

Variable Coefficient Standard Error Coefficient Standard Error 

PKG 
T-ss' 
In pm 

0.367 
-0.047 
1.000 

0.037 
0.002 

0.638 
-0.040 
1.000 

# of observations for both models 291 

Model I 
L (0) = -7510 (log likelihood for coefficients of zero) 
L (0) = -6770 (log likelihood for estimated coefficients) 

Model ll 
L (0) = -15100 (log likelihood for coefficients of zero) 
L (0) = -14200 (log likelihood for estimated coefficients) 

TABLE3 Error Measures for Predicted Access Mode and Station Volumes 

R(t-value) Ave.Vol. AE IAEI SD 
Walk 
A(l-4) .98 (90.1) 19.0 -0.01 4.2 10.5 
A(4) .89 20.7 O.Ql 10.3 20.1 
A(9-16) .94 20.6 0.00 14.6 29.8 

Auto 
A(l-4) .94 (49.3) 18.5 -0.23 4.8 9.4 
A(4) .74 (10.8) 24.6 -0.33 7.4 14.8 
A(9-16) .88 (16.9) 62.2 -0.29 14.6 27.4 

Bus 
A(l-4) .71 (17.9) .6 -0.01 1.3 3.0 
A(4) .43 (4.6) 1.1. -0.00 3.2 7.2 
A(9-16) .38 (3.8) .9 0.00 3.7 7.0 

Station 
A(l-4) .83 (25.9) 38.0 -0.01 20.9 41.l 
A(4) .52 (5.9) 46.4 0.02 32.7 52.7 
A(9-16) .82 (13.1) 83.7 -4.36 42.1 73.5 

0.029 
0.002 

RMSE 

10.5 
20.1 
29.8 

9.4 
14.8 
27.4 

3.0 
7.2 
7.0 

41.l 
52.7 
73.6 

R(t-value) correlation coefficient between actual and predicted volumes and its t-value 
AE average error 
IAEI the average absolute error 
SD standard deviation 
RMSE SD2 + A2 =the root mean square error 
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U-a = the utility of an access mode, and 
Cov = the percentage of the zone covered by the walk 

access area. 

Statistical tests indicate that the coefficients in both models 
are significant at .99 level of confidence. Model I was chosen 
over Model II primarily because of its consistency with the 
access mode model, or 

{

nearest 
Station choice: 

P(Sll) 

if distance to station 
< Yzmi 
otherwise 

Application of the Travel Demand System 

(10) 

Now that the access supply models and the access mode/ 
station choice models have been developed, the travel de­
mand model can be evaluated by applying it in stages with 
each stage affecting the following stage. 

The first stage of the model is the prediction of the values 
of the supply variables. Parametric models of Table 1 are used 
to get the mean values for the supply variables to each station 
serving the zone. The operating cost for the automobile was 
a function of the distance from the zone centroid to the station. 

The second stage of the model is the estimation of the modal 
splits to each station. Again, it was assumed that everyone 
living in the zone within a V2-mi radius of the station walks 
to that station. It was, furthermore, assumed that people walking 
to the station have chosen their housing premises on the basis 
'of proximity of the rail station. Therefore, people living within 
walking distance of the station are more likely to ride the rail 
system than people who must use another access mode. Ac­
cordingly, it was assumed that the walkers are 85 percent more 
likely to use the rail mode than people who must use auto­
mobile or bus to reach the station. This value was based on 
a Skokie Swift mode choice study where a logit coefficient 
was estimated for a similarly defined variable (11). 

In the third stage the station selection model was applied. 
Each station was evaluated on its own merits and compared 
with the characteristics of competing stations. 

The final stage of the system, as applied here, is the com­
putation of the "generalized" access price to line, U-l. As 
explained the "logitly" con istent aggregation of modes and 
stations amounts to computing the expression log(!exp U-sll). 
The information used in computing U-l can be used to parcel 
the travel volume by station and access mode. 

The recursive model system was applied to each of the three 
data sets having different zone sizes, and the predicted shares 
of the access modes and station usage were obtained. Volumes 
were found by multiplying the predicted shares from the re­
cursive model by the actual total number of station users 
(known from the STAC report) . 

Evaluation of Results 

Four measures of predictive accuracy are calculated for each 
of the three data sets A(l-4), A(4), and A(16). The measures 
are the correlation coefficient (R) between actual and pre­
dicted volumes and its t-value, the average error (AE), the 
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average absolute error (IAEI) , standard deviation of the error 
(SD) , and the root mean square error (RMSE = SD2 + AE2). 
The results are given in Table 3. 

The observed and predicted access mode shares are in good 
agreement for all the modes in all three data sets. However, 
the walk and automobile models have much better results 
than the bus. Both walk and automobile have very high cor­
relation coefficients and t-values at each level of aggregation. 

The bus mode gave good results for the first data set but 
deteriorated for the larger zones. After examining the two 
larger data sets, A( 4) and A(l6), it was found that the bus 
volumes were well predicted in the core areas where the bus 
lines were closer and the service more frequent . However, in 
the fringes of the study area, some zones that had no bus 
service, or at least very poor service, were combined with 
zones having either satisfactory or good bus service. It was 
these combined zones in the fringe areas that caused the re­
sults to be not quite as good as in the other zones. This fact 
points toward the need for explicit aggregation procedures to 
maintain high accuracy in forecasts; however, see later com­
ments on other sources of error. 

The station choice results are also very good. The first and 
third data sets, A(l-4) and A(9-16), have high correlation 
coefficients, whereas the second data set has only average 
results. However, each of the three correlation coefficients is 
significantly different from zero with .99 level of confidence. 
They also have low standard errors. 

The examination of other error indicators (AE, IAEI, SD, 
and RMSE) gives rise to the following observations. First, 
bus volume errors are low, contrary to what we would expect 
from the correlation coefficients. Second, prediction errors 
increase with increasing zone size. This is especially true for 
the automobile and walk modes , and it is also true for the 
station choice. It would be easy to declare that either zone 
sizes must be kept small or that travel forecasts need to include 
specific aggregation measures if nominal forecasting errors 
are to be kept reasonable, at least when using large zones. 
However, such a conclusion is not supportable by these data . 
There are other hitherto unmentioned sources of error that 
act precisely in the same direction as zonal aggregation, that 
is, increasing errors with increasing zone size. 

In addition to model error and the lack of aggregation 
procedures, the most outstanding of the so far unmentioned 
error sources are the following. First , the percentage of people 
living within V2 mi of the station, and thus the percentage of 
people having walk access to the station, was simply approx­
imated by the percentage of the zonal areas that fell within 
V2 mi of the stations. It is well known that development den­
sities near stations are often higher than further from them; 
vacant land is also more likely farther from the stations. Better 
knowledge of the distribution of the residences within traffic 
zones would definitely have increased the accuracy of the 
results . Second, in several zones the stations were on com­
peting rail lines, either on the two branches of the Illinois 
Central or Rock Island Railroads or on the South Shore & 
South Bend Railroad. Because no model was developed for 
line choice and because these railroads, particularly the Rock 
Island RR versus the other two, had distinctly different egress 
attributes that directly affected line choice and indirectly af­
fected station and access mode choices, one would expect 
noise in the access mode access station predictions. The Chi-
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cago network shows vividly why the inclusion of egress anal­
yses, in exactly the same way as the access analyses in this 
paper, is necessary for reliable travel forecasts in transpor­
tation studies involving rail lines. Third, in many zones express 
bus service provided by the Suburban Safeway Company 
competed vigorously for the rail traveler. Even though this is 
a bus service, its attributes are more in line with the rail service 
and should definitely be taken into account in complete anal­
yses. Fourth, it must be kept in mind that the model access 
mode choice was estimated (in part) by using the data gen­
erated at the finest aggregation level. Thus, if the model coef­
ficients are "contaminated" by data aggregation, they will 
perform best at the same level of aggregation. At a minimum 
it can be said that the demand side model favors the finest 
level of aggregation. Thus, even though the model system was 
by necessity applied in an incomplete manner, the results are 
strikingly good and suggest that it is a useful planning tool. 
In addition, the results provide indirect evidence that choice 
of mode to work is closely tied to residential location deci­
sions. This fact, which was observed in the Skokie Swift study 
cited earlier and the fact that coefficients estimated in that 
study proved useful in the present study, indicates that the 
relationship between mode to work and residential location 
is subject to regularities that can be modeled. 

CONCLUSIONS 

The study has demonstrated that large zones in conjunction 
with parametric supply and demand equations can effectively 
be used in transportation planning. This can speed planning 
processes and allow for more reliable and quicker prediction 
of land use activities. Use of large zones also enables review 
of input data and land use predictions by expert panels, local 
interest groups, and others having an interest in the planning 
process and travel predictions. 

Parametric supply models can be developed also for inter­
zonal transportation systems (3), thus freeing the analyst and 
the planner from coding the networks, which currently is one 
of the major roadblocks to analyzing systematically a large 
number of significantly different alternatives. Parametric sup­
ply models also facilitate sensitivity analyses because unit 
changes in supply can be related in a straightforward manner 
to both demand and resource costs; (marginal) pollution im­
pacts can also be traced in this manner. The implementation 
of such a model system would be a major step toward more 
timely and systematic transportation planning. 
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There is nothing to prevent increasing the zone size indef­
initely. In so doing, however, the parametric supply models 
must be made an order of magnitude more sophisticated. Such 
zone-independent supply models would be analogous to prop­
erly aggregated behavioral travel demand models. They would 
relate the values of the supply variables to the transportation 
system attributes and the distribution of economic activities 
within the region via the travel demand models. Such a model 
system would find its most rewarding use in sketch planning 
and comparing alternative city forms as well as in statewide 
planning, where the zones must necessarily be very large. 
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Travel Demand Forecasting with 
Dynamic Microsimulation 

KoNSTADINos G. GouuAs AND RYUICHI KITAMURA 

A new travel demand forecasting system, based on microanalytic 
imularion and dynamic analysis, is discussed. The system consists 

of two components: a microsimularor of household soci econom­
ic and demographics and a dynamic model system of household 
car ownership and mobility. Each component compris inter­
linked models formulated at the household level. Replicated in 
the socioeconomic and demographic microsimulator are inter­
actions and causal paths that underlie life cycle evolution of in­
dividuals and households. Output from the sociodemographic 
component is then used by the dynamic model sy cem of mobility 
to predict household car ownership trip generation, and modal 
split. Tl1e parameters of the model system have been estimated 
using ob ervations from five wave of the Dutch National Mo­
bility Panel data, covering the period of 4 years from April 1984 
through April 1988. Other . ources of information , external to 
the panel data, were al o used to estimate key parameter~. The 
availability of the large-scale panel data has been cs en1111l for 
the development of the detailed demographic and mobility m del 
components. The model sy. tern is a credible and flexible fore­
ca ting tool with whic11 a wide range of future cenario can be 
examined to answer a variety of 'what ir' questions. Issues re­
lated to the model structure, data requirements, estimation meth­
ods, assumptions, and forecasting performance are summarized . 

In travel demand analysis and forecasting the recognition that 
time is an indispensable dimension of travel demand models 
is a recent phenomenon. A new forecasting method that ex­
plicitly accounts for the dynamic character of travel demand 
is described. The approach attempts to combine dynamic models 
of travel behavior with sociodemographic and economic mi­
croanalytic simulation to produce a flexible forecasting tool. 
The development of the Microanalytic Integrated Demo­
graphic Accounting System (MIDAS) is summarized, and its 
use in forecasting is discussed. 

The use of cross-sectional models in travel demand fore­
casting involves some fundamental problems. First, it is based 
on the untested assumption that cross-sectionally observed 
variations in travel behavior 'can be used as valid indicators 
of behavioral changes over time. Second, future values of 
socioeconomic and demographic input variables are obtained 
using "allocation" methods, which "post-process" aggregate 
forecasts into "pseudo-disaggregate" data. As such, the meth­
ods fail to effectively and accurately capture the internal re­
lationships among the input variables. And third, it does not 
properly represent response lags involved in long-term mo­
bility decisions (e.g., residence location and car ownership). 

K. G. Goulias, Department of Civil Engineering and. Pennsylvania 
Transportation Institute, The Pennsylvania State University, Uni­
versity Park, Pa. 16802. R. Kitamura In titutc or Transportation 
Studies and Department of Civil Engineering, University of alifor­
nia at Davis, Davis, Calif. 95616. 

An alternative travel demand forecasting system is pre­
sented in this paper. The system consists of two components: 
a microsimulator of household socioeconomics and demo­
graphics and a dynamic model system of household car own­
ership and mobility. Each component comprises interlinked 
models formulated at the household level. Replicated in the 
socioeconomic and demographic microsimulator are inter­
actions and causal paths that underlie life cycle evolution of 
individuals and households. Simulation units evolve from year 
to year, experiencing marriages, divorces, births, deaths, and 
so forth. Employment, income, driver's license holding, ed­
ucation level, and household size and composition are among 
the variables that are internally generated in the simulation. 
User-defined parameters have been provided for modification 
to create any future growth path desired. 

The parameters of the model system have been estimated 
using observations from five waves of the Dutch National 
Mobility Panel data, covering the period of 4 years from April 
1984 through April 1988. Other sources of information, ex­
ternal to the panel data, were also used to estimate key pa­
rameters. The availability of the large-scale general purpose 
panel data has been essential for the development of the 
detailed demographic and mobility model components. 

The model system is a flexible and credible forecasting tool 
with which a wide range of future scenarios can be examined 
to answer a variety of "what if" questions. It can replicate 
reality with accuracy comparable with other forecasting models 
and represents a new approach to forecasting travel demand. 
However, the method is complex, poses high demands in 
model estimation, and requires a large amount of data. 

BACKGROUND AND STRUCTURE OF THE 
MICROSIMULATOR 

The large systematic biases and the low predictive accuracy 
of long-range planning and forecasting motivated the adop­
tion of strategic planning-the identification of preferable 
transportation policies as input to plan development (1). Pol­
icy strategies are identified beforehand, scenarios are devel­
oped for each strategy, and pertinent forecasts are derived. 
The strategic planning process requires forecasting tools to 
provide growth scenarios instead of point estimates. More­
over, forecasting creates the need for several alternative growth 
scenarios, each based on a different set of assumptions about 
economic development and demographic evolution. 

In transportation the usual techniques are either problem­
oriented descriptive analyses or forecasting procedures similar 
to those of the Urban Transportation Planning Process (UTPP). 
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The need for a system that can answer "what if" questions , 
under user-defined circumstances of the real world, is clear. 
This tool should allow the exploration of policies so that it 
could be used either as a decision insight system (a system 
that allows policy analysts to introduce subjective input and 
observe the output) or as an extrapolatory scenario-based 
system (a system that provides information about the future 
based on data and observed relationships from the past). The 
effort described in this paper is the starting point for the 
creation of a flexible and comprehensive "test bed" for al­
ternative theories and methods of forecasting travel demand. 

Socioeconomic and demographic information plays an im­
portant role in the four-stage UTPP procedure requiring input 
variables such as population, income, employment, and car 
ownership. These methods are extremely sensitive to the ac­
curacy of the information provided externally. Travel demand 
models are usually cross-sectional individual- and household­
based models, whereas the input to these models (i .e., so­
ciodemographic and land use information) is obtained through 
approximate disaggregation techniques (2). 

Whereas the techniques, models, and procedures used to 
obtain input to UTPP are disparate, they share one common 
characteristic: they are not at the same level of disaggregation 
as travel demand models. Most agencies transform regional 
information to the district level, and then from the district 
level to the traffic zone level. These allocation methods do 
not provide all the required information needed by the travel 
demand models. Additional detailed information is obtained 
using approximate post-processing procedures (disaggrega­
tion procedures). The provision of input at the zone level 
necessitates the application of travel demand forecasting models 
designed for households and persons at the traffic zone level, 
too. As expected, both the conversion of aggregate socio­
demographic forecasts to zonal forecasts and the conversion 
of individual travel demands to zonal demands produce many 
errors throughout the process. Bajpai (3) observed that "tech­
niques to project automobile ownership, household income, 
and household size from population and employment are highly 
recommended for future research." Travel demand forecasts 
based on existing techniques are questionable. 

Most of the sociodemographic variables describe and at­
tempt to replicate decisions made by individuals and house­
holds, so the need arises for models that predict just such 
variables at the elementary level of decision making. Aggre­
gate responses to policy changes can be obtained by grouping 
households and individuals into the specific traffic zones or 
following any other aggregation scheme desired. This ap­
proach can be called a "bottom-up" procedure. It is well 
known that bottom-up approaches lead to more accurate results. 

Microsimulation and Dynamic Analysis 

Arrow ( 4) and Orcutt et al. (5) have shown that microsimula­
tion is a particularly flexible approach in that it adopts a 
comprehensive system analysis to explain, predict, and com­
pare the impacts of alternative transport policy strategies. The 
method enables the forecasting of direct and indirect effects 
of the simulated policies on the system analyzed. Microsimu­
lation can help fill the gap in forecasting the input to travel 
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demand models and provides the framework for designing a 
new dynamic forecasting tool. These compelling arguments 
in favor of microsimulation are examined here in view of 
the added complexity of the method and the increased data 
requirements. 

When the data at hand are cross-sectional observations, the 
usual assumption is either that behavior does not change or 
that the changes are given by cross-sectional variations. 
Therefore, forecasts of changes over time are either non­
existent or are extrapolations from differences in the cross­
sectional sample considered. Davies ( 6) notes that cross­
sectional analyses fail to differentiate between age effects and 
cohort effects, fail to resolve ambiguities in causalities, cannot 
provide methods to consider observable or unobservable 
omitted variables, and exaggerate the behavioral effect of 
policy changes by not being able to incorporate phenomena 
such as inertial response to change. 

One of the most promising research approaches to over­
come these weaknesses is dynamic analysis. This is the pro­
cedure used to describe changes in behavior occurring over 
a period of time . Forecasts based on these estimates may 
prove better than cross-sectionally derived ones because models 
can be developed from dynamic hypotheses and tested with 
longitudinal information . Future behavior can be predicted 
by extrapolating observed changes that are reflected in the 
dynamic models. 

Microsimulation and dynamic models need data for model 
estimation and the construction of microanalytic scenarios. 
The best source of data is a panel survey. In panel surveys 
the same information is collected on the same individuals over 
a period of time. Questionnaires and travel diaries are dis­
tributed at different times to the same individuals to collect 
detailed sociodemographic and travel data. Panel data enable 
us to develop models that relate behavioral changes to changes 
in contributing factors in dynamic context, specifying inter­
temporal causation properly (7). 

Structure of the New System 

The unique characteristic of the approach followed in this 
study is the combination of a dynamic model of travel be­
havior with dynamic microsimulation, which is motivated by 
the following. Since simulation in general implies modeling 
of a process that evolves over time, dynamic disaggregate 
models are the natural ingredient of the simulation. Hence, 
throughout the design of MIDAS, dynamic models at the level 
of the household and the household member are used to 
replicate real world changes in sociodemographic character­
istics and mobility. 

The forecasting tool is made of two components: the so­
ciodemographic component and the mobility component. The 
sociodemographic component aims to realistically recreate the 
progression of a household through life cycle stages and sim­
ulate changes in the household members' socioeconomic and 
demographic attributes, such as employment status and driv­
er's license holding. Then the mobility component uses these 
endogenously generated socioeconomic attributes to forecast 
household car ownership and mobility . The two components 
are integrated to form a comprehensive simulation system. 
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SOCIOECONOMIC AND DEMOGRAPHIC 
COMPONENT 

In the simulation, a household member will age, form an 
independent household , gain employment , obtain a driver's 
license, marry, give birth, and so on. The size and composition 
of the household will change accordingly. A household mem­
ber may be added to a household through a marriage, or a 
household may be split into two through a divorce. A child 
will leave his parents and form a new household. Such changes 
are probabilistically generated in the simulation. The model 
parameters that determine the probability of these events are 
obtained from the Dutch Panel data set. 

Household Type Transition 

In MIDAS the transition between household types is viewed 
as the fundamental element of household evolution represent­
ing household life cycle stage. Given a transition in household 
type , new household members are generated , or existing 
household members are eliminated , and member character­
istics are altered in MIDAS. The transition in household types 
thus serves in MIDAS as a control that constrains the char­
acteristics of household members . 

Five household types are used: single-person households, 
households of a man-woman couple, nuclear family house­
holds, single-parent households, and other households . This 
classification, which is based on the major conclusion of the 
activity-based travel analysis that children of a household have 
an important influence on the travel patterns of its adult mem­
bers , reflects the notion of life cycle (8). 

For each household in the simulation, characteristics are 
first read from an input file comprising records of sample 
households from the Dutch Mobility Panel data set. Following 
this, the transition between household types is simulated for 
each time period (1 year is used as the time interval of the 
simulation) . This process is based on a set of logit models that 
determine transition probabilities for each household as func­
tions of attributes such as the presence of children by age 
group and the adult household members' age, education , and 
employment. 

A set of subroutines has been developed to probabilistically 
change the attributes of household members, generate new 
members, or remove individuals from the household . For 
example, two subroutines are called in connection with the 
transition from family to family, or from single parent to single 
parent when the number of children is two or more. An Lher 
routine is called in connection with the transition from ingle 
to single. It accounts for the possibility that the member of a 
single-person household passes away, and thu ' the household 
vanishes [a de cription of the routines i given elsewhere (9)]. 

Birth and Death 

The probability that a woman in a household will give birth 
to a child in a given year is expressed as a function of the age 
and employment status of the woman and the number of 
children that already exist in the household. Observed fre­
quencies obtained from the Dutch Panel data set are used to 
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determine the probability that a woman in a household will 
give birth to a child. 

A birth may be implied by a change in the household type 
(e.g., a couple to a family). In such cases, the logit models 
of household type transitions depict the probability of a birth. 
For example , the probability of a transition from couple to 
family is expressed as a function of the man's age and edu­
cation and the woman's employment status. The event of 
birth is randomly generated in the simulation using these 
probabilities . 

A single-person household is removed when a death takes 
place in the simulation. The possibility of death is also con­
sidered in connection with the transition from couple (or fam­
ily) to single (or single parent) . If a death does not take place 
in the simulation, the transition is regarded as a result of a 
divorce , and the household is split into two households. 

Households Formed by Children 

The event of "leaving the nest" (i.e. , a child moving out and 
forming an independent household) is modeled as a function 
of the age, sex, and employment status of the child . Similar 
to the case of birth, this event is implied by household type 
transition from family to couple or from single parent to sin­
gle. The probabilities of these transitions are represented by 
the Io git models as functions of the number of children by age. 

When the event of nest-leaving takes place in the simula­
tion, a new household is added to the data file with a certain 
probability , representing the probability that the new house­
hold will remain in the same municipality. The evolution of 
this new household is simulated through the rest of the sim­
ulation period. 

Employment and Income Models 

The employment status of a person is determined using tran­
sition matrices developed by sex and age group. Each matrix 
contains the probability of change in employment from one 
status to another. For example, the two-by-two matrix for 
men in the 18-to-24 age bracket indicates that a person who 
is employed at Time t will also be employed at Time t + 1 
with probability 0.929. 

Given the employment status, the personal income is de­
termined using a set of dynamic models. The personal income 
at Time t is assumed to be determined in part by the personal 
income at Time t - 1, called lagged dependent variable . It 
is also assumed that there is correlation between the unex­
plained effect of Time t - 1 and that of Time t, called serial 
corr.elation. The income models are developed for the four 
possible combinations of the employment status at Time 
t - 1 and Time t: (not employed, not employed), (employed, 
not employed), (not employed, employed), and (employed, 
employed). 

The personal income of each household member is added 
in the simulation to obtain total household income. The em­
ployment transition matrices and the parameters of the in­
come models are estimated using data obtained in a period 
of economic expansion (1984 through 1988). These parame­
ters must be adjusted if the model is to be applied for a period 
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of stable economy or economic recession. This adjustment 
requires examination of the impact of the regional and na­
tional economy on the parameters of these model compo­
nents, which is outside the scope of this study. 

Driver's Licenses and Education 

The driver's license holding is determined using transition 
matrices similar to those for employment status. Compared 
with the transition matrices for employment status, the driv­
er's license matrices in general have larger diagonal elements, 
which correspond to the transition from licensed to licensed 
or from nonlicensed to nonlicensed. This implies that license­
holding status is less variable than employment status. Also 
notable is the stability in the transition probabilities across 
the age groups. 

Education is among the explanatory variables used in the 
MIDAS mobility component, and it is necessary to determine 
education levels for those household members that are inter­
nally generated in the simulation process. This determination 
is not based on detailed modeling of education levels because 
it is clearly beyond the scope of this study . 

The education levels of children that are generated in the 
simulation are determined randomly using the distribution of 
education levels by sex obtained for individuals 18 through 
28 years old in the panel data. Education levels of new mem­
bers that enter a household through a marriage are deter­
mined using the correlation between the education levels of 
married men and women. For example, the probability that 
a man has a given education level is determined by the ed­
ucation level of the woman who has been a member of the 
household in the simulation. 

New Household Members 

A set of personal attributes needs to be generated whenever 
a new household member is introduced in the simulation. 
When a new person enters a household through marriage, the 
person's age and education are determined on the basis of 
the existing member's age and sex. The new member's em­
ployment and income are then determined on the basis of age 
and sex. 

For a newborn member of a household, only sex is deter­
mined at the time of birth; other attributes are determined 
when a person reaches the age of 18, using the probabilities 
of employment, license holding , and income. 

The person attributes of "other" household members are 
determined as follows . First, the age and sex of the "other" 
individual are randomly generated on the basis of the age of 
the head of the household. Employment, license holding, 
education, and income are then randomly determined on the 
basis of the observed distribution of the attributes of "other" 
persons by age and sex. 

Household Dissolution 

A household is split into two or eliminated from the simulation 
after a divorce or other events that cause its dissolution. If 
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children are present in the household, they are randomly 
assigned to the respective parents probabilistically. Only a 
fraction of newly formed households (formed through di­
vorces or by children gaining independence) remain in the 
simulation. The value of 15 percent is chosen so that new 
households roughly replace households that disappear be­
cause of death and keep the total number of households in 
the simulation stable over the simulation years . This process 
replicates a demographically stable region. 

Most model parameters are estimated using subsamples 
from the Dutch Panel data set. A subsample of Dutch Panel 
households is also used in the simulation. Observed household 
and person attributes of 1984, 1985, and 1986 are used as 
initial conditions; demographic and socioeconomic attributes 
and mobility levels of these and internally generated new 
households are simulated year by year to 2010 in MIDAS . 

Input Parameters and Modifiers 

The parameters in MIDAS can be classified into three cate­
gories. The first contains the coefficients of the dynamic models 
in the mobility component and the income models in the 
demographic component. These coefficients have been esti­
mated from subsamples of the Dutch Panel data set using 
econometric methods and have been embedded in the MIDAS 
programming code. The second category contains 16 sets of 
parameters of the demographic components. Most represent 
transition probabilities associated with changes and are treated 
as input data. Their values have been estimated using the 
Dutch Panel data set. These parameters can be modified to 
represent a particular scenario of interest (e.g., an increase 
in women's labor force participation) or to incorporate ex­
ternal information . The third category is a set of input pa­
rameters that can be used for modifications of MIDAS set­
tings. These are modifiers that can be used to change the 
annual growth of personal income, the birth probabilities , the 
male and female employment transition probabilities, the male 
and female license holding transition probabilities, and the 
household type transition probabilities . 

Initial Sample Weighing 

MIDAS stimulates the evolution of a subset of those Dutch 
Panel households that participated in Waves 1, 3, and 5. (The 
Dutch Panel is made of 10 contacts. The data used in this 
paper are from Waves 1, 3, S, 7, 9, and 10, which correspond 
to March of 1984, 1985, 1986, 1987, 1988, and 1989, respec­
tively. The data of Waves 1, 3, 5, 7, and 9 are used for 
estimation and the data of Wave 10 for validation.) Many 
models in MIDAS are dynamic, requiring observations from 
three time points in the simulation. Because of the initial 
sampling scheme and attrition, this subset of panel households 
does not represent the Dutch population. Two sets of weights 
have been developed for this subsample using available na­
tionwide statistics . The weights are later used to duplicate 
households by Monte Carlo simulation [the derivation, use , 
and comparison between alternative weighing schemes are 
described elsewhere (2)]. 
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MOBILITY COMPONENT 

The MIDAS mobility component consists of a car ownership 
model, household motorized-trip generation models, a modal 
split model , car-trip distance models, and transit-trip distance 
models. All models are formulated for weekly totals. These 
mobility measures are obtained from the Dutch Panel survey 
in which only household members at least 12 years old were 
requested to report trips, and trips made by individuals less 
than 12 years of age are not reflected in the measures. Con­
sequently, the MIDAS mobility component does not reflect 
trips made by individuals less than 12 years old. 

Car Ownership Model 

An ordered-response probit car ownership model is used to 
determine household car ownership in MIDAS. This model 
probabilistically describes the choice of an alternative from 
among a set of ordered discrete alternatives. A household's 
choice of the number of cars to own falls in this class of choice. 
The model assumes the presence of a latent variable that 
cannot be directly measured but is related to the observed 
choice-the number of cars owned in this case. Correspond­
ing to a level of car ownership is a range of the latent variable 
value, which is defined by unknown threshold values. The 
model is a discrete choice dynamic model with serial corre­
lation and was estimated in a five-stage maximum likelihood 
method (JO). 

The short-term MIDAS forecasting performance has been 
tested in a validation exercise. The models in the MIDAS 
mobility component are used to predict Wave 10 mobility 
measures using observed explanatory variable values from the 
Wave 10 data. Predictions thus obtained are then compared 
with observed measures in the Wave 10 data. The validation 
effort of this study is based on longitudinal data [i .e. , a subset 
of observational time points (Wave 10 data) is set aside for 
validation] . If the models replicate Wave 10 observations well, 
evidence is offered that the models are capable of providing 
adequate short-term forecasting by replicating the sample 
closely. 

The first part of Table 1 presents the average of five sim­
ulation runs. Car ownership levels are correctly forecast for 
approximately 90 percent of the sample households. The av­
erage number of cars per household is predicted to be 0.922, 
whereas the observed Wave 10 average is 0.945. The error is 
within 2.5 percent . 

Dynamic Motorized-Trip Generation Models 

Weekly household motorized-trip generation models, based 
on data from Waves 1, 3, 5, 7, and 9, have been developed 
separately for households with cars available and those with­
out a car available. The variables used in the models are the 
number of diary keepers, number of women, number of men, 
number of workers, a set of income variables, car ownership, 
number of drivers, household types, residence area type, and 
a lagged dependent variable (number of trips a year ago) . 

Table 1 summarizes the validation results of the motorized­
trip generation models . Two models have been formulated, 
separately for car-owning and carless households . The models 
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are also dynamic with lagged dependent variables and serially 
correlated errors . Predictions are produced with two different 
methods: (a) using observed Wave 10 car ownership to classify 
sample households into car-owning and carless households 
and to exogenously determine the value of a multicar own­
ership dummy variable in the model for car-owning house­
holds; and (b) using simulated Wave 10 car ownership levels 
to classify households. The second method, which more closely 
represents MIDAS simulation forecasting, is subject to ad­
ditional errors in household classification. 

The results indicate that the models are performing well , 
in particular the one for car-owning households. The larger 
errors observed for the model for c·arJess households are pre­
sumably due to smaller sample size. 

Modal Split Model 

Level-of-service data are not available to describe trip char­
acteristics by alternative modes that connect given origin and 
destination zones. Modal split models that can be developed 
with this limitation are not trip-interchange (postdistribution) 
models that focus on modal competition at the disaggregate 
trip level. A new model structure, binomial logistic (BL), has 
been defined in this study to predict modal split. 

Since land use and transportation network data for the 20 
municipalities from which the Dutch Panel sample was ini­
tially drawn were not available, the only available measures 
on the supply side are a rough indicator of transit service level 
by municipality and accessibility measures by mode based on 
destination choice models (JI) . 

The panel data set contains weekly travel information, which 
represents many travel mode choices repeated by the same 
household members. These repeated choices may be collec­
tively explained by accessibility or other macroscopic level­
of-service indicators. 

Furthermore, mode choice may be made considering not 
each trip but a series of linked trips to be made as a whole 
by the individuals. Then the attributes of trips by alternative 
modes between a given origin and destination pair may not 
be as influential as one might think. To the contrary, house­
hold car ownership , the number of drivers in the household, 
overall level of transit development, and other sociodemo­
graphic attributes may be the major determinants of weekly 
household modal split. From this viewpoint, the appropriate 
measure of mode choice is the relative frequency of trips made 
by a particular mode rather than the mode chosen for each 
trip. These considerations motivated the new modeling effort 
reported by Goulias and Kitamura (12). 

The BL model performed well in terms of data replication. 
The variables used were the number of diary-keepers in the 
household, number of cars available, number of drivers, and 
level of public transit availability. In particular, the results 
indicate that households without a car available and house­
holds in a large urban area with a regional transit district tend 
to have higher fractions of public transit trips. 

The weekly household modal split model is validated sim­
ilarly through simulation. The analysis here used Wave 10 
observed explanatory variable values . The model's perfor­
mance is evaluated in terms of the fraction of transit trips and 
the number of transit trips. The Wave 10 observed number 
of motorized trips is used together with a predicted fraction 
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TABLE 1 Mobility Component Validation with Wave 10 Observations 

Car Owgmhlp Model CDve s!mulatlog rugs) 

Predicted 
Observed Zero Cars One Car Two+ Cars Total 

Zero Cars 217 12 0 229 
(%) 17.2 0.9 0.0 18.1 

One Car 21 816 39 876 
(%) 1.7 64.5 3.1 69.2 

Two+ Cars 0 59 101 160 
(%) 0.0 4.7 8.0 12.6 

Tota l 238 887 140 1265 
18.8 70.1 11.1 100 

% of cases correctly classified = 89. 7 

Weekly Motorized· Trip Gggeratlon Models cove s!mulgt!on rugs) 

N 
Trips Observed 
Trips Predicted 
%Error 
MAE 
MSE 
R2 

Car Owners 
(a) (b) 
1036 
32.1 
32.9 

2.65% 
9.2 

134.6 
0.725 

31.2 
-2.64% 

10.6 
182.6 
0.620 

Non Car Owners 
(a) (b) 

229 
12.1 
13.0 

7.51% 
5.7 

51.1 
0.648 

13.0 
7.26% 

5.9 
58.0 

0.597 

Weekly Household Modal Split Model cove s!mulallog ryosl 

Proportion of 
Transit Trips 

Number of 
Transit Trips 

Observed 
Pred (1) 
%Error 
Pred (2) 
%Error 
MAE 
MSE 
Correlatlon 

0.140 
0.146 
4.7% 
0.134 
4.5% 
0.121 
0.040 
0.637 

2.9 

2.7 
8.4% 

2.9 
22.7 

0.519 

Notes: (a) Observed car ownership levels are used as input. (b) Simulated car ownership levels are used as 
input. MAE = Mean absolute error, average of the absolute difference between observed and estimated 
value. MSE = Mean square error, average of the squared difference between observed and estimated value. 
Pred(l) =Average of (1/(l+exp(-Wx)) across observations. Pred(2) =Obtained by simulation. 

of transit trips to obtain the latter measure. The model is 
performing well as indicated in Table 1. 

In validation, the correlation coefficients between observed 
and predicted Wave 10 mobility measures are often as good 
as those obtained during model estimation; the models are 
not only replicating observed behavior well but al o predicting 
future (i.e. Wave 10) behavior with comparable accuracy. 
The analysis of tlLis section lends support to the simulation 
forecasting reported in the next section. 

MIDAS LONG· TERM FORECASTING 

The evolution of household demographics and socioeconom­
ics, car ownership, and mobility is simulated with MIDAS 

using the expanded/weighed panel hou ehold samples. A sim­
ulation period of 25 years is used tarting with 1986 whe11 
the Wave 5 survey was conducted, and ending in 2010. One 
year is used as the time increment in the simulation. There· 
fore the characteristics of each sample household are updated 
25 times in the simulation. 

One of the objectives of this study is to examine whether 
dynamic microsimulation forecasting is practical and mean­
ingful. Manipulation of the MIDAS parameters that have 
been estimated using the Dutch Panel data is kept to the 
minimum in this paper. In this section, the results of a baseline 
MIDAS run-Baseline Scenario-are compared with ob­
served Dutch national mobility statistics (hereafter called the 
OVG mobility measure ) car ownership forecasts by van den 
Broecke (hereafter called the VDB forecasts) and mobility 
forecasts by the national model. 
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The MIDAS baseline forecast represents an income growth 
of 57 percent by 201 0. The results are presented in Table 2 
for 1986 (the base year) 1995, 2000 2005 and 2010. All 
MIDAS results presented in thi ection are averages of five 
simulation runs repeated for each simulation case using dif­
ferent seeds for random number generation. 

Comparison with Observed 1986 OVG Mobility 
Measures 

Dutch national mobility statistics (13) are used to examine 
the closeness to the Dutch population of the panel sample 
used in MIDAS . The results are summarized in Table 3. The 
survey years are exactly the same (i.e., 1986). The two set 
of mobility mea ures are similar, in particular trip generation 
measures . 

The MIDAS base year trip rates are consistently below the 
1986 OVG trip ra te . It is believed that the OVG mobility 
measures are averages over all days of the week, including 
Saturdays and Sundays. For example, the motorized-trip rate 
is 0.5 percent below the comparable OVG trip rate. Thi i 
a weak indication of underreporting in the Dutch panel urvey 
(14,15). 

Comparison with the VDB Forecasts 

On the basis of a cohort model , van den Broecke produced 
driver's license holdings and car ownership forecasts for the 

TABLE 2 Baseline MIDAS Forecasts, 1986-2010 

Population (x lo6) 
Population, "' 12 Years Old (x 106)++ 

Household Size 

Labor Force Participation• 

Average Income per Employed Person 

Number of Licensed Drivers (x 1()6)'• 
Percent of Licensed Driven; 

Numberof Automobiles (x Io6)°• 
Automobiles per Peraon 
Automobiles per Household 
Automobiles per Driver 

Number of Motorized Trips per Week 
Per Person 
National Total (x lo6) .. 

Number of Car Trips per Week 
Per Person 
National Total (x lo6)•• 

Number of Transit Trips per Week 
Per Person 
National Total (x lo6) .. 

++van den Broecke (16.) 

Base 
Year 
1986 

14.5 
12.3 

2.64 

42.7% 

100 

7.19 
49.6% 

4.50 
0.31 
0 .82 
0.62 

9.35 
115.0 

8.28 
101.8 

1.07 
13.2 
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Netherlands (16- 18). His forecasts are compared with MIDAS 
forecasts in Table 3. The driver population and the national 
car ownership forecasts by VDB are close to the MIDAS 
forecasts. 

Good agreement exists between VDB and MIDAS in the 
2010 labor force participation forecasts, which are represented 
here as the percentage of employed persons in the total pop­
ulation. MIDAS assumes practically the same income growth 
rate as VDB . Considering the fundamental differences in data 
and methodology, the compatibility between the VDB fore­
casts and MIDAS results, including driver's license and car 
ownership, is striking. 

Comparison with the National Model 

The Dutch national model provides the only mobility forecasts 
available to this study (19,20). The results are summarized in 
Table 4 along with MIDAS forecasts . The differences in 
household size and labor force participation are similar to 
those seen earlier. 

The 2010 driver's license holding in the national model 
forecasts is practically identical to the forecast by MIDAS. 
Driver's license holdings are forecast in the national mode 
using a set of discrete choice models formulated at the house­
hold level. Thus the forecast is not a simple extrapolation of 
observed trends . MIDAS forecasts are based on transition 
probabilitie of licen e holding , whereas vari den Broecke's 
forecast relies on license ownership probabilit ies assumed for 

MIDAS fo recasts 
1995 2000 2005 

2.38 2.20 2.06 

49.8% 48.4% 45.0% 

127 134 143 

.'ill .2% 61.6% 65.2% 

0.39 0.42 0.45 
0 .92 0.92 0.92 
0.66 0.68 0.69 

11.64 12.29 12.91 

10.38 10.95 11.54 

1.27 1.34 1.37 

2010 Growth 

15.1 4.1 % 
13.0 5.7% 

1.94 -26.5% 

41.2% 

157 

10.04 
66.5% 

7.10 
0.47 
0.90 
0.70 

12.86 
167.2 

11.47 
149.1 

1.39 
18.1 

39.3% 

57.8% 
51.6% 

9.8% 
12.9% 

37.5% 
45.4% 

38.5% 
46.4% 

29.9% 
37.1% 

The 2010 figure was adjusted to agree with the CPB forecast. 
•Among individuals of 15 years old and over (CPB), or 18 years old and over (MIDAS) . 
.. MIDAS forecasts are expanded using the national popu'lalion (of individulas of 12 yeara old and over for mobility 

measures). 
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TABLE 3 Comparison of MIDAS Sample and MIDAS Forecasts with 1986 OVG Observations and 
VDB Forecasts 

Population (x 106) 
Population, ;;,,: 12 Years Old (x 1CJ6)++ 

Number of Motorized Trips per Week 

MIDAS 
1986 

14.5 
12.3 

Per Person 9. 73 9.35 
115.0 National Total (x 106) .. 

Number of Car Trips per Week 
Per Person 8.47 8.28 

101.8 National Total (x HJ6)•• 

Number of Transit Trips per Week 
Per Person 1. 26 1.07 

13.2 National Total (x 1()6)"• 

Vehicle-Kilometers Driven per Week 
Per Person 114.1 87.5 

1076 National Total (x lo6)•• 

Transit Passenger-Kilometers Trips per Week 
Per Person 28.7 23.0 

283 National Total (x lo6)•• 

Population (x 1()6) 
Population, ;;,,: 12 Years Old (x lo6)++ 

Labor Force Participation2 

Average Income per Employed Person 

Number of Licensed Drivers (x lo6) •• 
Percent of Licensed Drivers in Population 

VD Bl 
1!185 2010 

31% 

100 

6.90 
48.0% 

38% 

170 

9.30 
61.0% 

MIDAS 
1986 2010 

14.5 15.1 
12.3 13.0 

31.5% 38.6% 

100 157 

7.19 10.04 
49.6% 66.5% 

NumberofAulomobiles(xlo6)"• 4.50 7.90 4.50 7.10 
Automobiles per Person 0.31 0.52 0.31 0.47 
Automobiles per Household 0.82 0.90 

•cas (13) 
++Van den Broecke (16). 

The 2010 figure was adjusted to agree with the CPB forecast. 
••MIDAS forecasts are expa.nded using the national population of individulas of 12 years old and over. 

lVan den Broecke (17) 
2Percentage of employed persons in the total population. 

respective population age cohorts. These three entirely dif­
ferent forecasting methods have produced 2010 driver pop­
ulation forecasts that are within 8 percent of each other. 

Vehicle-kilometrage growth forecasts of MIDAS and the 
national model are again strikingly similar. The national model 
forecasts an increase of 72 percent by 2010. The corresponding 
MIDAS forecast is an increase of 80.5 percent . 

The forecasts of public transit use are drastically different 
between the two . The national model predicts a slight de­
crease in public transit passenger-kilometers by 2010, and 
MIDAS forecasts an increase of 46 percent in car trips and 
an increase of more than 112 percent in vehicle kilometers. 
No changes in accessibility and levels-of-service are assumed 
in either method. 

This discrepancy in public transit use between MIDAS and 
the national model is perhaps the single most important dis­
crepancy. Unfortunately, there is no other comparable fore­
cast available to this study to indicate which forecast is more 
likely. Both are based on elaborate model systems formulated 

at the household level. One important difference is that the 
national model is formulated using cross-sectional data, and 
longitudinal changes io population compo itions are repre­
sented by weighting households (a· in static micro imulation) . 
MIDAS, on the other hand , is based on longitudinal data and 
simulates household evolution over time . 

CONCLUSIONS 

This study, representing an entirely new approach to travel 
demand forecasting, is based on the recognition that no ex­
ternal demographic and socioeconomic forecasts are furnished 
at levels that meet the data requirements of ophi ticated dis­
crete choice model currently used in transportation planning. 
Specifically, no external foreca t are produced to provide a 
multivariate distribution of the array of explanatory variables 
typically used in travel choice models at the levels where these 
models are formulated (i.e., households or individuals). 
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TABLE 4 Comparison of MIDAS Forecasts with National Model Forecasts 

National ModeJ# MIDAS 
1986 2010 1986 2010 Growth 

Population (x 106) 14.3 15.1 14.5 15.1 
Population,;,: 12 Years Old (x 106)++ 12.3 13.0 

Household Size 2.70 2 .29 2.64 1.94 

Total Workforce (x 106) 4.6 6.1 
Labor Force Participation 39.2% 48.5% 42.7% 41.2% 

Number of Licensed Drivers (x 1Q6f• 6.6 10.4 7.19 10.04 
Percent of Licensed Drivers 46.2% 68.9% 49.6% 66.5% 

Number of Automobiles (x 1Q6) .. 4.3 7.9 4.50 7.10 
Automobiles per Person 0.30 0.52 0.31 0.47 
Automobiles per Household 0.81 1.20 0.82 0.90 

Change in Weekday Vebicle-KilomctecsZ +72% 
Vehicle-Kilometers Driven per Week 

Per Person 87.5 149.4 70.7% 
National Total (x 106) .. 1076 1942 80.5% 

Change in Weekday BMT Passenger-Kilometer.;2 -7% 
Change in Weekday Rail Pa ·enger-Kilometen;2 -2% 
Tra11sit Passenger-Ki lomcters per Weck 

Per Person 23.0 46.3 101.3% 
National Total (x 106) .. 283 602 112.7% 

# Vrolijk, Gunn and van der Hoorn (19), Gunn, van der Hoorn and Daly (20) 
++van den Broccke (.16) • 
.. MIDAS forecast nre expanded using the national population (of individulas of 12 years old and over for 

mobility measures). 
lEstimated using the total population and the number of households used in a National Model study. 
2Read from a graph in (20) 

The use of dynamic microsimulation is motivated by its 
flexibility and its ability to forecast direct and indirect effects 
of the simulated policies on the system analyzed. Microsimu­
lation helped to fill the gap in forecasting the input to travel 
demand models and provided the framework for designing 
the new dynamic forecasting tool MIDAS. It generates de­
mographic and socioeconomic, as well as car ownership and 
mobility forecasts internally through microsimulation. A sys­
tem of dynamic models estimated using the Dutch National 
Mobility Panel data set is applied in this simulation. 

The primary objective of the study-to determine whether 
long-range travel demand forecasting can be practically and 
meaningfully performed using microsimulation with a system 
of dynamic models and parameters estimated using a panel 
data set-has been met, along with the secondary objective­
to design a flexible tool for building scenarios based on al­
ternative policy strategies. The forecasting exercise reported 
here is the evidence that a dynamic microsimulator is a cred· 
ible forecasting model system. In addition, a large number of 
parameters can be modified by the user to represent scenarios 
of interest; the microsimulator can automatically ·imulate the 
repercussions that follow and reflect them in its mobility 
forecasts. 

Dynamic microsimulation offers many advantages over the 
traditional cross-sectional models with externally produced 
sociodemographic variables . However, it is complex and re­
quires a large amount of data. The estimation of a dynamic 
mob'ility model requires more data than does a corresponding 
cross-sectional model. The estimation of dynamic models us-

· ing panel data requires additional attention because of panel 
attrition, wnditioning, and fatigue. 

The dynamic microsimulator described in this paper is the 
first step toward a full-fl edged dynamic microsimulation fore· 
casting system in the transportation planning field . Despite 
meeting the study objectives, the dynamic microsimulator is 
not yet a completed tool. It cu1Tent version needs to be 
improved in a number of ways (2,9). 
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Fixed-Point Approach To Estimating 
Freeway Origin-Destination Matrices and 
the Effect of Erroneous Data on Estimate 
Precision 

NANCY L. NIHAN AND MOHAMMAD M. HAMED 

A fixed-poi~H. 1ppro:1ch .was <1pplied to t.he problem of esrimating 
freeway ongrn-dcst111a11on (OD) matrices given historical se­
ql.•enccs of inpu.l and utput counts. Thi" estimator was compared 
wtth other previously tested estimator in imulation experiments 
that demon trated the propcrtie of rhe chosen estimator and the 
effect of crroneou data on the pre.ci j n of the D estimates. 
The simulation results indicated that the fixed-point estimator 
produced the mo t accurate OD e timates of those te ted and 
that data with mea urement error (e.g., from malfunctioning loop 
detectors) severely affect the precision of OD estimates. 

Research on improved methods of control and management 
of traffic on urban freeways has been gaining increased at­
tention because of growing freeway congestion coupled with 
limited foreseeable investment in new infrastructure. Atten­
tion is now concentrated on efforts to improve the efficiency 
of existing facilities through better means of freeway surveil­
lance, ramp metering, incident detection, and so forth. To 
achieve maximum effectiveness in these areas, we need the 
capability of anticipating traffic pxoblems, such as bottle­
necks, before they occur. Therefore, models that produce 
accurate short-term forecasts of freeway flow are a top prior­
ity . Such model usually require an accurate estimate of the 
freeway origin-destination (OD) matrix. An origin-destination 
matrix give· the magnitude of travel durin a given interval 
of time from each of the trip origins (on-ramps) lO each of 
the trip destinations (off-ramps). In practice, the true OD 
matrix is seldom available because the collection of OD data 
i costly, Lime con ·uming and Jess accurate than the more 
easily collected traffic volume data. nsequently there has 
been con ' iderable research interest in the development of 
models or techniques that are capable of estimating freeway 
OD matrices from input and output counts . Such data are 
usually collected automatically through loop detectors in­
stalled at different sections of the freeway. Since these counts 
are collected continuously, models that could use these counts 
to estimate OD patterns could also provide important infor­
mation on changes in trip patterns over time to traffic and 
transit planners. 

Research in this area of model development can be grouped 
into two main categories. In the first category (static models), 
only a single set of input and output counts is used for esti-

Department of ivil Engineering, 121 More Hall, FX-10, University 
or Washington, ca1tle, Wash. 98195. 

mation. The estimation problem here is underdetermined, 
and a prior OD matrix is required to produce the "updated" 
e timate. The e timation proces involves updating the prior 
OD matrix in such a way that the updated estimate reproduces 
the selected set of input and output counts . However, the 
quality of such updated matrice dep nds on th quality of 
the prior estimate which , in most cases, i poor and difficult 
to obtain (J). Studies in this category of model development 
include Van Zuylen and Willumsen (2). Willum en (3) Van 
Zuylen (4) Nguyen (5) Cascetta (6) Maher (7) toke · and 
Morris (8) and I lendrickson and McNeil (9). ln the second 
category of model development research (dynamic models) , 
historical sequences of input and output count are consid­
ered . The use of time serie data her causes the e e~timation 
problems to be overdetermined. Studies in lhi category in­
clude Cremer and Keller (JO 11) and Nihan and Davis (1,12). 
These authors present a number of algorithms that are based 
on predi tion-error minimization methods to estimate move­
ment volumes for a single intersection given time series of 
entering and exiting counts at each intersection leg, There 
has been limited success, to date, in extending the application 
of the second category of models to more complicated net­
works. This paper addresses the application of such models 
to a simple freeway network_ 

Most of the models developed for estimating OD matrices 
assume the availability of error-free data. However, recent 
studies by Jacobson et al. (13) and Chen and May (14) indicate 
a number of ways in which loop detectors can malfunction 
and provide erroneou data [e.g., stuck sen ors chatting, 
pul e breakup, hanging (on or off) , and intermittent mal­
functioning) . Since our interest lies in estimating the OD ma­
trix parameters from time series of input and output counts 
and ince the estimation assumes con ervation of flow in each 
time period , it is important that the data observed be as error­
free as possible. This wa · the rnotivat ion for the second part 
of our tudy, which addre.sed th p tential impact of mea­
surement error in resulting OD estimates. 

Thi paper attempt to accomplish two tasks . The fir t is 
the d vel pment of an estimation technique ba ed on the 
"fixed-point problem" (FPP) approach that i capable of es­
timating the freeway OD matrix given time serie of input 
and output count . The econd involves exploration of the 
effect of mea uremenl error in input and output counts (e.g., 
due to faulty loop detectors) on the precision of estimates 
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and the asymptotic properties of estimators used. The mal­
function of loop detectors is simulated by adding a measure­
ment error to traffic counts at selected entry or exit points. 
Loop detectors in good working condition (reliable traffic 
counts) are represented as having zero measurement error, 
whereas malfunctioning loop detectors are simulated by add­
ing a measurement error term to the data. 

PROBLEM DESCRIPTION AND MODEL 
FORMULATION 

Problem Description 

The objective of this research was the development of an 
algorithm that could accurately estimate the proportion of 
flow from each on-ramp to each off-ramp given a section of 
freeway and time-series of entering (on-ramp) and exiting 
(off-ramp) counts. Specifically, the objective was the esti­
mation of the OD matrix proportions b;;(t) given time series 
counts of q(t) and y(t) (input and output counts respectively) 
so that Constraints 1 and 2 are satisfied. 

N 

2: b;;(t) = i.o i = 1, 2, .. . , M (1) 
; - 1 

i=l,2, ... ,M j=l,2, ... ,N (2) 

where 

b;;(t) the proportion of vehicles originating at i and des­
tined for j at time t , 

M = total number of origin points (on-ramps and up­
stream mainline), and 

N = total number of destination points (off-ramps and 
downstream mainline). 

The first two constraints ensure conservation of flow during 
each time interval and elimination of any negative OD vol­
umes, respectively. A third constraint prohibits flow from an 
on-ramp to an upstream off-ramp: · 

b;;(t) = 0 (i, j) E Z (3) 

where Z is the set of OD pairs that are known a priori to 
have zero flow. 

Cremer and Keller (10,11) showed that the output counts 
can be expressed as weighted sums of input counts. 

y'(t) = q'(t)B(t) + e'(t) 

E[y;(t)] = 2.;b;1q;(t) 

(4) 

(5) 

where 

q(t) 
y(t) 
B(t) 

x(t) 
e'(t) 

= m x 1 vector of input counts for time t, 
= n x 1 vector of output counts for time t, 
= m x n matrix with elements b;1(t) = proportion of 

trips from i to j during time t, 
m x n matrix of OD volumes for time t, and 
transpose of the n x 1 vector of prediction errors 
(assumed independent and normally distributed). 
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Although this formulation was developed for intersection 
models, where the travel time from origin to destination is 
very short, it was assumed that this could also be applied to 
the freeway OD problem , provided that the time interval , t, 
were long enough to accommodate increased travel times. It 
was further assumed that an interval three or four times longer 
than the longest OD travel time for the study section would 
be acceptable. This would allow most trips that originated at 
some point in the freeway section during that interval to be 
completed within the same interval. This simple, first-stage 
assumption avoided the necessity for a more complex for­
mulation including lagged input variables . 

Previous Estimation Approaches 

Typically, there are two possible approaches to estimating the 
OD matrix parameters from time series counts: recursive (On­
line) and nonrecursive (off-line). In the nonrecursive ap­
proach it is assumed that the B(t) matrix is time invariant and 
that the OD parameter estimates apply for the entire period . 
In the recursive approach, the B(t) matrix is allowed to vary 
with time, and a new set of OD estimates is produced for 
each interval in the time period. 

Nonrecursive Estimators 

If the OD matrix can be assumed to be time invariant, Equa­
tion 4 becomes a standard linear regression equation, and, 
since the time series counts of inputs and outputs are known, 
the ordinary least squares (OLS) estimator can be used to 
estimate the OD matrix. The objective is to choose the B(t) = 
B matrix that minimizes the sum of the squared prediction 
errors: 

(6) 

A constrained least squares (CLS) approach that ensures 
that Equations 1 and 2 are satisfied can also be applied in the 
same manner . 

An alternative estimation method, the expectation max­
imization (EM) algorithm (15), has also been applied to the 
time invariant OD problem . Given that we only observe q;(t) 
and y;(t), the EM algorithm lends itself nicely to this under­
determined problem. For nonrecursive estimators, assuming 
that the input counts are generated by random variables that 
are independent across time, the likelihood of the OD move­
ments [x;;(t) = b;;q;(t)] can be given by 

L; {x;1(t), b;1, i = 1, ... , M, j = 1, 2, ... , N} 

(7) 

It can be shown that the maximum likelihood estimator of 
log (L) is 

i = 1, 2, .. . , M 

j = 1, 2, ... , N (8) 

In an intersection application of the EM approach , Nihan 
and Davis (1) treated the turning movements x;;(t)'s as out-
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comes of multinomial random variables, one for each entering 
leg. This was under the assumptions that the B(t) matrix was 
time invariant, the input counts q;(t) were known, that each 
driver arriving at Leg i of the intersection during t made the 
turning movement decision independently of all other drivers 
arriving during t, and that all vehicles entering during Interval 
t also exited during t (conservation of flow). With these as­
sumptions the expected value for each movement from Origin 
i to Destination j was given by 

(9) 

where x;/t) is the number of vehicles entering at i and exiting 
at j during Interval ! . 

The EM algorithm begins by estimating the conditional 
expectation of the turning movements X;i(t)'s given an initial 
estimate of the B(t) matrix and all input and output counts. 

2: ,.X;/t) = L,{E[x;j(t)]IB(t), q(t), y(t), 

t = 1, 2, ... , T} (10) 

The B(t) matrix is then reestimated by replacing Lx;/t) in 
Equation 8 with Lxq(t). The EM algorithm iterates between 
Equations and 10 until convergence is achieved. 

Applied to a four-leg i olated inter. ection with 100 simu­
lated data sets the EM estimate f the B(t) matrix showed 
much lower variances than a least squares- based estimator. 
However, these estimates did have significant biases. More­
over, the EM algorithm required high computational demands 
because both the inverse of the random vector y(t)'s covari­
ance matrix and the covariance matrix between xii(t) and y(t) 
(shown below) had to be calculated at each iteration (J). 

Recursive Estimators 

Cremer and Keller (JO) developed an algorithm for dynamic 
estimation of intersection turning movements. The algorithm 
could be used to estimate the B(t) matrix using the recur­
sion equations, which have the form of a stochastic gradient 
algorithm: 

bq(t) = b;j(t - 1) + q;(t)[y;(t) - q'(t)bj(t - 1)] (11) 

b/t) = b/t - 1) + (l/t)(R - 1)[y/t) - q'(t)bi (t - 1) (12) 

R(t) = R(t - 1) + (1/t)[q(t)q'(t) - R(t - 1)] (13) 

Other dynamic approaches considered by Cremer and Keller 
(JO) and Nihan and Davis (J) include recursive least squares 
(RLS), which is basically the application of OLS to sequen­
tial least squares equations, and normalized recursive least 
squares (RLSN), which includes the satisfaction of Con­
straints 1 and 2. 

TRANSPORTATION RESEARCH RECORD 1357 

Preliminary Test Using Nonrecursive Estimators with 
Freeway Data 

To date, the preceding approaches have seen limited appli­
cation and have been primarily used in estimation of turning 
movements for isolated intersections. When used to estimate 
the B(t) = B matrix of an isolated intersection, the OLS and 
CLS methods gave consistent, unbiased estimates and low 
computational demands (J). This inspired us to adopt the 
standard linear regression model as a starting point for esti­
mating the B matrix of a freeway section. 

Figure 1 shows a schematic representation of a section of 
Interstate 5 in north Seattle. The section consists of six origins 
(01-06) and three destinations (Dl-D3). A data set for this 
section (one time series count for each point of input and 
output) was obtained from Traffic Systems Management Cen­
ter of the Washington State Department of Transportation. 
These counts were automatically collected through loop de­
tectors installed on the freeway. To account for traffic conges­
tion and travel times from origins to destinations, the data 
were aggregated to 15-min counts for 24 hr, thus giving a time 
series length of 96. 

/' .. 

FIGURE 1 Section of Interstate 5 in 
north Seattle. 
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Table 1 gives the estimates of the B(t) = B matrix using 
both OLS and CLS. Although the actual B matrix is not 
known, it is clear that OLS failed to produce reasonable es­
timates (both Constraints 1 and 2 were violated). The esti­
mates produced by CLS satisfy Constraints 1 and 2 but are 
not realistic. For example, they suggest that about 45 percent 
of traffic that originates from On-Ramp 2 is destined to Off­
Ramp 1 and the rest (55 percent) is destined to Off-Ramp 2. 
Examination of actual data indicated that conservation of flow 
was never achieved at most time periods, an obvious indi­
cation of loop detector error. This warranted conducting sim­
ulation scenarios to investigate the effect of erroneous data 
on the precision of estimates for the various estimators. Be­
fore conducting these simulation scenarios, an additional es­
timator based on the FPP was developed and included in 
subsequent evaluations. 

Fixed-Point Estimation Approach 

As discussed earlier, the EM algorithm was successfully used 
(1) on an isolated four-leg intersection to estimate turning 
movements. However, the algorithm required high compu­
tational demands. Furthermore, to operationalize this algo­
rithm for the intersection problem, all U turns were prohibited 
to avoid having a singular covariance matrix of the random 
vector y(t) [since l;q;(t) = !.iyit)]. To operationalize the EM 
algorithm to estimate the OD matrix of a given freeway sec­
tion, one needs to prohibit at least one OD movement (e.g., 
0 4 to D2). This is realistic since on-off movements of such 
short distances are expected to be rare. 

To simplify calculations, the estimation problem was struc­
tured in such a way that each cell of the OD matrix could be 
estimated separately. This means replacing both the covari­
ance matrix of the random vector y(t) by its variance 
{!.,b1j(l - b11)q;(l)} and the covariance mat~i~ of X;it) and ~(t) 
by it variance fb1p - b;1)q;(t)}. The cond1ttonal expectation 
of the turning movements {x;/t)'s} are then given by 

TABLE I Performance of OLS and CLS 
Estimators on Actual Freeway Data 

Movement OLS CLS 
bij bij 

11 0.028 0.014 
12 0.090 0.005 
13 0.69S 0.977 

21 0.387 0.446 
22 O.S67 0.551 
23 -0.162 0.000 

32 -0.04S 0.000 
33 0.957 1.001 

42 -0.723 0.000 
43 2.366 1.002 

53 3.022 1.001 

63 1.056 1.004 

E{x;it)IB, q(t), y/t)} = b;/J;(t) + C{xij(t), Yi(t)} 

x Var- 1 {yi(t)}{y/t) 

- L;b;/1;(t)} 

where 

C{x;it), yi(t)} = {b;p - b;)q;(t)} and 

Var{y/t)} = L;bii(l - b;)q;(t) 

Equation 14 becomes 

E{x;it)IB, q(t), yi(t)} = b,1q;(t) + {b;i(l - bij)q;(t)} 

Summing overt, 

x {L;b;p - b;)q1(t)} - 1{yj(t) 

- L;b;/1;(t)} 

E[L,X;j(t)IB, q(t),y;(t)] = bijL,q;(t) 

+ 'L,{b1ic1 - b1)q;(t){yj(t) 

- 'L,b1/1;(t)} 

-T L,bijc1 - b1)q1(1)} 
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(14) 

(15) 

(16) 

Having structured the estimation problem in such a way 
that each cell in the B(t) matrix was estimated separately, it 
was decided to treat each function as an FPP (16,17). This 
essentially involves solving for the convergence point of a 
recursive estimation algorithm of the form bt ' 1 = g(bt) (i.e. , 
the poiot where b~+ a = b~ . Given f(b;) wh.ere 0 s b,1 s l , 
the objective is to find values s such that /(s) = 0. Let g(b 11) 

be an auxmary function such thats = g(s) wherever f(s) = 
0. The problem of finding s such that s = g(s) is known as 
the FPP, and s is said to be a fixed point of g(b;J. Thus, 
finding a fixed point for g(b11), 0 :S b;i :S 1, means finding a 
zero of f(b 1), 0 :S b;i :S 1. 

From equations 8 and 16, we can represent the recursive 
function as 

where 

Defining 

f(b;) = 'L,{biic1 - b;)q;(t)[y/t) 

- L,b;jq;(t)]IL;b;p - bi)q;(t)} 

form s = g(s) reduces to 

'L,{b;/l - b;)q;(t)[yj(t) - bi/J;(t)J 

-T L;bi/l - b;)q;(t)} = o 

(17) 

(18) 
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Thus, the problem is reduced to solution of a set of n nonlinear 
eq uations inn variables. A NAG routine C05NCF (18) that 
uses a modification of the Powel l hybrid iterative method is 
used to obtain a numerical solution, thereby giving the B(t) 
estimates . 

ALGORITHM TESTING 

In this section we investigate the accuracy of the estimators 
for freeway OD problems and the effect of detector mal­
function on the precision of the OD estimates and the prop­
erties of the estimators chosen. In addition to the newly de­
veloped estimator (FPP), other estimators already developed 
are considered. Cremer and Keller (JO) and Nihan and Davis 
(J) present a family of estimators based on the principle of 
prediction-error minimization that are also included. Thus, 
in this paper the following estimators are evaluated: 

1. OLS, 
2. CLS, 
3. FPP, 
4. RLS, and 
5. RLSN. 

Since these models require time series data of entering and 
exiting counts, it is important that the loop detectors provide 
us with accurate measurem~n t of traffic counts. To investigate 
the effect of measurement error on the estimates of the B(t) 
matrix, we consider two scenarios. The first d'eals with the 
case of no measurement error (i.e., no faulty or malfunc­
tioning loop detectors at entry or exit points). In the second 
scenario measurement error is introduced in both the input 
and the output counts. 

Scenario 1 

To test the properties of the algorithms with no measurement 
error in input or output counts, 50 simulated data sets were 
generated. Each data set consisted of five simulated days, for 
480 time periods. For the selected section shown in Figure 1, 
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inpu t counts (01-06) with a counting interval of 15 min were 
generated fo r 24 hr, giving . ix time ·eries of length 96 one 
for each origin. An OD matrix was assumed as part of the 
process to simulate the exi ting counts. Thi simulated matrix 
was taken a tbe " true' OD matrix. The OD volumes (x/ s) 
were generated by the IMSL subroutine GGMTN (IMSL) 
and summed to produce ·imulated exiting count y

1
(1). Hence , 

each simulated day consisted of the same entering counts but 
different ex iting counts. The difference between the total in­
puts and total outputs for each time period was zero (i.e., 
conservation of flow was attained). 

The FPP estimator was then applied using two simulated 
entering [q;(t)] and exiting Y;(t) counts to produce estimates 
of the true OD values. Table 2 gives the average of the OD 
estimates and the standard deviations determined across 50 
simulated data sets. These results indicate that the FPP es­
timator, in general, produced lower variances than did the 
least squares- based estimators. urthermore, the e, timates 
were genera lly unbia. ed and similar to th e produced by 
0 , CLS and RLS. Examining the averages of the B(t) 
matrix across 50 simulated data sets, we see that all estimators 
satisfied Constraints 1 and 2. Table 3 shows the absolute 

TABLE 3 Percent Absolute Difference Between bij and True by for 
Scenario 1 (No Measurement Error) 

Movement OLS CLS FPP RLS RLSN 

11 0.10 0.10 0.10 0.10 8.10 
12 0.80 1.00 0.70 0.80 9.50 
13 0.25 0.11 0.15 0.25 2.20 
21 1.20 1.20 0.40 1.20 19.4 
22 7.60 8.80 7.20 7.60 29.00 
23 0.60 0.60 0.60 0.60 0.60 
32 10.90 11.90 10.00 10.90 133.00 
33 1.56 1.32 1.44 1.56 14.79 
42 1.25 2.40 1.40 1.25 48.35 
43 1.00 0.60 0.75 1.00 12.09 
53 0.20 0.00 0.00 0.20 0.00 
63 0.30 0.00 0.00 0.30 0.00 

TABLE 2 Performance of Five Estimators on Simulated Data (No Measurement Error) 

OLS CLS FPP 

Movement True hij hij Sij hij Sij hij Sij 

11 0.100 0.0999 0.0028 0.0999 0.0028 0.0999 0.0025 
12 0.100 0.1008 0.00414 0.1010 0.0042* 0.1007 0.0037 
13 0.800 0.798 0.0061* 0.7991 0.0049 0.7988 0.0050• 

21 0.050 0.0506 0.0101 0.0506 0.0102 0.0502 0.009 
22 0.050 0.0538 0.0112• 0.0544 0.0121• 0.0536 0.0103• 
23 0.900 0.895 0.0164* 0.895 0.0145* 0.8950 0.0140• 

32 0.100 0.0891 0.0408* 0.0881 0.0422* 0.0900 0.039* 
33 0.900 0.914 0.0543* 0.9119 0.0421"' 0.913 0.0496* 

42 0.200 0.1975 0.0268 0.1952 0.0286 0.1972 0.024 
43 0.800 0.808 0.0469 0.8048 0.0287 0.8060 0.0345 

53 1.000 1.002 0.059 1.000 0.000 1.000 0.000 

63 1.000 0.997 0.020 1.000 0.000 1.000 0.000 

Results of Scenario 1. Averages (bjj) and standard deviations (Sij) for offline estimators. 

*Significant difference (0.05 level) betwee11 hij and true hij. 

RLS RLSN 

h ij Sij "bii Sij 

0.0999 0.0028 0.0919 0.0083. 
0.1008 0.00414 0.0905 0.0042• 
0.798 0.0061* 0.8176 0.0011• 

0.0506 0.0101 0.0597 0.0053* 
0.0538 0.0112• 0.0355 0.0098* 
0.8953 0.0164* 0.905 0.0146* 

0.0891 0.0408* 0.233 0.0374* 
0.9141 0.0543* 0.7669 0.0374* 

0.1975 0.0268 0.2967 0.0301"' 
0.8080 0.0469 0.7033 0.0301. 

1.002 0.059 1.000 0.0000 

0.9973 0.0200 1.000 0.0000 
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percentage difference between b,i and the true b,i for each 
movement. In general, the FPP estimator showed lower dif­
ferences compared with the least squares-based estimators. 
The normalized recursive lea t squares estimators produced 
the highest differences. Figures 2 and 3 show that both the 
recursive least squares and the normalized recursive least 
squares estimators were asymptotically unbiased. However, 
RLSN had a slower convergence than the RLS. This was to 
be expected, since the constraints had to be satisfied each 
time period. Figures 4 and 5 show that both the RLS and 
RLSN were asymptotically consistent since the variances ap­
proached zero. Again the RLSN had lower convergence. 

Scenario 2 

In this scenario, measurement error was added to selected 
entry and exit counts. It was assumed that the loop detectors 
at Origins 1 and 3 and Destinations 1 and 3 (see Figure 1) 
were malfunctioning. The measurement error at each entry 
and exit point was generated separately by an IMSL subrou­
tine GGNML, such that the variance of the measurement 
error at Origin 1 and Exit 3 was set to be 1.5 times the mean 
of the input counts, whereas the variance at Origin 3 and Exit 
1 was designed to be equal to the mean of the input counts. 
With the introduction of measurement error, the conservation 
of flow was no longer satisfied at each time period (i.e., the 
difference between the total inputs and total outputs at each 
time period was not zero). Table 4 gives the averages of the 
OD estimates and the standard deviations determined across 
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all data set . The results indicate that all e timato.rs produced 
biased estimates. The FPP e Limator, however, gave the low­
est variances compared with other e timators. FurtJ1ermore, 
the unconstrained estimators (OLS, RLS, and FPP) produced 
estimates that did not satisfy Constraints 1 and 2. Figures 6 
and 7 how the effect of mea urernent en-or on the asymp­
tomatic properties of RLS and RLSN. Although RLSN had 
slower convergence to the true value, it did not have a per­
sistent bias a did the RLS. ln terms of consi tency , Figures 
8 and 9 show that both estimators RLS and RLSN bad low 
convergence to zero compared with the case of no measure­
ment error (Figures 4 and 5). However, the RLS estimator 
showed faster convergence to zero than did the RLS (at least 
for movement b13). Although CLS provided the smallest sum 
of the absolute difference (Ilb11 - b1A). it produced very large 
percentage differences, particularly for Movement 22, 32, 
alld 42. Table 5 gives the ab olute percentage difference 
(lbq - b1Jlfbij) between the estimated and true OD parameters. 
The FPP estimator produced the econd-lowest sum of ab­
solute difference and generally the smallest percentage dif­
ference. 

CONCLUDING REMARKS 

In addres ·ing the problem of estimating freeway OD matrices 
from sets of input/output counts, several estimators were tested. 
The fixed-point estimator developed in this paper showed 
generally lower variances and more accurate estimates com­
pared with four least squares-based estimators. The paper 
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TABLE 4 Performance of Five Estimators on Simulated Data with Measurement Error at Entry Points 1 and 3 and 
Exit Points 1 and 3 

OLS CLS FPP RLS RLSN 
Movement True bij 'bij sii 'bij Sij 'bij Sjj 

11 0.100 0.099 0.0027* 0.105 0.004* 0.098 0.0026* 
12 0.100 0.097 0.004• 0.105 0.008* 0.096 0.003"' 
13 0.800 0.769 0.022* 0.787 0.012* 0.773 0.018* 

21 0.050 0.055 0.009* 0.032 0.013* 0.058 0.009• 
22 0.050 0.056 0.013* 0.031 0.023* 0.056 0.0102• 
23 0.900 0.981 0.055* 0.940 0.031* 0.967 0.052* 

32 0.100 0.088 0.038* 0.170 0.086* 0.091 0.030"' 
33 0.900 0.744 0.191 * 0.831 0.086* 0.760 0.162* 

42 0.200 0.228 0.032* 0.122 0.063"' 0.231 0.027"' 
43 0.800 0.884 0.165* 0.878 0.064* 1.005 0.129* 

53 1.000 1.250 0.261* 1.000 0.001 1.000 0.000 

63 1.000 0.993 0.059* 1.000 0.003 1.000 0.000 

Results of Scenario 2. Averages (bjj) and standard deYiations (Sij) for offline estimators. 

*Significant difference (0.05 level) between Gij and true bij. 

" bij Sij bij Sij 

0.099 0.0027* 0.101 0.015* 
0.097 0.004* 0.089 0.005* 
0.769 0.022* 0.810 0.014* 

0.055 0.009* 0.051 0.017 
0.056 0.013* 0.035 0.019* 
0.981 0.055* 0.914 0.022• 

0.088 0.038* 0.278 0.108* 
0.900 0.191* 0.722 0.108• 

0.228 0.032"' 0.297 0.063• 
0.884 0.165* 0.703 0.063* 

1.250 0.261* 1.000 0.0000 

0.993 0.059 1.000 0.0000 
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recursive estimators for Scenario 2. 
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TABLE 5 Percent Absolute Difference Between f," and True bu for 
Scenario 2 

Movement OLS CLS FPP RLS RLSN 

11 1.20 4.50 1.90 1.20 1.20 
12 3.50 5.00 4.40 3.50 ll.40 
13 3.90 1.60 3.40 3.90 1.30 
21 9.80 35.60 16.00 9.80 1.60 
22 12.40 37.80 12.40 12.40 29.80 
23 9.00 4.40 7.40 9.00 1.60 
32 12.00 69.60 8.80 12.00 17.80 
33 17.30 7.70 15.60 17.30 19.80 
42 14.00 39.0 15.50 14.00 48.50 
43 10.50 9.80 26.60 10.50 12.20 
53 25.00 0.00 0.00 25.00 0.00 
63 0.70 0.20 0.00 0.70 0.00 

also inve ligated the effect of erroneous dat.a on the precision 
of the estimates and the properties of th estimators used by 
con idering two scenarios. T he fir t ·cenario repre ented loop 
detectors that produce accurate traffic count.· in the second 
scenario selected entry a nd exit points were cho, e n as having 
faulty or malfunctioning loop detect r ·. Results indicated that 
mea ure menl error severely influenced the precision of OD 
matrix paramete r es timates (percentage error. we re ignifi ­
cant ly increa. ed; oastraints land 2 were no lo nger atisfied) 
and the asymptotic prope r tie of these e timators. For ex­
ample, the RLS became persistently bia. ed when measure­
ment error was introduced. Although these prelimi1iary re­
sults are based on simulated scenarios, they highlight the need 
for theoretical models that account for erroneous data. 

With present loop detector techno l gy erroneous traffic 
volume counts can be expected from time to tim . As illu. -
trated here, the presence of erroneous data severely affects 
the preci ion of OD matrix estimates. Therefore to obtain 
reasonab le e timates, e timators mu t be capable of handling 
data with measurement error. Another alternative would be 
the use of technology that does not inherit the same proble ms 
as loop detectors do. Resea rch in Lhis area is active in the 
Uniced States and E urope. On othe r a lternative currently 
pursued at different institutions is the d etection and diagnos­
ing of erroneous data from loop detector (13,14) before use 
in forecasting models. 
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Traffic Forecasting in the Helsinki 
Metropolitan Area Transportation 
Study 1988 

MATTI PuRSULA AND HEIKKI KANNER 

The models developed for traffic forecasting in the Helsinki Met­
ropolitan Area, Fioland are presented . The basic traffic survey 
f r the Helsinki Metropolitan Area Transportation tudy 1988 
wer done during 1987 and L988. The main field tudies were an 
origin-destination (OD) urvey of automobile traffic, an OD sur­
vey of public u·ansport , and a per onal trip diary interview. Mod­
eling of only internal trips made by inhabitant or the metropol­
itan area is described. The modeling was based on rhe trip diary 
interview. The model structure wa. basically a four-step model 
with feedback between the last three steps. Trip generation was 
calculated u~ing production and attraction rates. Mode and des­
tination choice were mostly modeled using nested logit models. 
[n network loading, a standard multipath equilibrium as ignment 
model (EMME/2 ·ystem) was u. ed. Trips were divided into four 
ca1·egoric according to trip purpose (home-based work trip , home­
ba ed school trip other home-based trips , and non-home-based 
trips). Four alternative modes were included in the mode choice 
models. The popu lation was divided into categories according to 
the different ·teps of the modeling. The most important cate­
gorization was the divi ion according to a per on' access to a 
car. Destination choice model. included 117 alternative de ti­
nations. The coefficients of mode choice model were logical and 
rhe variables predictable. The first destination choice models had 
some theoretical deficiencies, which were panly abolished using 
c nsrrained estimation. The model system with unconstraiJ1ed 
m del produced satisfactory forecasts. New m de.ls will be e -
tima1cd and new forecast will be made during L992. 

Tbe study area, the Helsinki metropolitan area, con ists of 
four cities: Helsinki (485 ,000 inhabitant) E p o (165 ,000 
inhabitants) , Vantaa (150,000 inhabitants), and Kauniainen 
(8 000 inhabitants). The city center of Helsinki is located on 
a peninsula in the Gulf of Finland , and the metropolitan area 
forms a half circle around it witb a radiu of 25 to 30 km (total 
area 1031 km2 land area 742 km2). In the city center there 
are about 118,000 workplaces and 59,000 inhabitants. The 
number of jobs in tbe whole metropolitan area i about 442,000. 

The car density in the a.rea is about 320 cars per 1,000 
inhabitants, and 60 percent of all households have at lea t 
one car. The public tran ·port sy tem of the area consists of 
bus and tram traffic, commuter and ordinary trains and one 
. ubway line cast of the city center. Of the 2 million internal 
daily trips of the inhabitants of the area, 46 percent are made 
by car 32 percent by public transport and 22 percent by 
bicycle or on foot. 

M. Pursula, Laboratory ofTransporuuion Engineering, Hel inki Uni­
versity of Technology, Rakentajanaukio 4 A , S -02150, El p o, Fin­
llind. 'H. Kanner, Vicnek Ltd. , Pohjantie 3, SF-02100, Espoo Finland. 

Bu es dominat in public transport. Tbree-fourth of all 
public tran port trip are made by bus. The share of public 
transport has been falling continuou ly during the la t 20 years 
as a result of growing car den ity. 

BASIC TRAFFIC SURVEYS 

The basic traffic surveys for the Hel inki Metropolitan Area 
Tran portation tudy l9 8 (LITU 88) w re done during 1987 
and 1988. The main field swdie were an origin-destination 
(OD) . urvey of automobile traffic (1), an OD urvey of public 
transport (2) and a personal trip diary interview (3). 

The OD urvey of automobile traffic wa done at 122 sites 
on 10 cordon line that divided the study area into 15 ubareas. 
At each site a mail-back questionnaire was given to 10 to 20 
percent of the driver of the passing au! mobiles (except buses) 
between 6 a.111 . and 8 p.m. The information a ked included 
OD data trip purpose , and number of pa senger in the car. 
The driver were also asked to draw the route of their trip 
on a map included in the questionnaire. The number of re­
turned and approved questionnaires was about 86,000 (37 
percent). 

The OD survey ofpublic tran port wa done by interviewing 
every fourth boarding pa enger in very fourth bus tram 
and train (i.e., 6.25 percent of passengers). The questionnaire 
was hort, and most of the passenger completed it during 
their trip and returned it directly to the interviewer. Only a 
mall number were returned by post. The most important 

information in the que. tionnaire was OD data and informa­
tion about the numb r of transfers needed during the trip in 
question. The number of accepted returned questionnaires 
was about 56 000, which is 5.6 percent of tbe 1 million board­
ings per day in the metropolitan area. 

The trip diary interview was person based. The main rea­
on, for the use of thi technique were the easines in ample 

formation and expan ·ion and the g od experience in some 
recent travel urvey in FiJ1Jand (4). 

The objective of the interview wa to gather daily travel 
data plus socioeconomic and other background information 
from 7 ,000 inhabitants of the metropolitan area. Only per on 
7 year of age or older were included in the original random 
ample which was about 2.5 percent (18 000 per on ) of the 

corre ponding population. About 66 percent of these had a 
telephone. 

The data were gathered by an informed telephone inter· 
view. This means that the questionnaire plus travel diary were 
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sent in advance to people with a telephone (11,900), and after 
the survey date the person in question wa phoned and the 
data were typed directly into computer memory. The number 
of accepted telephone interviews was about 6 100 and about 
600 accepted answer were collected by mail to represent 
those per ons who had no telephone or could not be reached 
by telephone. 

The trip diary interview study formed the basis for the 
traffic modeling. In this work the other studies were used 
mainly for comparison and validation. 

In all these surveys three basic zone systems were used. 
The data were gathered in a very detailed zone division with 
282 zones. The models and forecasts were made in a division 
with 117 zones. For aggregation purposes a division with 19 
zones was mainly used. 

TRAFFIC MODEL SYSTEM 

ln this paper only the modeling of the internal trips of the 
inhabitants of the metropolitan area is described (5). These 
trips are about 90 percent of all person trip in the area and 
the modeling i ba ed on the trip diary interview. The mod· 
eling of external trips and commercial traffic was done with 
simple methods and is not discussed here. 

The model structure is basically a four-step model with 
feedback between the last three steps. Trip generation is cal· 
cu lated using production and attraction rates. Mode and des· 
tination choice are mostly modeled using nested logit models. 
In network loading a standard multipath equilibrium assign· 
ment model (EMME/2) is u ed. 

Trips are divided into four categories according to their 
purpose: home-based work trips (33 percent), home-based chool 
trip (11 percent) other home-based trips (42 percent) , and 
non-home-based trip (14 percent) . In mode choice modeling 
there are four alternative mode : walk (and bicycle), car (driver 
or passenger), bus (and street car) and rail (train and sub­
way) . The access trip to rail are made on foot or by bu . 
Less than 2 percent of rail passengers use park-and-ride, and 
this mode is not included in the model. 

The share of non-home-based trips in the data is low. There 
are two main reasons for this. The first is that, in the trip 
diary survey, short (less than 5 min travel time) non-home­
based pede trian and bicycle trip were purposely left out. 
The econd i tha non-home-based pedestrian and bicycle 
trip are not included in the models. The original share of 
non-home-based trips in the data is 19 percent This is the 
same as in the corresponding survey in 1976 with no exclusion 
of short trip (6). In the latest nationwide study, the share of 
non-home-based trips is about 25 percent ( 4), and in a recent 
study in Oulu, a middle-sized Finnish city, it is about 33 per­
cent (7). 

The population i divided into different categories in dif­
ferent steps of modeling. The most important categorization 
i the division according to a person's acces to a car. Persons 
with a driving Li.cense who, according to their own tatements, 
practically always hav acces to a car for traveling belong to 
the category HAP (a Finnish acronym for persons who mainly 
use cars for traveling). Other people belong to the category 
EHAP (person who usually cannot u e car for traveling). 
About 46 percent of people aged 18 years or more belong to 
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the category HAP. This is clearly more than one person per 
car registered in the area. 

Table 1 gives the main structure of the modeling system. 
The HAP/EHAP grouping is used in two trip-purpose cate­
gories: other home-based trips and non-home-based trips. 
Some minor categorizations of the population that are used 
during the modeling are not given in the table. The mo t 
important of these are the age grouping and the groupi.ng of 
the people as working or nonworking (see, for example, 
Table 2). 

TRIP GENERATION MODELS 

The production and attraction rates are based on cross­
classification analysis of the survey data. The division of the 
population into detailed categories is hard to foreca t, so the 
trip production rates used in the traffic forecasts and given in 
Table 2 are based on very few categories. 

The generation-attraction principle cannot be applied to 
non-home-based trips. The production rates given for this trip 
category in Table 2 were used only to check the total number 
of non-home-based trips in the metropolitan area. The actual 
trip location for non-home-based trips were based on the 
number of inhabitants and jobs in the zones. The same prin­
ciple was used for all the attraction rates calculated in the 
study. 

The home-based school trips of persons aged 18 years or 
more are included in other home-based trips, and they are 
about 8.5 percent of all trips in this category. In this way the 
school trip category becomes homogeneous. For example, 
more than 75 percent of these trips are made on foot or by 
bicycle. 

No trip matrix balancing was done in the study. The at­
traction rates were used mainly for validation and evaluation 
for the forecasts in a later phase of the process. They were 
also used in the calculation of the size variable in some of the 
destination choice models. 

LOGIT MODELS FOR MODE AND 
DESTINATION CHOICE 

Estimation of the Models 

Nested logit models were used for mode and destination choice 
estimation for other home-based and non-home-based trips. 
The mode choice of home-based work trips was estimated 
with a logit model as well as the destination choice of the 
home-based school trips. 

The destination choice of home-based work trips was mod­
eled using a housing and workplace matrix from the popu­
lation censuses. This matrix gives the location of the home 
and workplace of every working person in the area . The work 
trips of the present situation were simply distributed using 
this matrix. The matrix was transformed for future situations 
with growth factors based on a gravity model analogy. The 
approximation method is rough and is not discussed further 
here. 

The mode choice of home-based school trips was based on 
the length of the trip. This could be done because walking 
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TABLE 1 Structure of the Modeling System of Internal Trips in LITU 88 

Trip purpose 

Home-based work 

trips 

Home-based school 

trip s 

Other home-based 

trips. 

HAP-persons" 

Other home-based 

trips. 

EHAP-persons" 

Non-home-based 

trips"", 

HAP-persons 

Non-home-based 

trips''. 

EHAP-persons 

Trip generation rates 

Production 

Trips/working 

person/day 

Trips/school-

aged person/day 

Trips/HAP-person/ 

day 

Trips/EHAP-person/ 

day 

Trips/HAP-person/ 

day 

Trips/EHAP-person/ 

day 

Attraction 

Trips/em­

ployee/day 

Trips/in­

habitant/day 

Trips/in­

habitant/day 

Trips/em-

ployee/day 

Trips/in­

habitant/day, 

Tripe/em-

ployee/day 

Trips/inha­

bitant/day, 

Trips/em-

ployee/day 

Trips/inha­

bitant/day, 

Trips/em-

ployee/day 

Mode choice 

Logit model 

Distance matri" 

Logit model 

Logit model 

Logit model 

Logit model 

Destination choice 

Housing and working 

place matrix 

Logit model 

Nested logit model 

Nested logit model 

Nested logit model 

Nested logit model 

HAP-person is a person that practically always has access to car for personal trips. 

Other persons are EHAP-persons. 

Walk (and bicycle) trips are excluded from this trip category. 
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and bicycling are so dominant in this trip category without 
direct access to a car. The mode and de tination choice of 
chool trips is not discussed furt her in tbe paper. 

In other home-based and non-home-based tri p categories, 
the nested logit models were estimated separately for H AP 
and E HAP person . A stepwise estimation procedure was 
used (i. e., th.e mode choice model was estimated fi rst, and 
the logsum term of that model was u ed as a variable in the 
estimation of the destination choice model). Simultaneous 
estimation was not possible in the original model work be­
cause of computer program restrictions. 

At first, estimation u ing amples with 31 zone per alternative 
was tried ju las in the corresponding study in 1976 (6) . The 
resul ts were poor, o the fu ll choice set wa used. The reason 
for the poor results with destination sampling was probably 
a bias in the methodology. The models were estimated ac­
cording to the rules of random sampling even though the 

The estimation of the destination choice models was done 
using all 117 zones of the metropolitan area as alternatives. 

trategy used wa ba ·ically a strati fied importance sampling 
described for example , by Ben-Akiva and Lerman (8). Ran­
dom ampling strategy and the stability of the coefficients will 
be studied during 1992. 

For each trip category where logit models were used for 
mode choice, two sets of models were estimated. The base 
models are detailed and include a larger number of variables 
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TABLE 2 Trip Production Rates (Trips/Person/Day) Used in Traffic 
Forecasts in LITU 88 

Trip purpose Population Trip production 

group rate 

Home-based work Working persons, 

trips age 18-64 years 1.43 

Other population 0.03 

Home-based school Age 7-17 years 

Other population 

1. 77 

trips• o.oo 

Other home-based Age 7-17 years 

EHAP-persons, age 18-

1.20 

1.10 

1.46 

trips'' 

HAP-persons 

Nonhome-based Age 7-17 years 0.12 

0.27 

0.67 

trips• .. EHAP-persons, age 18-

HAP-persons 

The school trips of persons aged 18 years or more 

belong to the trip category other home-based 

trips. 

HAP-person is a person that practically always 

has access to a car for personal trips. Others 

are EHAP-persons. 

Walk (end bicycle) trips ere excluded from this 

trip category. 

than the forecasting models that need Jess data and are used 
in the aggregate travel forecast . The focus of this paper is in 
the foreca ting models. Only one example of the base models 
is given here (Table 3). 

Travel cost for public Iran port are based on the ticket 
type of the passenger. Travel co ts for car (0 .46 FfM/km) are 
out-of-pocket cost (9). For home-based work trip the travel 
costs of a car do not include parking costs. They are calculated 
in the parkfog index, which is a linear combination of parking 
costs and the logarithmic ratio of parking demand to parking 
capacity. Variables and Coefficients of Mode Choice Models 

Table 3 give the variables and coefficientS of the mode choice 
models for home-based work trips. These models were esti­
mated without categorization by access to a car (HAP/EHAP 
grouping). 

The distance for walk trips is given in kilometers. This 
distance is for a one-way trip between home and work. The 
travel times, travel costs, and number of transfers in motor­
ized traffic are calculated for a round-trip. Travel times are 
given in minutes, costs in FIM ($1 U.S. is about 4.3 FIM), 
and household income in thousands of FIM per month. 

The total travel time includes walking, waiting, and in­
vehicle times. These are calculated from the traffic networks 
with the EMME/2 program. For rail users a special procedure 
is used to give all these components. 

The base model in Table 3 has more variables than the 
forecasting model. For example the possibility of a personally 
addressed parking place at the workplace and the po ibility 
of a company car are included in the model. A ·pedal variable 
to d cribe the length of the acces to rail tations is al o used. 

The model coefficients are logical, and the variable in the 
forecasting model are predictable. If an as umption of con­
stant cost/income relationship is made then no forecast is 
needed for these variables. 

The value of travel time calculated from the forecasting 
model in Table 3 with a mean household income of 12,000 
FIM/month is about 6.90 FIM/hr. This is about half of the 
price that was used in cost-benefit analyses by the Finnish 
National Road Administration in 1988 (9). From the base 
model the value of travel time for components of the work 
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TABLE 3 Variables and Coefficients of the Logit Models for Mode Choice of Home-Based Work Trips in 
LITU 88 

Forecasting model Base model 

Variable Coefficient t Coefficient t Modes 

Ln(distance) 3.601 36.3 Walk 

Total travel time -0.02154 -9.0 Bus, car. rail 

Trip cost/income -2.236 -29.9 Bus, car. rail 

Number of transfers -0.5170 -14.7 Bus. rail 

Cars/household 0.7896 5.1 -1.101 -5.6 Car/Bus.rail" 

Parking index -1.010 -4.9 -1. 000 -5.7 Car 

Walk-dummy 1. 873 13 . 8 -0.7411 -3.9 Walk 

Rail-dummy 0 . 3200 4.9 0.7837 4.7 Rail 

Car-dummy -1. 420 -9 . 6 -3.300 -18.5 Car 

Distance 0-10 km -0.8838 -28.2 Walk 

Distance 10- km -0.1639 -4.8 Walk 

Access walk time -0.03476 -7.7 Bus, car, rail 

In-vehicle time -0.01338 -3.9 Bus, car, rail 

Cost -0.2468 -29 . 4 Bus, car, rail 

Number of transfers bus -0.6980 -12 . 9 Bus 

Number of transfers rail -0.4229 -9.9 Rail 

Sex (female=O, male=l) 1.615 18 . 8 Car 

Waiting time -0.04733 -6 . 2 Bus, rail 

Access time/road distance -0.2781 -5 . 7 Rail 

Reserved parking 0 . 9888 8 . 3 Car 

Company car 1.293 11. 4 Car 

Number of observations = 4780 p2 = 0.360 n = 4780 p2 = 0.471 

Percent of correct predictions 66.6 72.8 

The variable cars/household is used for car mode in the forecasting model and 

for bus and rail modes in the base model. 

If the distance <• 10 km then 'Distance 0-10' equals the distance and 

'Distance 10 -· equals zero , If the distance > io km then 'Distance 0-10' equals 10 

and 'Distance 10-' equals (distance-10). 

trip can also be calculated : walk time 8.45 FIM/hr, waiting 
time 11.50 FIM/hr, and in-vehicle time 3.25 HM/hr. The ra tio 
of the component value. is approximately 2.5:3.5:1. This is 
in reasonably good accordance wi lh the international findings 
of traffic model studies (I O). 

Table 4 gives the models estimated for the HAP and EHAP 
populations for other home-based trips . In this trip category 

the model structure and most of the variables are the same 
as in the model for home-based work trips. The values of the 
variables are for round-trip except walking distance which 
is given as a sum of one or t.wo one-way distance variables in 
the same way as in the base model fo r home-based work trip . 
The parking costs are this time included in the cost/income 
variable . The parking conditions of the destination zone are 
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TABLE 4 Variables and Coefficients of the Logit Models for Mode Choice of Other Home-Based Trips in 
LITU 88 

HAP-population • EHAP-population 

Variable Coefficient t Coefficient t Modes 

···=·==·=====··=·==··=··==·==···········==·=··==•==•==·==·==·=====·==··=·•==··=··=· ·=··=· 
Diatance, 0-5 km ·- -0.7838 -13.0 Walk 

Diatance. 5-10 km 
.. 

-0.5489 -7.6 Walk 

Diatance, 0-10 km -0.7599 -29.6 Walk 

Total travel time -0.01943 -4.0 -0.01643 -6.2 Bus, car, rail 

Coat/income -0.7593 -8.4 Bua, car, rail 

Number of transfers -0.1875 -2.4 -0.4205 -10.0 Bus, rail 

Ln(parking ratio-5) -0.4376 -9.5 -0.3885 -9.2 car 

Acc. time/road dist. -0.4418 -3.8 Rail 

Walk-dummy 1.961 8.1 1.950 17.7 Walk 

Rail-dummy 0. 7967 2.8 -0.01898 -0.2 Rail 

Car-dummy 1.660 9.8 -1. 253 -12.7 Car 

Number of observations • 2542 p2 = 0.515 n = 4050 p2 = 0.267 

Percent of correct predictions 77.0 60.8 

HAP-person is a person that practically always has access to a car for personal 

trips . Others are EHAP-persons. 

If the distance <= 5 km then 'Distance 0-5' equals the distance and 

'Distance 5-10' equals zero . If the distance > 5 km and <=10 km then 

'Distance 0-5' equals 5 and 'Distance 5-10' equals (distance-5). 

If the distance > 10 km 'Distance 0-5' equals 5 and 'Distance 5-10' equals 5. 

If the distance <= 10 km then 'Distance 0-10' equals the distance. If the 

distance > 10 km then ' Distance 0-10' equals 10 . 

described with the logarithmic parking ratio variable (demand/ 
capacity). 

The access time per road distance variable is calculated as 
the um of the access times to and fr m rail stations divided 
by the direct mad distance between origin and destination of 
the trip . The variab l.e is a measure of di ffic ul ty in the use of 
a low-density rail network. 

The value of travel time can be calculated only for main 
u ·er · ()f cars (the HA P population) because travel cost is not 
included in the EHAP models. The value of the time for 
12,000 FIM/month income is 18.40 FlM/hr. This is clearly 
higher than the value for the whole population for home­
bascd work trips. 

Table 5 gives the coefficients of the mode choice models 
for non-home-based trip ·. Walk and bicycle trips are not in­
cluded in this trip category, and one-way trips are used in the 
models. The parking demand variable , though, is a sum of 

the corresponding variables of both ends of the trip. In this 
way, parking costs and constraints of both ends of the trip 
affect the mode choice. 

The value of travel time for non-home-based trips cari be 
calculated for both population categories. The value for the 
HAP population (11.90 F lM/hr) i lower than that for the 
EHAP population (26.10 FIM/hr) . The reason for this sur­
prising result might be the exclusion of tbe walk trip from 
l'he e ·timation sample . Another reason might be in the dif­
ferences of the purpose distribution of the non-home-based 
trips of the HAP and E HAP population . HAP people clearly 
make more non-home-ba ed trips than EHAP people , o it 
is possi ble that a bigger hare of their trip are leisure trips 
(with a lower time value) than i the case for EHAP people. 

The use of rail as a separate mode cau ed some problem 
in model estimation. In most models the share of correctly 
predicted choices was lowest for rail. The problem was that 
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TABLE 5 Variables and Coefficients of the Logit Model for Mode Choice of Non-Home-Based Trips in 
LITU 88 

0 = ;;i; - •• =-·I: II DJ:: - :a: IC :t&"CI au-~- c ••• = ::iia.u-..-- Ill! •••.•• ·= =t :-=::: 111 • • =-= = =•w.a ••#GI :II D.S IC s; 111.llll.llll ·==a i:I • :II •• = ••s •::11 ::::I= ;g ., •• 0 

HAP-population • EHAP-population 

Variable Coefficient t Coefficient t Modes 

Total travel time -0.05479 -3.2 -0.06058 -4.4 Bue, car, rail 

Cost/income -3.307 -8.0 -1. 668 -5.1 Bus, car. rail 

Number of transfers -0.5439 -2.0 -0.2826 -1.4 Bus, rail 

I:Ln(parking ratio-5) -0.2102 -3.1 -0.2113 -3.3 Car 

Rail-dummy -0.3284 -1.4 -o. 4938 -3.2 Rail 

Car-dummy 1. 767 5.1 -1. 072 -4.0 Car 

Number of observations = 1284 p2 ~ 0.671 n = 652 p2 = 0.199 

Percent correct predictions 89.1 40.9 

_.a a a a---•••• 1111: .,_a•••••• · - a• ••·--•• a a a-r• •a•• a an• a • .._•••• a••• aaaa • • • ---•• tll a-.aa •••••a••••••••• a 

HAP-person is a person that practically always has access to a car for personal 

trips. Others are EHAP-persone. 

there were no good variables to differentiate between bus and 
rail. Some attempts were made with nested mode choice models, 
but the re ults were not any better. Because of the important 
role of ome new rail construction proposals in the future , 
rail was kept as a separate mode in the models. 

The p2 values of the models are ometimes very high. Tllis 
is especially the case in models for the HAP population. The 
reason for this is tbat the modal split in this population gr up 
i very one-sided: three-fourths or more of trips are made y 
car. A better indicator for the goodness-of-fit of the models 
would be a revised p2 value that indicates the result in com­
parison with a model with alternative specific constants only. 
Unfortunately , the estimation program did not give these val­
ues, and they were not calculated afterward . 

Some estimates of model accuracy were done by sample 
enumeration. The results indicated that the estimates of car 
and bus hares are mo Uy quite good (average error mostly 
only a few percent). The result for rail are clearly worse 
especially for HAP persons. Thi may be an implication of 
an IlA violation in the rn del tructure for this population 
category. lu practice the difference is not so erious, because 
HAP persons seldom use rail or any public transport alter­
native. 

Variables and Coefficients of Destination 
Choice Models 

Destination choice models for other home-based and non­
home-ba ·ed trips were estimated separately for HAP and 
EHAP population ·. T he models are nested logit models with 
feedback to mode choice models via the logsum variable. 
According to theory the coefficient of the logsum variable 
should be greater than or equal to zero and le s than or equal 

to one (8). If the coefficient i greater than one, om of the 
cros elasticities in the model can be illogical (JO). 

[n ome e timating programs it i po ·sible to r Lrict the 
coefficient of the log um variable to 1, but this wa not in the 
program that was originally u ed during this work . Unfor­
tunately, thi led to c efficients that were clearly more than 
1 as can be seen from the following table where the model 
coefficien ts are given. After this occurred, a new program 
with the ability to restrict estimated parameter was used (J l). 
In the following, results of wire. tricted and restricted e ti­
mation are given, but so far no forecasts with the restricted 
models have been made. 

In destination choice models, the attraction is described 
with a scale variable. Usually this variable contains a linear 
combination of the amount of different activities in the zone. 
Th scale variable should be in logarithmic form , and it coef­
ficient should be equal to 1 to give a model that is indep ndent 
of the zone divi ion 8, 10) . 

The original estimation of the models of LITU 88 was done 
without restriction the coefficient of the ·ca le variable to equal 
l . Most coefficient · turned out to be reasonable (i .e. they 
did not differ too much from one and were all le than 1) . 
Trials of restricted estimation indicated only minor changes 
in other coefficients of the models, o these re ult are not 
given here . 

The weighting of different activities inside the scale variable 
can al o be problematic. The original estimation program that 
was used in thi work could n t estimate these weights si­
multaneously wjth other model coefficients. For this reason 
the weights were found partly by tri al-and-error and partly 
by the u e of usual attraction rates . With the new e timation 
program, these weights can be directly e timated. Some of 
the results are given here . The results indkate Urnt the other 
coefficients of the model are not very sensitive to the weights. 
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With the new estimation program it is also possible to es­
timate the nested logit model for mode and destination choice 
simultaneously. This estimation makes better use of the data, 
and a new estimation of the models is going on. In this paper 
all models are based on sequential estimation of mode and 
destination choice. 

Table 6 gives the results of model estimation for other 
home-based trips. The corresponding results for non-home­
based trips are given in Table 7. 

All the destination choice models given above have one to 
three alternative specific dummy variables. The city dummy 
is used if the destination of the trip is inside the city center 
area . Subcenters 1 and 2 refer to the main centers of Espoo 
and Vantaa. Subcenter 3 is the biggest subcenter inside the 
borders of Helsinki. 

The models estimated with the new program without re­
strictions included the estimation of the weights in the scale 
variable, too. The exact results are not given here, but the 
values of the weights did not differ much from the corre­
sponding values of the restricted estimation given in Tables 
6 and 7. The model coefficients were also very near the coef­
ficients of the free estimation of the models. This is natural 
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because the coefficient of the scale variable in free estimation 
did not differ so much from 1. 

The weighted values of the scale variable are clearly of 
different magnitude in the free trial-and-error estimation and 
in the new restricted e ·timation even th ugh the coefficients 
of the logscale variables are very near each other. The ex­
planation for this i in the nature of logarithmic variable . Lf 
a logarithmic variable in a logit model is common to all al­
ternative · a multiplication or divi ion by constant in ide the 
logarithm has no effect on the coefficient of thi or any other 
variable in the model. 

As was mentioned before, all the destination choice models 
were estimated using all 117 zones as possible choice ·. The 
great amount of possible choices result in tow p2 value . The 
basic te t used for the goodness-of-fi t of the destination choice 
models was their ability to replicate the trip length distribu­
tions of the travel data . An example is given in Figure 1. 

The fit of the computed trip length distribution in Figure 
1 is far from excellent (ob ·erved mean 7. 78 km; forecast mean 
6.24 km) and the model ha to be developed further. lt i 
possible that the simult<'lneous restricted estimation proce 
that is going on at present will give better result 

TABLE 6 Variables and Coefficients of the Logit Model for Destination Choice of Other Home-Based Trips in 
LITU 88 

HAP-population EKAP-population • 

Variable Coefficient t Coefficient t Coefficient t Coefficient t 

(free) -- (restricted) (free) (restricted) 

Log sum 1. 770 56. 5 1.000 o.o 1.830 99.6 1.000 0.0 

Logscale 0.7416 24.3 0.7992 21. 7 0.9554 29.7 0.9158 34.3 

Employment density 0.2629 8.3 0.1787 5.4 0.3022 22.3 0.1058 4.5 

City-dummy 0.5908 6.5 0.2805 3.2 

Subcentersl&2-dummy 0.7699 9.0 0.9622 11. 2 

Subcenter3-dummy 1. 457 12.6 1.501 11. 9 1. 945 21. 4 1.435 15.5 

p1 
2 0.189 p2 = 0.180 p1 = 0. 338 p1 = 0.288 

Variables in the logscale-variable 

Inhabitants 1. 75 1.000 0.0 0.55 1.000 o.o 

Retail employment 52.75 2.306 9.7 0.40 2.248 19.0 

Service employment 24.00 0.8768 4.2 0.55 

Industrial employment 1.00 0.10 

Other jobs 15.50 0.2773 0.6 0.10 

KAP-person is a person that practically always has access to a car for personal tripe. 

Others are EKAP-persona. 

Free : free estimation of the coefficient of the logsum variable 

Restricted : the coefficient of the logsum variable was restricted equal 1.0 
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TABLE 7 Variables and Coefficients of the Logit Model for Destination Choice of Non-Home-Based Trips in LITU 88 

HAP-population • EHAP-population 

Variable Coefficient t Coefficient t Coefficient t Coefficient t 

(free) •• (restricted) (free) (restricted) 

Logs um 1.380 36.2 1.000 o.o 1.656 23.3 1.000 o.o 

Logscale 0.7578 21. 2 0.8593 16.3 0.7289 13.9 1.007 12.4 

City-dummy 0.7717 8.8 0.5144 5.8 0.2716 2.5 0.1670 1.4 

Subcenterl&2-dummy 0.4343 3.3 0.5144 3.8 0.7803 4.2 0.7307 3.9 

Subcenter3-dummy 1.104 6.4 0.9700 5.4 1. 328 5.4 1. 374 5.2 

p2 = 0.216 p2 = 0.208 p2 = 0.256 p2 • 0.246 

Variables in the logscale-variable 

Inhabitants 1.00 1.000 o.o 1.00 1.000 0.0 

Retail employment 57.00 3.356 8.2 43.00 2. 554 6.4 

Service employment 32.00 1.495 4.2 24.00 1.156 3.5 

Industrial emp,loyment 8.50 1. 630 5.3 5.00 

Other jobs 20.50 1. 317 2.5 18.00 0.5949 1. 0 

HAP-person is a person that practically always has access to a car for personal 

trips. Others are EHAP-persons. 

Free : free estimation of the coefficient of the logsum variable 

Restricted : the coefficient of the logsum variable was restricted equal 1.0 

Fortunately, the case given in Figure 1 is the worst one. 
F or example, the mean value of the observed trip lengths for 
home-based work trips is 9.96 km, and the forecast value is 
9.62 km. For other home-ba ·ed trip the values are 7.02 km 
(observed) and 7.28 km (forecast). For non-home-based trips 
the values are 7. 78 and 6.24 km. Thi indicate that the models 
for non-home-based trips have to be developed further. 

OTHER MODELS 

The forecasting process used in LITU 88 needs some addi­
tional traffic models. The most interesting of these are the 
car ownership models and the model for HAP/EHAP division 
of the population. For both purposes logit models were used. 

Table 8 give an example of car ownersJ1ip models. These 
models are, unlike the other logit models of the study , house­
hold based. According to the model , the size of the household 
has a strong impact on car ownership as well as the type of 
housing. 

In Table 9 there is an example of the HAP/EHAP model. 
A better model can be e timated if the sex of the person is 
included. However, the model in Table 9 was used for fore-

casting because it was assumed that the difference in access 
to cars between males and females will diminish in the future. 

DISCUSSION OF RESULTS 

The model system was used to produce basic traffic forecasts 
for the present situation (as a part of the model validation) 
and for two future situations. The basic forecasts give the 
daily trip matrixes divided by trip purpose and mode. The 
forecasting was done separately for morning and evening peak 
periods and for the rest of the day. This way, the differences 
in trip purpose and destination choice during different times 
of day were taken into account. 

The forecasting was based on aggregate data. The zonal 
means of the variables included in the models were used for 
all individuals of the zone. This of course is a source of ag­
gregation error, and this must be kept in mind when total 
results are referred to in the following discussion. 

Comparison of the forecast for the present situation with 
the results of the traffic studies is the final test of the modeling 
system. The model estimation cannot be based solely on the 
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FIGURE 1 Observed and estimated trip length distributions for non-home-based trips in LITU 88. 

TABLE 8 Logit Model for Household Car Ownership in LITU 88 

Variable Coefficient Alternative 

Income 0.2014 Car(s) in household 

Household size 0.5881 Car( a) in household 

Flat-dummy . 1.216 No car in household 

City-dummy 1.418 No car in household 

No car -dummy 2.302 No car in household 

p' ~ o. 468 

*Flat-dummy equals one if the household lives in an 

apartment house outside the city center and zero 

otherwise. 

statistical indicators like p2 • One must also consider the perfor­
mance of the models in forecasting. 

During these comparisons, the alternative specific dummy 
variables of the original mode choice model were corrected 
by an iterative method, presented by Talvitie (12), to give a 
better replication of the present ituation . 

Some practical problems of the modeling work are also 
wonh mentioning here . Fir t , the travel time for buses were 
estimated with the EMME/2 system. The assignment proce­
dure of the program tries to minimize the sum of the travel 

TABLE 9 Logit Model for the Division of the Population into 
HAP/EHAP* Categories in LITU 88 

Variable Coefficient t Alternative 

Car in household (0/1) 3.093 27.9 HAP 

Household income 0.06382 6.4 HAP 

Number of workers in 

household 

HAP-dummy 

p' - 0.347 

0.6438 10.5 

-2. 658 -21. 9 

EHAP 

HAP 

HAP-person is e person that practically always has ac-

cess to a car for personal trips. Others are EHAP-

persons. 

time of all passengers between each origin and destination 
pair (8) . The procedure gives fairly stable total travel time 
but its component (waiting, walking and in-vehicle time) are 
very sensitive to the way the lines and network are coded. 
The assignment procedure also tend to give more transfers 
than are actually made during the trips. 

The travel times for trains were calculated with a separate 
procedure where EMME/2 and some tailor-made programs 
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were used. Here too the way the EMME/2 network was coded 
caused some problems in the estimation in talion choice. 

Second , the correct way of estimating the intrazonal dis­
tances and travel time , both in private and public transport, 
turned out to be problematic. The estimation was done in 
advance in network coding without direct connection to mod­
eling, and this was probably one rea: on for the difficultie in 
replicating the correct trip length distribution . The intrazonal 
distances and travel times were originally coded in the 282-
zone system. The aggregation of the zones to a 117-zone 
system has perhaps even strengthened the deficiencies of the 
values. 

In spite of these difficulties, the forecasts of the model 
sy tern de cribed here turned out to be satis(actory in most 
cases. The forecasts so far were made with models with some 
theoretical deficiencies (for example in the coefficient of the 
logsum variable), and many problems till exi t. T he esti­
mation of new models is going on, and new forecasts will be 
made during spring 1992. 

The final method of forecasting is still under discussion, 
too . There are three possible alternative . The fir. t i · to use 
disaggregate models with zonal mean as described here. 'l'he 
econd is to make the forecasts using sample enumeration . 

This method bas not been used in Finland earlier, and many 
practical problems have to be olved before full-scale appli­
cations. Sample enumeration will anyway be used to make 
further checks on model performance, especially in destina­
tion choice. 

The third way to make the forecast is to use either the first 
or the second method to calculate growth factors that can be 
u ed to modify the pre ent car and public transport trip 1na­
trixes. The basic idea of thi method is to make better use of 
tbe trip matrixes that were explored with the big OD field 
surveys mentioned in this paper. 
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Comparison of Suburban Commuting 
Characteristics 

GANG-LEN CHANG AND TONG-ANN LIN 

Rapid growth in ~uburban population over the pa t two decades 
ha inevitably turned once lightly traveled rural roads into hcavy­
traffic highways that require considerable investment for upgrad­
ing. However, uch a need was not recognized in time to dev lop 
subUl'ban-oriented traffic management . traregie , and unpre­
cedented level of uburban congestion resulted . M bility im­
provement in suburb ha thus become one of the most pressing 
trnnsportntion is ues. In response to increasing public concern 
reports and articles have been produced to explore various hort­
and long-term strategies. However, one vital aspect a funda­
mental understanding of suburban commuting behavior, ha not 
been adequately addressed in the transportation literature. An 
explonitory analysi is pe.rformed to characterize subu.rban com­
muting behavior on the ba i of llrvey conducted at three sub­
urban activity centers. A compari. on of the 14 travel and ocio­
economic variables was perfom1cd first followed by a discrete 
e. timation of their relations with suburban worker ' trip- top fre­
quency behavior. It ha been found that uburban workers , even 
though from geographically different Location , reveal similar 
commuting pattern . The estimation result were further st1p­
portecl by a mult·ivariace cluster analysi through which survey 
respondents from each location were cla ·sified into six group f 
unique characteristics. Whcrea each clu, ter of survey partici­
pants exhibits a imilar pattern a1· these three locations its shape 
varies ub tantially from the other five clu tcrs. This confirm 
that in contending with suburban congestion different trategies 
. hould be developed to target different group f suburban 
residents. 

In the past several decades, concern over the growing severi.ty 
of urban traffic congestion has led to migration of both pop­
ulation and business to suburbs. The nature and direction of 
·uburban travel demand have changed significantly since the 
migration i often accompanied by major traffic generators 
such as hopping malls , office complexe , and recreation cen­
ter . In fact because of a rapid increa e in suburban popu­
lation the once dominant suburb-to-city-center commute has 
now been super edcd by suburb-to-suburb travel. 

The chang in population and commuting patterns ha taken 
place ince the 1960s. Whereas center city and rural popu­
lations have remajned relatively stable since then, mo t of the 
population increase has been in suburbs, where che national 
share of population grew from 23 percent in the 1950 · to 40 
percent in 19 6. The rapid growth has inevitably turned once 
lightly traveled rural roads to h avy-t-raffic highways that re­
quire considerable inve tmeut for upgrading. However, such 
a need wa not recognized in time to develop suburban- riented 
traffic management trategies from either the demand or the 
supply side. A failure to understand the changing role of 
uburbs, compounded by meager levels of trnnsit ervice and 
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a substantial curtailment in new road construction, has com­
pelled uburban commuters to become more dependent on 
automobiles for accessing workplaces and has resulted in un­
precedented levels of suburban congestion. Mobility improve­
ment in suburbs has thus become one of the most pressing 
issues in transportation. 

In response to increasing public concerns on this issue, 
reports, articles, and media accounts have been produced to 
exp! re various short- and long-term strategies. Most studies 
were conducted along the following two directions: (a) ex­
ploring the interrelations between land use development pat­
terns and suburban traffic conge tion (1-10) and (b) diag­
nosing suburban congestion problems and developing public 
policy options (9,11-14). Whereas these two dimension are 
undoubtedly necessary in understanding tbe evol.ution f sub­
urban land use patterns and travel demand. the development 
of effective strategies for traffic congestion requires better 
knowledge of suburban trip-making behavior. This vital as­
pect, however, has not received adequate attention in the 
transportation literature (15). One area where there has been 
very little research and where a considerable knowledge gap 
remains is in the differences between suburb-to-city-center 
and suburb-to-suburb trip-making behavior. That, in turn, 
precludes an effective use of valuable experiences obtained 
in contending with urban congestion (16-18) in improving 
suburban mobility. 

In response to this research need, this paper focuses on the 
following two aspects: (a) understanding of suburban com­
muting behavior with an emphasis on the interrelations be­
tween commuting trip stop frequency and some background 
factors, and ( b) classification of suburban commuters into sev­
eral distim:l groups with unique characteristics allowing for a 
better design of various demand management strategies. 

SURVEY DESCRIPTION 

The survey result presented in this paper were collected a · 
part of CHRP Project 3-3 (2) "Travel haracteri tic at 
Large-Scale Subu.rban Activity Center ·." The primary pur­
pose of this project was to develop a comprehensive data base 
on travel characteristic for variou types of large-scale mul­
tiu e suburban activity centers throughout the United States. 
Travel characteristic data were oollected at six representative 
large- cale uburban activity centers through person and ve­
hicle count workplace urveys inte.rcept surveys at hotel 
and retail sites and daily trip diaries completed by residents 
of hou ing complexes withfo the activity centers. A detailed 
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description of the sampling design and survey results can be 
found in NCH RP Report 323 (19). 

The urvey results ana lyzed in thi paper were taken from 
three workplace survey completed at the Parkway Center 
approximately 10 mi north of the Dallas central busines dis­
trict ( CBD) in Texas; Tysons Corner, 12 mi west of downtown 
Washington D.C. , in Fairfax county, Virginia; and the South­
dale Mall , located roughly 10 mi south of the Minneapoli 
CBD within the cities of Bloomington and Edina. 

The Parkway Center consists of approximately 17 million 
ft2 of office space , 7 million ft2 of retail space (including three 
regional malls), 8 hotel with a total of more than 3 100 rooms, 
and 12,000 dwelling unit.. Workplace survey were distrib­
uted to employer in 12 multilenant office buildings at the 
Parkway Center, containing approximately 4.3 million ft2 and 
6,900 employees. Employer · were re pon. iblc for distributing 
the surveys to their employees and encouraging their return . 
Of the 6,580 surveys di tributed in these buildings, l ,781 were 
returned (27 percent), and 1,005 were completed and u ed in 
the analysis . 

The Tysons Corner activity center has more than 13 million 
ft2 of office space a regional ' hoppi.ng mall several hotels 
and high-rise residential buildings, and numerous hopping 
plazas. The workplace surveys were conducted in eight office 
buildings in which 8,522 survey forms were distributed. Of 
these urvey , 3,164 were returned (37.l percent) , and 2,194 
were completed and u ed in the preliminary study. The outh­
dale activity center encompasses an area of rough ly 4 million 
ft2 of office space everal shopping plazas , numerou low­
ri e apartments and condominium complexes. The workplace 
urvey were conducted in 21 office buildings and distributed 

to 13,231 employees. Whereas 3,951 people responded to the 
survey, only 3,313 answered all questions included in the sur­
vey form. 

Workplace surveys consi ted of rbree categories of ques­
tions: commutin~ characteri tics trip-making characteristics, 
and respondent background information. Question pertain­
ing to commuting characteristic. are work location commut­
ing di. tance, travel times on morning and evening commutes, 
work starting time, and the cornmlltiag mode. The frequency 
of stops in work-to-home and home-to-work trips and .the 
number of trips made per day con titute the category of trip­
making characteristics. Al o included are the purpose of each 
stop and the means of tTavel. The category of respondent 
background information compri. es questions on age, sex. 
hou ehold ize , occupation , and automobile ownership. Un­
fortunately , information on a critical variabl , income level 
was not a ked for in the survey. 

A i well recognized in travel behavior re earch, an indi­
vidual's income level is a critical explanatory variable and its 
omission may result in some difficultie in trip characleristics 
classification. It i a lso recognized that the relatively low re­
sponse rate in all three suburban activity center (SAC) survey 
may result in igniftcant nonresponse bia · . However, ince 
the data et as well a the urvey design are made available 
to the re.search community after the preliminary result have 
been p'Ublished, the use of any ophisticated statistical meth­
ods for estimating the potential nonrespon e bia, i not fea­
sible. Besides the survey provides only a " snap bot ' rather 
than a representative day of commuters travel behavior, since 
que tions on commute and trip-making characteristics were 
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posed only for the current day. Nevertheless, the results of 
the survey contain useful information and provide a basis for 
understanding the complex suburban trip-stop frequency 
behavior. 

PRELIMINARY ANALYSIS AND COMPARISON 

The prelirui1rnry analysis taJts wilh a comparison of key rrnvel 
and background variables associated with survey respondents 
in the SA · . Table l present the mean and standard devia­
tion of 14 variables available Crom the three AC urvey . 
The variable provide the profile of survey participants' back­
gTound and their trip- top frequency behavior. Since the three 
SA Cs were located in different states, a sequence of statistical 
tests, as shown in Figure 1, was performed to identify their 
key characteristic differences. For in tan e, Leven 's te t for 
variance homogeneity was conducted first for each variable. 
It was then followed by a simultaneou examination of ample 
means from the three SACs. A pairwise compari on with the 
least significance difference (LSD) method was further per­
formed if the null hypothesis of equal means was rejected. 
The tee t results are ummarized in Table 2 and their impli­
cations are briefly described a follows . 

De pite the distinct geographical differences, the partici­
pants in the three AC surveys reveal the following common 
characteristics: an average of 0.48 stops from work to home 
an average automobile occupancy of 1.1 persons, and an av­
erage hou ehold size of 2.76 persons. These results seem con­
sistent with the perception that suburban workers mostly have 
re.latively small families , use the drive-alone mode on com­
mute , and often make some tops during l'hei.r work-to-home 
trips. The apparently low automobile ccupancy certainly 
contributes to the increasing submban congestion and ug­
gests the need to better understand suburban commuting be­
havior and to design effective demand management programs. 
We now di ·cus me variables that vary ignificantly across 
these th1·ee ACs. 

•Average travel time to work and home: The statistical 
results in Table 2 indicate that suburban workers at Tysons 
Corner experienced the longe t commuting time even with 
the ame average travel distance as tho e working in the Park­
way Center. Their average travel ·peed i ab ul 26 mph 
compared with 31 mph in Parkway and 33.8 mph in Southdale. 
Thi · i mainly due to more evere lraffic cong tion in North­
ern Virginia than at the other two location . Suburban work­
ers in Southdale on average have the shortest travel time and 
commuting di ·ranee. Travel time reported by survey partic­
ipant. is actually the door-to-door time including both the 
trip time and stop times for performing activities. The failure 
to separate these two components of travel time makes the 
analysis more difficult and is one of the major deficiencies of 
the survey design. 

•Average stops from home to work: Suburban workers at 
the Parkway Center appear to make significantly more stops 
in their home-to-work trips than those at the other SACs. A 
further analysis of those trip purpo e · " veal that this is mostly 
due to the relatively high fraction (30 percent) f workers at 
Parkway Center who need to complete work a well as child­
care-related activites on their morning commutes. 
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TABLE 1 Mean of Key Commuting Characteristics Obtained from Three SACs 

Suburban Location 
v . bl ana es p k ar way T ysons OU a e s t hd 1 

I. Average stops from home to work 0.27 0.22 0.21 
(0.60) (0 . 56) (0.54) 

2. Average mid-day trips 0.64 0.84 0.62 
( 1.07) ( 1.16) (l.07) . 

3. Average stops from work to home 0.46 0.49 0.48 
(0.77) (0.81) (0.82) 

4. Travel time to work (minutes) 28.50 43.28 22.62 
(14.73) (18.95) (12 .39) 

5. Travel time to home 31.50 37.03 25.66 
(16 .40) (19.54) (14.37) 

6. Commuting distance 14.91 14.89 12.72 
(12.04) (10. 79) (10.03) 

. 7. Total number of trips made per day 2.45 2. 58 2.43 
(0 . 57) (0 .60) (0.58) 

8. Auto occupancy 1.12 1.10 1.10 
10.51) (0.47) (0.47) 

9. Average length of employment (years) I. 72 4. 18 3.57 
( 1.43) (4.43) (4.11) 

10. Household size 2.57 2.81 2.76 
( 1.21) (1.261 ( 1.24) 

11. Average number of vehicles 1.97 2.21 2.12 
(0.87) (l.01) (0.99) 

12. Average number of ch i ldren 0.55 0.49 0.54 
(0.88) (0.85) (0.92) 

13. Average number of full-time workers 1.34 1. 51 1.49 
(0.85) (l.01) (0.91) 

14. Average number of part-time workers 0.15 0.25 0.33 
(0.44) (0.58) (0.66) 

~umber of samples 1005 2194 3313 

•Standard deviation for each cell is shown in the parentheses 

•Average midday and total number of trips per day: The 
frequency of midday trip is defined a tbe number of trip · 
made during the working hours on the day of urvey. Orne 
trips that take place in the same building , uch as for meals 
in the mall, are not included in thi category. The total number 
of trips refers to tho ·e made during b th working and non­
working period . As expected uburban workers in Tysons 
Corner, a very la:rge shopping area , made a significantly higher 
number of both midday trips and total trips per day than tho e 
in the other SAC . Mo t of those trips (more than 50 percent) 
were mainly for hoppLng rather than work-related activili . 
In contrast, the difference in these two ariables between 
Parkway and Soutbdal worker are not tatistically sign ificant. 

•Average number of avai lable vehicle. : The result. of pair­
wi e compari n indicate that there i no significant difference 
in the average number of vehicles per household between 
Tyson. Corner and outhdale. Tho e in Parkway Center eem 
to own a relatively low number of vehicles , probably because 
of their relatively small family ·ize and low number of full­
time workers (see Table 1) . Another rea on may be their 
significantly horter length of employment (1.72 years). Most 
respondents in Parkway are relatively young workers . 

•Average length of employment: This varies particularly 
significantly among the three SACs. Wherea survey respon­
dents at Ty sons Corner indicate the longest employment ( 4.18 
year ) , thos~ from Parkway Center in Texas have a relatively 
hort working experience (1.72 yea rs). Thi is con i tent with 

other observed characteristics that suburban workers at Park­
way Center, compared with those from the other two SA 
on the average have the smallest household size and a rela­
tively small number of ful l-time workers as well ·a vehicles 
available (see Table 1). 

Given this preliminary compari on we now explore the 
interrelations between principal survey variables. A classifi­
cation of survey respondent with respect to the frequency of 
stop and travel time i ummarized in Tables 3 and 4. Since 
a ll three SAC survey reveal similar relations among key vari­
ables, only the results for Parkway Center are discu sed. 

Tables 3 and 4 classify commuting cha racteri tics by the 
frequency of stops and travel time in work-to-home trips. 
Some variable exhibit ing no y temalic trend are not included 
i.11 these tables. As expected, among the elected variables for 
travel measures travel time t work appears to correlate posi-
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FIGURE 1 Procedures for comparing the survey results obtained from different 
activity centers. 

lively with the frequency of stops both to home and to work, 
except in the last category (i.e ., three or more stops) , whic.h 
contains only limited observations (14 in Table 1 and 20 in 
Table 2). This is consistent with the fact that given the same 
travel distance, a trip with more stops is expected to take a 
longer time. In contrast , the midday trip frequency (Table 4) 
seems to correlate negatively with the travel time both to 
home and to work, implying that people Living near their 
workplaces tend to make more midday trips, going home 
either for meals or for work-related activities. 

The frequency of stops both to work and to home appears 
to correlate with variables such as automobile occupancies, 
household size, and the number of working persons and chil­
dren per family. With respect to automobile occupancy a 
plausible explanation is that commuters having a high number 
of ridesharers are likely to stop more frequentJy to pick up 
or drop off other occupants. For similar reasons, respondents 

with large households and more children are often required 
to make more stops on their daily commutes. 

The relations between the frequency of stops and other 
variables are not so distinct and thus cannot be observed 
directly at the aggregate level (i.e. from the computed av­
erage values) . For instance, differences in the car ownership 
and in the number of working family members across all four 
categories do not exhibit any systematic trend with the fre­
quency of stops. A more detailed investigation of such rela­
tions is presented in the next section. 

Table 4 summarize the commuting characteristics classified 
by travel time to work. Reported travel times of respondents 
are divided into five categories. To relate the travel time with 
the "average stops from home to work," it appears that re­
spondents who experienced longer travel times (> 40 min) 
generally made significantly more stops, possibly to pick up 
or drop off other passengers or children. tn contrast, no sy -
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TABLE 2 Equality Test for the Mean Value of Each Variable Obtained from 
Three SACs 

Test Homogeneity Compare Pairwise Comparison 
of variance all mean H0:u1 =u, u, =u1 U2=tJ3 

Variables <Ho: a,'=a,'=a32)Ho:u,=u,=u3 PW&TS PW&SD TS&SD 

1. Average stops from R R R NR NR 
home to work 

2. Average mid-day nips R R R NR R 

3. Average stops from R NR 
work to home 

4. Travel time to work R R R R R 
(minutes) 

5. Travel time to home R R R R R 

6. Total number of trips R R R NR R 
made per day 

7. Auto occupancy R NR 

8. Average length of R R R R R 
employment (years) 

9. Household size R R R R NR 

10. Average number R R R R R 
of vehicles 

11. Average number R NR 
of children 

12. Average number of R R R R NR 
full-time workers 

13. Average number of R R R R R 
pan-time workers 

14. Commuting distance R R NR R R 

• R: reject the null hypothesis at the 5% level of significance 
•• NR: fail to reject the null hypothesis at the 5% level of significance 
••• PW: P:irltway center. TS: Tysons Comer. SD: Southdlllc center. 

tematic relation can be identified between the frequency of 
midday trips and the travel time to work. For instance, the 
group of respondents with very short commutes ( <15 min) 
generated a significantly high frequency of midday trips. A 
·further analysis of their trip purposes indicates that those with 
a high frequency of midday trip were mo tly returning home 
for meals or family-related activities becau ·e of their relatively 
short !ravel distam:~s. Those trips constitute about 40 percent 
of total observed midday trips at the Parkway Center. 

Table 4 also indicates a positive correlation between au­
tomobile occupancy and travel time, implying that respon­
dents with longer commuting distance (> 26 mi) have expe­
rienced higher automobile occupancies. This is consistent with 
the perception that individuals with long commutes tend to 
form carpools more readily than those with short commutes. 
However, the average automobile occupancy is low in all 
categories confirming that most trips were made by drive­
alone commuters. Such a positive interrelation can also be 
observed in the following two pairs of variables: household 
size versus travel time and the average number of vehicles 
versus travel time. As indicated in Table 4, it appears that 
respondents from large household generally experienced longer 
commuting times than those from mall households. This may 
be because individuals having fewer ch ildren are more Likely 

to find affordable houses of adequate size within a shorter 
commuting range. The existence of a positive correlation be­
tween the travel time to work and the number of children 
seems to further support such an explanation. 

Regarding the variable " average number of vehicle per 
household ," il appears that re pendent with longer com­
mute. tend to wn more vehicle . This may be due partly to 
the large household size for variou activities and partly to 
poor transit services (e.g. 91 percent of trips u e the dri.ve­
alone mode). 

CLUSTER AND DISCRIMINANT ANALYSES 

The preceding estimation provides the preliminary interre­
lations between suburban workers' commuting behavior and 
some of their background variables available from the sur­
veys. To further understand their behavior patterns, it is 
natural to ask two questions: Can suburban commuters be 
classified into a number of distinct groups with a certain hom­
ogeneity in their behavior? Is it likely to identify each indi­
vidual's travel pattern on the basis of associated factors such 
as socioeconomic background? Hence, in this section the 
method of cluster analysis is first applied to identify groups 



TABLE 3 Classification of Commuting Characteristics by the Frequency of Stops to 
Work 

IS:umb!:r gf ~1i;ii;i~ i;ia 1b~ Will£ IQ wQit 

Variables 0 2 ~3 Total 

1. Travel time to work(minutes) 27.53 32.84 34.37 22.50 28.50 
(13.80) (17.45) (18.28) (13.28) (14.73) 

2. Average mid-day stops 0.61 0.68 0.81 1.43 0.64 
(1.06) (0.96) (0.91) (2.17) (1.06) 

3. Average stops from 0.37 0.81 0.91 1.14 0.46 
work to home (0.68) (0.85} ( 1.27) (1.40) (0.77) 

4. Total number of trips 2.43 2.49 2.53 2.71 2.45 
made per day (0.57) (0.54) (0.50) (0.83) (0.57) 

5. Auto occupancy 1.07 1.25 1.51 1.36 1.12 
(0.39) (0.69) (I.I 0) (0.93) (0.51) 

6. Household size 2.48 2.84 3.28 3.00 2.57 
( 1.17) (1.12) (1.67) ( 1.24) (l.21) 

7. Average number 1.98 1.91 2.02 2.43 1.97 
of vehicles (0.87) (0.75) (0.96) (1.45) (0.87) 

8. Average number of children 0.47 0.81 1.09 0.79 0.55 
(0.84) (0.88) ( 1.19) ( 1.05) (0.88) 

9. Average number of 1.32 1.43 1.60 1.21 1.34 
full-time workers (0.87) (0.75) (0.88) (0.70) (0.85) 

10. Average number of 0.14 0.16 0.26 0.36 0.15 
pan-time workers (0.41) (0.50) (0.66) (0.63) (0.44) 

Observations 807 141 43 14 1005 

• The standard deviation for each cell is shown in the parentheses 

TABLE 4 Classification of Commuting Characteristics by Travel Time to Work 

Irnv1:l 1im1: IQ wQrk (minm1:sl 

Variables (0-15) (16-20) (21-25) (26-40) (~41) Total 

I. Average stops from 0.27 0.20 0.19 0.27 0.41 0.27 
home to work (0.69) (0.53) (0.55) (0.63) (0.67) (0.63) 

2. Average mid-day stops 0.91 0.52 0.56 0.59 0.57 0.64 
(1.31) (0.99) (0.85) ( 1.07) (0.88) (l.07) 

3. Average stops from 0.48 0.45 0.37 0.41 0.60 0.46 
work to home (0.74) (0.84) (0.68) (0.71) (0.90) (0.78) 

4. Total number of trips 2.58 2.34 2.43 2.41 2.42 2.45 
made per day (0.61) (0.55) (0.53) (0.58) (0.53) (0.57) 

5. Auto occupancy 1.057 1.078 1.081 1.167 1.198 1.121 
(0.327) (0.390) (0.522) (0.598) (0.626) (0.512) 

6. Household size 2.16 2.47 2.67 2.66 2.98 2.57 
(1.07) (1.22) (l.27) (1.16) (1.22) ( 1.21) 

7. Average number 1.86 1.89 1.91 2.01 2.19 1.98 
of vehicles (0.98) (0.78) (0.69) (0.83) (0.94) (0.87) 

8. Average number of children 0.30 0.51 0.60 0.59 0.81 0.55 
(0.67) (0.86) ( 1.01) (0.84) (l.03) (0.88) 

9. Average number of 1.21 1.26 1.37 1.42 1.46 1.34 
full-time workers (0.86) (0.84) (0.87) (0.85) (0.83) (0.85) 

10. Average number of 0.14 0.13 0.11 0.12 0.22 0.15 
part-time workers (0.42) (0.43) (0.33) (0.40) (0.58) (0.44) 

Observations 227 179 123 294 182 1005 

• The standard deviation for each cell is shown in the parentheses 
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of survey respondents with similar travel characteristics, and 
their similarities and differences among clusters and across 
different locations are compared. Travel characteristics vari­
ables used for clustering observations are travel time in work­
to-home and home-to-work trips, total number of trips per 
day, frequency of stops in the work-to-home and home-to­
work trips, and the number of midday trips. Each cluster is 
then characterized by six background descriptors, including 
the commuting distance , household size , the number of avail­
able vehicles, the number of children, the number of part­
time workers, and the average length of employment. 

As is noted in the statistical literature, a satisfactory method 
for determining the optimal number of clusters remains to be 
developed (20 ,21). Since the purpose of this study is to dissect 
observed travel behavior rather than to uncover "real clus­
ters," it is generally sufficient to use R2 for each variable and 
for all variables together to determine the appropriate number 
of clusters. With this logic in mind, observations from each 
survey were grouped into six distinct clusters on the basis of 
the centroid method available in the SAS package (22) . The 
selection of six clusters is based on an extensive experimental 
analysis, which consists of three principal steps: (a) classifi­
cation of survey respondents into a preselected number of 
clusters, ranging from two to nine; (b) development of a linear 
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discriminant function for each cluster with its background 
descriptors; and (c) computation of the posterior probability 
for each individual who is then assigned to the cluster of 
highest probability. The degree of success achieved in clas­
sifying survey respondents to their original clusters was then 
measured. An investigation has indicated that the selection 
of six clusters has yielded the best results, which can suc­
cessfully predict the travel pattern (i.e ., the assigned cluster) 
of the 72 percent of survey participants on the basis of only 
the six background descriptors. 

Table 5 summarizes the cluster means and standard devia­
tions of the six travel-related variables, indicating the varia­
tion of individual travel behavior in different clusters. Five of 
the six clusters in all three SACs exhibit two distinct patterns : 
the travel time to home is consistently longer than the travel 
time to work, and the frequency of stops in work-to-home 
trips is higher than that in home-to-work trips. These two 
systematic patterns are logically consistent, because the time 
for each stop constitutes a fraction of the total travel time. 
Thus, given the same travel distance, it is reasonable to expect 
a longer travel time if more activities are conducted during ' 
the trip. These two consistent patterns seem to represent the 
common features of suburban commuting behavior (except 
for the 38 individuals in Cluster 2). Some unique character-

TABLE 5 Cluster Means of Travel-Related Variables 

Cluster I Location l TRW I TRH I TNP I NSW I NSH I NMT I Samole 
Parkway 34.20 35.27 2.53 2.47 2.86 0.73 15 

1 Ty sons 60.36 64.85 2. 73 1. 73 2.39 1. 24 33 

Southdale 60 .07 71. 73 2.60 2.40 2.58 1. 27 15 

Parkway 27.26 26.29 2.58 2.29 0.18 0.95 38 

2 Ty sons 33.78 32.24 2.53 2. 53 0.55 0.90 49 

Southdale 27.76 33.36 2.42 0.62 1.03 0.55 507 

Parkway 25.55 28 . 57 2.36 0.11 0.23 0. 40 717 

3 Ty sons 25 .19 27.46 2.48 0.10 0.23 0.57 1265 

Southdale 15.01 16.61 2.34 0.10 0 .18 0.40 1576 

Parkway 55.14 62.07 2.37 0.36 0.59 0.45 106 

4 Ty sons 57.76 61.16 2. 49 0.18 0.31 0.67 522 

Southdale 33.30 38.94 2.34 0.12 0.01 0.40 797 

Parkway 25.62 29.62 2.39 0.29 2.36 0.50 66 

5 Ty sons 32.00 36.54 2.67 0.29 2.27 0.94 198 

Southdale 19.72 25.00 2. 44 0.27 2.07 0.63 263 

Parkway 19. 71 21. 30 3. 54 0.21 0.52 3.67 63 

6 Ty sons 25.14 28.61 3.76 0.16 0.46 4.06 127 

Southdale 19.26 20.85 3.76 0.21 0.35 4 .13 155 

Parkway 0.40 0.42 0.25 0.62 0.55 0.61 
Rz Ty sons 0.49 0.51 0.26 0.19 0.53 0.76 

Southdale 0.54 0.54 0.25 0.52 0.49 0.59 

TRW: Travel time to work, including both stop and commuting times (minutes). 
TRH: Travel time to home, including both stop and commuting times (minutes). 
TNP: Total number of trips made per day. 
NSW: Total number of stops on way to work . 
NSH: Total number of stops on way to home. 
NMT: Total number of mid-day trips. 
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istics associated with each cluster are briefly discussed in the 
following paragraphs. 

In all three SACs, Cluster 1 contains the smallest fraction 
of respondents (15 people in both the Parkway and Southdale 
SACs and 33 in Tysons Corner). In comparison with the other 
five clusters, suburban workers in this cluster have the fol­
lowing unique characteristics: (a) the highest frequency of 
stops in their work-to-home trips, (b) either the highest or 
the second highest number of stops on their home-to-work 
commutes, (c) the largest household size and the largest num­
ber of children, (d) the lowest number of vehicles per house­
hold, and (e) the longest or the second-longest commuting 
distance. The fact of having a large family size and a relatively 
Jong commuting distance, along with the lack of adequate 
vehicles, seems to explain their need to stop more frequently 
than others on daily commutes. This is consistent with the 
fact that 90 percent of commuters in Cluster 1 use carpools 
as the main commuting mode. 

Cluster 1 workers not only exist in all three SACs but also 
have similar travel and socioeconomic patterns. Although they 
may be a relatively small fraction of suburban residents, and 
most of them have low income and large household size, they 
need more help and are the potential users of effective sub­
urban public transportation systems. 

In all three SACs, suburban workers in Cluster 2 feature 
a high frequency of stops in work-to-home trips. Among the 
six clusters, they have on the average the highest or second-
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highest number of stops on the evening commute and the 
largest or second-largest number of children. In addition, as 
indicated in Table 6, they tend to have a relatively large 
household size and pan-time workers, and they make fre­
quent trips in the middle of a working day. 

Both Tysons Corner and Parkway survey results indicate 
that Cluster 2 workers' frequency of stops on their way to 
work is much higher than t11at in their work-to-home trips 
(2.29 versus 0.18 in Parkway). This seems comrary to the 
assertion that commuters tend to stop Jess frequently in their 
trips to work than to home because of the concern of being 
late to work as revealed in the commuting patterns of respon­
dents in the other five clusters . To understand the underlying 
reasons, the trip purpo e of home-to-work stops made by 
Cluster 2 respondents was further investigated. It was found 
that the work- and child-care-related stops constitute 55 per­
cent of the 83 stops made by them (in Parkway) during the 
morning commute. The two main reasons for those inter­
mediate stops do not exist for this cluster of people in their 
evening returning trips and account for less than 10 percent 
of the total stops incurred. A similar pattern exists for those 
working in Tysons Corner. 

In all three SACs, Cluster 3 consistently consists of the 
large t fraction of respondents (e .g., 717 out of 1,005 people 
in Parkway), representing the typical suburban workers. As 
indicated in Table 5, this cluster is distinguished from others 
with its (a) lowest mean frequency of stops in home-to-work 

TABLE 6 Cluster Means of Background Variables 

Cluster I Location I FR I CD I HS I NVH I 
Parkway 0.73 16.33 3.27 1.80 

1 Ty sons 0.73 25 .39 3.12 1. 79 

Southdale 0.80 31. 27 3.53 1. 97 

Parkway 0.66 11.18 3 .13 2.08 

2 Ty sons 0.61 12.82 3 .10 2.22 

Southdale 0.75 15.75 2.81 1.99 

Parkway 0. 57 13 .05 2. 48 1.93 

3 Ty sons 0.41 11.11 2.73 2.20 

Southdale 0.68 7.97 2.68 2.14 

Parkway 0.64 32 . 72 3. 03 2.33 

4 Ty sons 0. 51 25 .32 2.97 2.22 

Southdale 0.62 21. 14 2.93 2.21 

Parkway 0.76 12.30 2.52 1.88 

5 Ty sons 0.60 13.58 2.76 2.20 

Southdale 0.83 9.89 2. 57 1.98 

Parkway 0.48 10.70 2.40 2.00 

6 Tysons 0.39 10 . 14 2.75 2. 33 

Southdale 0.45 10.78 2.81 2.02 

FR : Female commuter s/total number of commuters 
CD : Commuting distance (miles) 
HS: Household size 
NVH Number of veh icles per household 
NCH Number of children per household 
NPH Number of part-time workers per household 
EL: Length of employment (years) 

NCH I NPW I EL 

1.13 0.33 1. 92 

1.06 0.15 3.66 . 

1.13 0.60 1. 79 

0.95 0. 21 1. 70 

0.65 0.30 3.65 

0.70 0. 27 3.31 

0.48 0 . 13 1.68 

0.41 0.26 4.44 

0.42 0.38 3.93 

0.84 0.21 1.81 

0.65 0.26 3.65 

0.66 0. 28 3.01 

0.59 0. 20 1. 96 

0.47 0.19 3.80 

0.56 0.26 3.90 

0.46 0. 14 1. 79 

0.45 0. 19 4.65 

0.59 0.36 3.20 
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trips (e.g., 0.11 stops in Parkway), far below the mean value 
of all respondents; and (b) the smallest or second-smallest 
number of children. In addition, those individuals, as indi­
cated in Table 6, are mostly from small households and have 
relatively short commutes (e.g., <15 mi). This is consistent 
with previous findings that commuters from small households 
are likely to live relatively near their workplaces. 

those individuals generally have a large household size (e.g., 
3.03 persons in Parkway), a large number of part-time work­
ers, children, and available vehicles. This conforms with pre­
vious findings that respondents having a large family tend to 
move toward distant suburbs to own an adequately large house 
within an affordable price range. To accommodate the long 
commuting distance and multiple workers per family, those 
individuals often own more than one vehicle, as indicated in 
the survey results. 

Among the six clusters, survey respondents in Cluster 4 
have the following consistent features in all SACs: the longest 
or second-longest mean travel time and commuting distance 
and the lowest or second-lowest midday trips. In addition, 

In all three SACs, Cluster 5 is set apart from the other 
groups because of the uniquely high ratio (about 8: 1) of work-

Cluster 1 
(15) 

Parkway 

34.20 
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Tysons Comer 
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(33) Cluster J 
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(TIH) 
2.86 

(FSH) ITTH) ""'--~(..._....._:~ 2.07 

2.53 
(TNT) 
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26.29 
(TTH) 

Cluster 3 
(717) 

2.58 
(TNT) 

2.47 
(FSW) 

Clu,ter 2 
(49) 33.78 
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2.29 
(FSW) 
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(1265) 25.19 

27.46 0.23 
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Notation for Travel-related Variables 

TIW: travel time from home to work 

TIH: travel time from work to home 
TNT: total number of trips made per day 

FMT: frequency of mid-day trips 

Cluster 2 
(507) 

Cluster 3 
(1576) 

FSH: frequency of stops on work-to-home commute 
FSW: frequency of stops on home-to-work commute 

FIGURE 2 Travel-related variables for each cluster. (continued on next page) 
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to-home stops ver. u ' home-to-work tops and becau e it has 
the largest or econd-large t proportion of fema les. A further 
analy ·is of trip purpose indicates that the high freql1ency of 
stops in returning trips are mainly due to their need for 
shopping and recreation-related activities , which constitute 
around 68 percent of the total stops. Those individuals are 
mostly femal.e having relatively long employment experience 
but a relatively low number of children and available vehicles. 

Ju ter 6 stands out from the others with it highest fraction 
of males and large t number of midday trips in all three SA Cs. 
A indicated in Table 6, most respondents in this cluster have 
a relatively small family and can thus afford to live in a small 
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house close to their workplaces. The resulting short com­
muting distance appears to account for their high-frequency 
of midday trips, mostly (about 72 percent) for coming home 
for meals or family-related activities. This is also consistent 
with the previous finding that the frequency of midday trips 
is correlated negatively with commuting distance or travel 
time. 

To further compare the overall travel pattern between clus­
ters in different SACs, each cluster is represented with one 
star plot in Figure 2. In comparing the hape of star plots, 
it is noticeable that in all three SACs the travel pattern varies 
significantly among clusters, indicating the existence ofunique 

Parkway Tysons Comer Southdale 

Cluster 4 
(106) 55.14 

(TTW) 

62.07 4------:~ 
(TTH) 

Cluster 5 
(66) 

29.62 
(TTH) 

2.37 

(TNT) 

25.62 
(TTW) 

2.39 
(TNT) 

21.30 
(TIH) 

3.54 
(TNT) 

FIGURE 2 (continued) 
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travel characteristics for each group of individuals. In con­
trast, except for a slight difference in the shape for Cluster 
2, the other five clusters, after being standardized, exhibit 
consistent patterns across the three locations in their travel­
related measures. This seems to suggest that the possible over­
lap among clusters is negligible, and the application of such 
an approach has indeed yielded a reasonable classification of 
suburban commuting patterns. 

In brief, even though the three suburban surveys were con­
ducted from different regions, survey respondents can be clas­
sified into six consistent clusters, each having a similar pattern 
across the three SACs. Such distinct suburban commuting 
patterns should encourage transportation planners to develop 
diversified demand management strategies to serve each tar­
get group of suburban workers . 

CONCLUSIONS 

This paper has investigated suburban travel behavior with an 
emphasis on the interrelations between survey respondents' 
ocioeconomic background and their manife ted behavior 

patterns, especially concerning their frequency of stops to 
work and to home. In the ab ence of individual income in­
formation it has been found that variables such as work start­
ing time, sex, commuting automobile ccupancy, and avail­
able vehicles per family are significantly correlated with 
suburban workers ' choices of stop frequency on their daily 
commutes. Single- and multiple-stop w rkers show different 
levels of sensitivity to any changes in these critical factors. 

It has also been observed that suburban workers of rela­
tively large households and Limited employment experience 
tend to reside in relatively di tant suburb to afford houses 
of adequate size. To cope with the long commuting distance 
and the meager level of transit service, most suburban work­
ers, as indicated in the survey results, were compelled to 
choose the drive-alone mode. 

To further compare suburban commuting behavior, a mul­
tivariate cluster approach was u ed to classify survey respon­
dents on the basis of elected travel characteristic variables. 
The resu.lts indicate that regardless of the geographical dif­
ferences in the three SACs, suburban workers in each cluster 
exhibit similar travel as well as background patterns. In con­
trast ubstantial differences among cluster- exi t , ·uggesting 
tbat different strategics or plans hould be devclopt:d for dif­
ferent groups of uburban re idents to effectively relieve sub­
urban congestion. 

Because of limitations of the original survey design, this 
research provide only preliminary understanding of complex 
suburban commuting behavior. To effectively contend with 
suburban congestion, much remains to be learned about the 
interrelations between suburban workers' background, be­
havior, and responses to different transportation management 
strategies. For instance, an ongoing research task is to under­
stand the distribution of trip purposes on commutes and in 
the midday. The likelihood of minimizing tbose trip stops or 
changing their patterns can then be investigated. 
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Estimating Availability Effects in Travel 
Choice Modeling: A Stated Choice 
Approach 

DoN ANDERSON, ALoYs BORGERS, DICK ETTEMA, AND 

HARRY TIMMERMANS 

Existing tated preference models in the trnn portation literature 
focu · principally on measuri ng preference for travel alternatives. 
Choices are predicted by making ad hoc a1ld possibly incorrect 
assumption regarding the relation hip between preference truc­
tures and choice behavior. In contrast stated choice models are 
derived from choice data observed under hypothetical conditions. 
These model provide a powerful approach to te ting simulta­
neou ly rhe assumed choice model and pecification of the implied 
utility function. Nevertheless, conventional . taced choice models 
are based Oil tJ1e r.igorous assumptio.n that the nonavailability of 
a particular travel alternative does nor affect the utility and rel­
ative choice probability of any ther trnvel alternative included 
in a choice ct. How de igns rhat permit the estimatio_n of such 
availability effects can be con tructed is indicated. A case tudy 
on mode choice behavior in the Eindhoven region , the Nel11er· 
lands, suggest that choice model · incorporating uch availability 
effects can improve the predictive uccess of mode choice models. 
The result sugge t tha.t people's preference. for choo ing the car 
to commute are only slightly influenced by the availability of 
modes of public transportation. 

The continued demand for environmental quality coupled with 
growing car availability ratio ha led many governments to 
design transport policie that aim at reducing car u e by tim­
ulating public tran portation. This development increases the 
importance of obtaining defcn ible measure. of the impact of 
uch transport policies. To allocate resource efficiently and 

effectively, tran port planners require infonnation on the costs 
and the likely choices or changes in choices chat might re ult 
from the implementation of variou planning alternatives . 

Over the years, variou modeling approaches have been 
suggested in the literature and applied to real-world transport 
planning problems to provide the required information. One 
such approach that has gained increasing interest in the trans­
portation literature over the last decade is th stated pref­
erence or decompositional preference approach (1-8). 1n 
contrast to conventional models that are ba. ed on actual travel 
choices stated preference models are derived Crom experi­
mental design da.ta (3, 9.10). Individuals are typically pre­
sented a erie of hypothetical travel alternatives, con tructed 
according to the principles of the design of statistical exper· 
iments, and asked to express their strength of preference for 

D. Anderson , University of Wyoming, P.O. Box 3332, Laramie, 
Wyo. 82071. A. Borgers, D. Ettema, and H. Timmermans, Depart­
ment of Archi1ecture and Urban Planning, Eindhovcn University of 
Technology, Postvak 20, P.O. Box 513, 5600 MB Eindhoven, the 
Netherlands. 

each alternative. The overall preference measurements are 
then decomposed into part-worth utilities associated with the 
attribute levels used to describe the hypothetical travel alter­
natives. Choice behavior is predicted by assuming some func­
tional relationship between preferences and overt behavior 
(JI). 

Stated preference models have been applied successfully in 
a variety of transport contexts such as long-distance travel 
choice (12), competition between coach and rail (13,14), pref­
erences for bus services (14,15), preferences for rail services 
(16,17), the effects of area licensing proposals (18) , route 
choice (19 20), valuation of travel time (21 22), destination 
choice (23 - 28), and the effect of tran port facilities on resi­
dential choice behavior (29). 

Nevertheless, stated preference models have not escaped 
criticisms. A fundamental objection to stated preference models 
has been that it is not readily evident that individuals will act 
in hypothetical situations in a way that resembles how they 
would act in the real world. related concern is that indi­
viduals may not be able to carry out the experimental task in 
a way corresponding to their actual decision making. These 
concerns have stimulated methodological research indicaling 
that the assumption that conventional models based on actual 
behavior are inherently superior no longer goes unchallenged. 
Still, preference models rely typically on ad hoc assumptions 
to relate preferences to choice probabilities. 

Recently Louviere and Woodworth (30) have therefore sug­
gested that choices ratber than preferences be measured in 
controlled experiments. One then b erves choices directly 
and does not have to make ad hoc assumptions regarding the 
relationship between preferences and overt choice behavior. 
This is not to say that choices in laboratory settings may not 
differ from choices in the real world. Thus, even though the 
choice experiments have some potential methodological ad­
vantage over preference experiments, one still ha to dem­
onstrate that expressed choices are systematically related to 
observed choices. In these stated choice experiments individ­
uals are not asked to rate or rank a series of hypothetical 
travel alternatives, but rather to choose among them. To es­
timate the choice model, the travel alternatives are placed 
into choice sets, usually using 2N (N is the number of alter­
natives) or fractional factorial designs. Louvi re and Wood­
worth (30) and Louviere and Hensher (31) have formalized 
the necessary and sufficient condition that experimental d -
signs must meet to ati fy the stati tical requirements of the 
multinomial logit (MNL) model that is typically u ed in this 
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modeling approach. Louviere and Hensher (31) present two 
examples of this approach to forecast mode choice behavior. 

A problem common to all these decompo itional preference 
and choice models i. the rigorou a sumption that preferences 
and choices are independent of context. That i , these model 
typically assume that individuals form preferences for alter­
natives or choose among alternatives independently f the 
composition of the choice set. ln the MNL model this prob­
lem tern from the independence from irrelevant alternatives 
(HA) property, which tales that the utility of a particular 
choice alternative is independent of the existence and the 
attribute values of any other choice alternative included in a 
choice et. on equently pairwise choice probabilities are 
independent of choice set composit ion. Thi. assumption of 
context indeperidence i rather rigorous because one might 
hypothe ize that the availabil ity or n navailability of some 
transport mode will affect individuals' preferences/utilities or 
choices for the remaining available modes. 

Louviere (32) indicates how to develop experimental de­
signs that <11low one to test for violations of the llA property 
underlying MNL models and estimate generalized choice 
model , but applications of thi approach in transportation 
are restricted to problems of de tination choice (33,34) and 
have concentrated on ub titution effect . One would like to 
be able to estimate the impact of varying choice set compo­
sitions on (pairwise) choice probabilitie . 

The purpose of this paper, therefore, is to extend conven­
tional stated preference and choice models to allow the es­
timation of availability ffects and illu trate this approach in 
the contexr of transportation mode choice. 

STUDY DESIGN 

Tn an attempt t · reduce car u e , the Dutch Ministry of Tran. -
port ha. created new planning authorities (transport regions) 
whose task is to coordinate transport plan . These planning 
bodies have to develop various kinds of plans to timulate 
public transport and carpooling thereby reducing the use of 
the car for all kinds o.f daily activities. The ·e planning au­
thoritie need information on the likely impacts of such policy 
decisions on travel choice behav~or. Thi study is an attempt 
to develop a sophi ticated stated cboice model that may erve 
this purpo e. 

To estimate a statt:u choice model, one first has to decide 
on the travel options and their attributes that are varied in 
the experiment. Five mode choice alternatives were identi­
fied: car, train, carpooling, bus, and bicycle. Bicycle was used 
as a ba e alternat ive in the experimental design implyiJ1g that 
all results obtained are relative to the estimated utilities and 
choice probabilities for using the bicycle. Using a literature 
search and interview with planners, the attributes presented 
in Table 1 were selected because these attribute affect in­
dividual mode choice behavior most or are of planning in­
terest. Commuting journeys were selected as the context of 
interest because these account for a high proportion of actual 
travel distances. 

The 'attributes used in the experiment were alternative­
specific. Four attributes were selected to describe the car 
alternative: in-vehicle time, costs, in-vehicle delay, and walk­
ing di ·tance. Each of these attributes was varied in terms of 
three attribute levels. The train alternative was described by 
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seven attributes: in-vehicle time fare, in-vehicle delay, walk­
ing distance , delay in departure time, comfort, and inter­
change. Six of these attributes were varied in terms of three 
levels· the remaining attribute (interchange) had two levels. 
Carpooling was represented by six three-level attributes: in­
vehicle time costs, in-vehicle delay, walking di tance, delay 
in departure time, and driver. The bus alternative was de­
scribed in terms of seven attributes: in-vehicle time, fare, in­
vehicle delay, walking distance, delay in departure time, com­
fort and interchange. In addition to these alternative-specific 
attributes, distance from home to place of work was selected 
as a generic background attribute. The levels of all numerical 
attributes were adjusted to distance traveled (see Table 1). 
Some of the attribute levels were made specific to distance 
to make the profiles more reali tic. For the car and carpooling, 
walking di tance included the walk from the parking lot to 
the job location; for the two other means f tran ' portation , 
walking distance included the di ranee from home Lo the bus 
stop or railway station and from the railway station or bus 
stop to the job location. 

The Eindhoven region in the Netherlands was chosen as 
the study area, primarily because the planning authorities 
indicated some interest in this research project and were will­
ing to provide the fund required to distribute the question­
naire'. In general the region has a good upply of variou 
kinds of public transport, but of course not every municipality 
has a train station. and the quality of bus service differs ub­
stantially among the municipalities. Also, carpooling schemes 
are not equally well developed in all parts of the region. 
Therefore , it seems that the Eindhoven region is perfect for 
examining availability effects . 

The survey was undertaken in January 1991. Of the 2,150 
questionnaires sent by mail to randomly selected households 
in the regio.n who were asked to participate in this study 
provided they had a job, 347 usable questionnaires were re­
turned after one follow-up attempt, a response rate of 16.1 
percent. This may seem a low figure, but it should be re­
membered that unempl yment rates and the proportion of 
retired people in the Netherlands are rather high. Although 
exact figur are not available , we believe that the respon e 
rate for the population of interest i roughly 30 to 40 percent. 
Unfortunately, the representatives f the ·ample could not 
be tested becau e of lack of relevant p pulati.on ta ti tics . The 
sample respondents account for 7 ,293 monthly commuter 
journeys an average of 19.3 journeys per month per person. 
The average travel distance per trip is 16.22 km. Of these 
trips, 53.1 percent are made by car, 34.8 percent by bicycle, 
4.0 perc · nt by carp oling, 2.8 percent by bus, and 3.2 percent 
by train. 

In addition to completing the stated choice task , the respon­
dents were asked to provide information relating to their ac­
tual travel choices, their evaluation of features of the regional 
transport system, and the socioeconomic characteristics of 
their households. The results of analyses incorporating these 
variables are not reported in this paper. We focus on an 
illustration of the model specification and the design strategy. 

DESIGN STRATEGY 

When the IIA property is not satisfied, one approach is to 
introduce terms into the systematic component of the utility 



TABLE 1 Names and Levels of Attributes 

Attribute distance level l level 2 level 3 

CAR: 

In-vehicle travel 8 km 7.5 min. 10.0 min. 12.5 min. 

time in minute& 16 km 15.0 min. 20.0 min. 25.0 min. 

24 km 20.0 min. 30.0 min. 40.0 min. 

In-vehicle delay 8 km o.o min. 2.0 min. 4.0 min. 

in minutes 16 km O.O min. 4.0 min. 8.0 min. 

24 km 0.0 min. 6.0 min. 12.0 min. 

Walking distance 8 km LO min. 3.0 min. 5.0 min. 

in minutes 16 km LO min. 3.0 min. 5.0 min. 

24 km LO min. 3.0 min. 5.0 min. 

Costa 8 km fl. 2.00 fl. 3.00 fl. 4.00 

in guilders 16 km fl. 3.00 n. s.10 fl. 7.20 

24 km fl. 4.40 fl. 7.00 fl. 9.60 

BUS: 

In-vehicle travel 8 km 10.0 min. 15.0 min. 20.0 min. 

time in minutes 16 km 20.0 min. 30.0 min. 40.0 min. 

24 km 30.0 min. 45.0 min. 60.0 min. 

Delay in depar- 8 km o.o min. 3.0 min. 6.0 min. 

ture time in 16 km o.o min. 3.0 min. 6.0 min. 

minutes 24 km 0.0 min. 3.0 min. 6.0 min. 

In-vehicle delay 8 km o.o min. 2.0 min. 4.0 min. 

in minute• 16 km 0.0 min. 4.0 min. 8.0 min. 

24 km O.O min. 6.0 min. 12.0 min. 

(continued on next page) 



TABLE l (continued) 

Attribute distance level 1 level 2 level 3 

------------------------------------------------------------------
Walking distance 8 km 2.0 min. 5.0 min. 8.0 min. 

in minutes 16 km 2.0 min. 5.0 min. 8.0 min. 

24 km 2.0 min. 5.0 min. 8.0 min. 

Fare 8 km fl. 1. 00 fl. 1. 50 fl. 2.00 

in guilders 16 km fl. 1.50 fl. 2.50 fl. 3. 50 

24 km fl. 2.00 fl. 3.00 fl. 4.00 

Comfort 8 km 2.0 5.0 8.0 

on a 0-10 scale 16 km 2.0 s.o 8.0 

24 km 2.0 5.0 8.0 

Interchange 8 km none 1 

16 km none 1 

24 km none 1 

CARPOOLING: 

In-vehicle travel 8 km 7.5 min. 10.0 min. 12.5 min. 

time in minutes 16 km 15.0 min. 20.0 min. 25.0 min. 

24 km 20.0 min. 30.0 min. 40.0 min. 

Delay in depar- 8 km 2.0 min. 5.0 min. 8.0 min. 

ture time in 16 km 2.0 min. 5.0 min. 8.0 min. 

minuta11 24 km 2.0 min. 5.0 min. 8.0 min. 

In-vehicle delay 8 km 0.0 min. 2.0 min. 4.0 min. 

in minutes 16 km 0.0 min. 4.0 min. 8.0 min. 

24 km 0.0 min. 6.0 min. 12.0 min. 

Walking distance 8 km 1.0 min. 3.0 min. 5.0 min. 

in minutes 16 km l.O min. 3.0 min. 5.0 min. 

24 km l.O min. 3.0 min. 5.0 min. 
(continued on next page) 



TABLE 1 (continued) 

Attribute distance level 1 level 2 level 3 

Costs 8 km fl. 1. 00 fl. 1. so fl. 2 .oo 

in guilders 16 km fl. 1. so fl. 2.so fl. 3. so 

24 km fl. 2.20 fl. 3.SO fl. 4.80 

Who drives 8 km self-drive; paaaenger; flexible 

16 km self-drive; paasanger1 flexible 

24 km self-drive; paasanger; flexible 

TRAIN: 

In-vehicle travel 8 km 7.S min. 10.0 min. 12.5 min. 

time in minutes 16 km 10.0 min. lS.O min. 20.0 min. 

24 km 15.0 min. 20.0 min. 25.0 min. 

Delay in depar- 8 km 0.0 min. 3.0 min. 6.0 min. 

ture time in 16 km 0.0 min. 3.0 min. 6.0 min. 

minute a 24 km 0.0 min. 3.0 min. 6.0 min. 

In-vehicle delay 8 km 0.0 min. 1.0 min. 2.0 min. 

in minutes 16 km O.O min. 2.0 min. 4.0 min. 

24 km o.o min. 3.0 min. 6.0 min. 

Walking distance 8 km 2.0 min. 5.0 min. 8.0 min. 

in minutes 16 km 2.0 min. s.o min. 0.0 min. 

24 km 2.0 min. 5.0 min. 0.0 min. 

Fare 8 km fl. 1. 60 fl. 2 .oo fl. 2.40 

in guilders 16 km fl. 2.00 fl. 3.00 fl. 4.00 

24 km fl. 2.40 fl. 4.00 fl. 5. 60 

(continued on next page) 
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TABLE 1 (continued) 

Attribute distance 

comfort 8 km 

on a 0-10 scale 16 km 

24 km 

Interchange 8 km 

16 km 

24 km 

functions to represent the violations. If these terms are the 
levels of the attributes of the competing tr an portati n m des , 
they am ca lled attribute cross effects. If the terms represent 
the presence or ab ence of comp ting modes they arc called 
availability cross effects. 

The general problem of optimal design for such discrete 
choice experiments is unsolved . Anderson and Wiley (35) 
have constructed locally optimal designs for the case in which 
alternatives are characterized by name only, and hence only 
availability cross effect need to be estimated. Lazari (36) and 
Lazari and Anderson (37) have con idered the discrete choice 
set problem, in which both availability and attribute cross 
effects are present and there is only one attribute for each 
alternative. They provide an extensive catalog of designs for 
practical numbers of choice sets. General solutions are not 
available when the number of attributes for each alternative 
is large, except along the lines of this study. 

For thi tudy, the underlying de ign consisted of orthog­
onal fractional factorial designs arranged in a balanced in­
complete block structure plus another orthogonal design with 
all mode. present. The resulting de ign allow for estimation 
of mode- ·pecific models including all mode-specific main ef­
fects, attribute cross effects, and availabi lity cross effects. For 
the purpose of this paper only the mode-specific main effects 
and the availability cross effects have been estimated. 

The following strategy was u ed to develop the experimen­
tal design tha t allows the e rimation of availability effects. 
Remember that we have four travel modes (car train car­
pooling, and bus) with respectively four, seven, six , and seven 
attributes, and the bicycle as a base alternative. In addition, 
we have distance as a background variable. All of the attri­
butes were assigned three levels, except the number of in­
terchanges for bus aJid train , which only have two levels. First, 
a 54 treatment combination orthogonal fraction of the re­
sulting 323 * 22 full factorial design was used to create choice 
sets of fixed size. These choice sets varied in terms of the 
descriptions of the four travel alternatives. Next, for each of 
the six pairs of travel alternatives (6 = (4 x 3)/2], an or­
thogonal fraction con isting of 36 treatment combinations was 
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level 1 level 2 level 3 

2.0 5.0 8.0 

2.0 5 . 0 8 . 0 

2 . 0 5.0 8.0 

none l 

none 1 

none 1 

selected from the corresponding full factorial de ign to allow 
the e timation of availability effects. The full factorial design 
repre enting all pos ible profile for the car is al' design; the 
bu. and train profiles both involve a 2 • 3~ design ; and the 
carpooling profile imply a 36 design . Thus, for example the 
fu ll factorial design for lhe car versus bus option involves a 
(34 + 2 • 36

) = 2 • 310 design . Lik wise , the bu ver us train 
option involve a (2 * 36 + 2 .. 36 ) = 22 

" 312 design . For all 
pairs of travel modes, a 36 treatment combination orthogonal 
fraction describing the two travel mode was 'elected from 
the corresponding fu ll factoria l design . The two desig11 were 
combined to create an overall design. Thus, in total , 54 + 
(6 * 36) = 270 choice sets were created. Although thi de ign 
trategy does not generate a perfect ly orthogonal de ign as a 

result of the merging of the separate designs the overall cor­
relations are generally very low. The highest correlation that 
we observed was only - 0.0022. 

Each re pondent was presented three randomly elected 
choice sets from the 54 rreatment combinations design and 
two randomly elected choice sets from each of the paired 
comparis n, 36 treatment designs. Thus, in total , each re pon­
dent was presented 3 + (6 • 2) = 15 choice sets. Respondents 
were told to a ume thal only che travel modes described in 
a choice set were available for commuting. They were also 
informed that the travel modes described in the various choice 
sets differ in terms of the attribute level as indicated previ­
ously. The descriptions of the available travel modes were 
displayed on a single sheet. Respondents were asked to al­
locate 20 trips among the travel alternatives included in each 
choice set given that only the ones listed in a particular choice 
set are available. This task was repeated twice: once for the 
summer situation and once for the winter situation. Care was 
taken that respondents fully understood the experimental ta k 
and that they were familiar with the attributes and their levels 
u eel in the experiment. Before presenting the experimental 
ta k, respondent were asked to evaluate separately the at­
tribute levels. Moreover, the ta k was explained in detail u ing 
an example, and respondents were asked to make sure they 
understood their task before completing tbe questionnaire. 
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The questionnaire was extensively pretested ; the version that 
was finally used was the third version that was pretested. 

ANALYSIS 

Attribute Effects 

The allocation data were aggregated across respondents to 
relative frequencies. Iterative reweighted least squares anal­
ysis was used to estimate the choice model. The following 
model was estimated: 

(1) 

(2) 

TABLE 2 Parameter Estimates or the Choice Model 
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where 

Pils = probability that travel alternative j in choice set S 

will be chosen, 
V115 = deterministic part of the utili ty of j in choice et S, 

a1 = alternative-specific con tant for alternative j, 
'In = availabili ty effect of alternative j' on alternative j, 
131k = parameter for the kth attribute of the j th travel al­

ternative, and 
~k = value of attribute k of travel alternative j . 

Dummy coding was used to represent the availability effects 
and alternative-specific consta nts. To obtain a parsimonious 
model, the actual values rather than the categorical levels 
were used in estimating the choice model. Moreover, to re­
duce interattribute correlations, deviations from the mean 
were used in the analysis. Finally, both linear and quadratic 
effects were estimated to allow for nonlinear effects. 

The parameter estimates are presented in Table 2, and the 
part-worth uti lity functions are hown in Eigure 1. Note that 

parameter atandard 

estimate error t-valu• 

CAR: 

conatant 1.04 0.022 47.66 

in vehicle time 

-linear -0.02 0.002 -10.64 

-quadratic -0.10 0.008 -13.34 

In-vehicle delay 

-linear -o.os 0.002 -26.87 

-quadratic -0.06 0.046 -1.40 

walking distance 

-linear -o.oo 0.004 -0.87 

-quadratic -1.88 0.341 -s.so 

costs 

-linear -0.14 0.004 -30.62 

-quadratic -0.83 0.138 -5.99 

distance 0.20 0.002 80.74 

(continued on next page) 



TABLE 2 (continued) 

parameter standard 

estimate error t-value 

TRAIN: 

constant 0.79 0.026 30.59 

in vehicle time 

-linear -0.08 0.002 -35.71 

-quadratic 0.21 0.027 7.63 

delay in departure 

-linear -0.08 0.003 -27.64 

-quadratic 0.26 0.163 1.58 

in-vehicle delay 

-linear -0.05 0.004 -10.88 

-quadratic 3.17 0.193 16.41 

walking dietance 

-linear -0.09 0.003 -31.25 

-quadratic -1.24 0.161 -7.74 

costs 

-linear -0.22 0.010 -21. 76 

-quadratic -1.67 0.476 -3.50 

comfort 

-linear 0.06 0.003 21.68 

-quadratic -1.17 0.163 -7.18 

interchange -0.06 0.007 -8.05 

distance 0.28 0.002 121.15 

CARPOOL: 

constant 0.91 0.023 38.63 

in vehicle time 

-linear -0.05 0.002 -27.58 

-quadratic -0.02 0.008 -2.90 

(continued on next page) 



TABLE 2 (continued), 

parameter standard 

estimate error t-value 

waiting time 

-linear -0.06 0.003 -21.18 

-quadratic -0.07 0.156 -0.44 

in-vehicle delay 

-linear -0.05 0.002 -22.36 

-quadratic 0.07 0.048 1.51 

walking distance 

-linear -o.oo 0.004 -0 . 88 

-quadratic 1.37 0.367 3.74 

costs 

-linear -0.21 0.010 -22.01 

-quadratic 6.65 0.591 11.25 

driver -0.02 0.008 -2.64 

distance 0.24 0.003 94.54 

BUS: 

constant 0.03 0.036 0.92 

in vehicle time 

-linear -0.06 0.001 -44.95 

-quadratic -0.04 0.006 -8.01 

delay in departure 

-linear -0.03 0.004 -6.47 

-quadratic -0.84 0.218 -3.86 

in-vehicle delay 

-linear -0.01 0.003 -3.55 

-quadratic -0.02 0 . 068 -0.35 

walking distance 

-linear -0.06 0.004 -15. 77 

(continued on next page) 
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TABLE 2 (continued) 

parameter 

estimate 

-quadratic 1.80 

costs 

-linear -0.39 

-quadratic 7.17 

comfort 

-linear 0.11 

-quadratic -1.85 

interchange -0.18 

distance 0.26 

for ease of interpretation of Figure 1, the parameter estimates 
were rescaled, setting the origin of each part-worth utility 
scale to zero. 

The results obtained for in-vehicle travel time indicate that 
utility decreases with increasing in-vehicle time, as expected. 
Apparently, respondents are less concerned about in-vehicle 
travel time while driving their cars; they are much more sen­
sitive to in-vehicle travel time with respect to the bus and 
carpooling, and especially with respect to the train. 

The parameter estimates for fare/costs indicate that, as ex­
pected , respondents are less sensitive to increasing costs with 
respect to car and carpooling compared with means of public 
transport. For all these part-worth utilities both the linear and 
the quadratic terms are significant at conventional probability 
levels. 

The parameters obtained for in-vehicle delay clearly dem­
onstrate that utility for the car and carpooling drops dramat­
ically with increasing delays. Respondents' utility is much less 
influenced by increasing delays for train and bus. Apparently, 
delays are already associated with means of public transport , 
implying that increasing delays affect utility much less. Again, 
both the linear and the quadratic effects are significant. The 
utility function for the train is unexpected in that utility in­
creases with substantial delays. It is not readily evident why 
this effect occurs. 

The effects of walking distance indicate that the part-worth 
utility functions of the two means of public transport decrease 
with increasing walking distance. The effects are less clear for 
car and carpooling. This finding suggests that the probability 
that respondents will choose a means of public transport is 
affected adversely with increasing walking distance. The slope 
of the utility function suggests that these effects might be 
dramatic. 

The comfort attribute was used only in connection with the 
train and the bus. Because it is a multidimensional construct, 
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standard 

error t-value 

0.227 7.91 

0.014 -28.12 

1.053 6.81 

0.004 28.02 

0.218 -8.49 

0.010 -19.01 

0.003 84.64 

several indicator variables were used to measure the comfort 
dimension. Therefore, we first analyzed the contribution of 
these indicator variables to the overall evaluation of comfort 
using multiple regression analysis . Next , the effect of comfort 
on choice probabilities was analyzed. The following equations 
were estimated: 

£ bus = 5.12 + 0.71Xl ,bus + 0.95X2,bus 

+ 0.65X3,bus + Ebus (3) 

and 

£,,.;0 6.18 + 0.67Xl,train + Q.63X2,trnin 

+ 0.81X3,trnin + 0.46X4,trnin + Etrnin (4) 

where 

£ bus = 
xi .bus = 
X2,bus = 

Ebus 

£train= 

x l,train 

X2 , train 

x3 ,train 

x 4 ,train 

Etra in = 

evaluation of the comfort of the bus ; 
-1 if old equipment, 1 if new equipment; 
- 1 if no shelter is available at the bus stop, 1 
otherwise; 
- 1 if there is a 75 percent chance of seat avail­
ability , 1 if a seat is available for certain for the 
entire trip ; 
an error term; 
the evaluation of the comfort of the train; 
-1 if old equipment, 1 if new equipment; 
-1 if no shelter is available at the railway station, 
1 otherwise; 
-1 if there is a 75 percent chance of seat avail­
ability , 1 if a seat is available for certain for the 
entire trip; 
-1 if no refreshments are available on train , 1 
otherwise; and 
an error term. 
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0,6 ~--=-------------------~ 

-1 

-1,6 

-2 

-2,6 '--~....__.___.___,__.__.___._~~'--'--~....__.___._~_.__.___, 

7.0 11.0 15.0 111.0 23.0 27.0 31.0 36.0 38.0 43.0 

in vehicle time (minutes) 

- car -+- train -- carpool -a- bua 

utility 
o ~-~-----------------~ 

-0,6 

-1 

-1,6 

-2'---'---L--'---''---'--'----'-----'--L--'---'--'---'-.._--'----'-----' 
1.0 2.0 3.0 4.0 6.0 6.0 7.0 8.0 9.0 
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- car -+- train -- carpool -a- bua 
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1,4 ..-----'------ ------ ------------. 

1,2 

0,8 

0,6 

0,4 

0,2 

-0, 1 

-0,2 

-0,3 

-0,4 

-0,6 

-0,6 

-0,2 

-0,4 

-0,6 

-0,8 

1.0 U U U U ~ ~ M ~ ~ 

in vehicle delay (minutes) 

- car -+- train -- carpool -a- bua 

-1 .__.._....__..__,__.__.__.___.__,__J.__L-..__,__.___.___.___.___.____. 

0.4 1.2 2.0 2.8 3.11 4.4 5.2 11.0 11.8 7.11 

walking distance (minutes) 

- car -+-- train -- carpool -<>-- bua 

utility 
0.1 ~---------------------. 

-0, 1 

-0,2 

-0,3 

-0,4 

0 '----'--~-_._-~__. _ _._ _ _.__~~--'--~~ -0,6 '--~-'--'---'-~-'----'---'-__.__.,__.__,___.__....__.__,____,__.__, 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 0.4 1.2 2.0 2.8 3 .6 4 .4 6.2 6.0 6.8 7.6 

comfort (on 0-10 scale) delay in departure time (minutes) 

-+- train -a- bua -+-- train -- carpool -e- bus 

utility 
7 ....--~------------------~ 

11 

5 

4 

0 '----'-- -'---'---'---'--'---'---'----''---'---'--'---' 
9.6 12.0 14.4 16.8 111.2 21.8 24.0 

distance (kilometers) 

- car -+-- train -- carpool -e- bua 

FIGURE 1 Part-worth utility functions. 
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The explained variances were respectively 98 and 99 percent. 
For the bus, the evaluation of comfort is determined mostly 
by shelter provi ion, followed by new equipment and the 
chance of obtaining a seat. For the train, seat availability is 
the most imporianl attribute contributing to comfort , fol­
lowed by new equipment, shelter provision, and refresh­
ments, respectively. The parameters for both the bus and the 
train were highly significant. 

The effect of comfort on utilities demonstrates that the 
probability of choosing the train or the bus increases with 
increased evaluation of the comfort dimension. This effect is 
larger for the bus. 

Delay in departure time was incorporated into the utility 
functio11 of tbe train, bus, and carpooling only. All three part­
worth utility functions decrease with increasing waiting time. 
Respondents are most sensitive to increasing waiting times 
for the train, followed by carpooling and bus, respectively. 

The utilities for the distance attribute indicate that the util­
ity of all other transport modes via-a-vis the bicycle increases 
with increasing distance. This effect is largest, as expected, 
for the train, followed by bus, carpooling, and car. 

Interchange was included in the utility function of the two 
selected means of public transport. Consistent with a priori 
expectations both parameter e timates were negative, sug­
gesting that choice probabilities decrease if an interchange is 
involved. Tbe parameter estimate is higher for the bus. Thi 
suggests that respondents are more concerned about an in­
terchange when choosing the bus than when choosing the 
train. 

Finally, a "who drives" variable was included to describe 
the carpooling alternative. The estimated parameter estimate 
was - 0.022, which reflects that respondents prefer to be a 
passenger rather than the driver when carpooling. 

Availability Effects 

These analyses are not different from those typically con­
ducted in stated choice experiments in a transportation con­
text. However, in this study we also estimated availability 
effects to examine whether the composition of the choice 
set has any effect on the utility of the travel alternatives. 
These availability effects depict any departures from the choice 
probability implied by the IIA-MNL model. The availability 
effects are presented in Table 3. The diagonal elements are 
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the mode constants, and the other values in each row are the 
availability effects on the transportation mode as described 
by the row labels. The availability effects represent changes 
in the alternative-specific utility functions and are a result of 
the composition of a choice set. If the MNL holds, implying 
that the IIA property holds as well, the ratio of choosing a 
particular travel alternative relative to any other alternative 
would be independent of choice set composition. Conse­
quently, the availability effects would all be equal to zero (or 
at least would statistically not be significantly different from 
zero). Likewise, significant availability effects depict depar­
tures from IIA that arise as a result of differences in choice 
set composition. Except for the relatively small effect of bus 
on car and the nonsignificant effect of bus on train, all the 
availability effects are negative and highly significant. This 
indicates that the transportation modes are to some extent 
substitutes for each other, but the effects are not symmetric. 
For example, the availability cross effects of each mode on 
car are significantly smaller than the corresponding effect of 
car on each mode. Only the effects of train and carpool are 
similar in magnitude. 

Since we have assumed for practical reasons that the avail­
ability by attribute interactions is negligible, the availability 
cross effects influence only the mode constants in thts model. 
The column ALL PRESENT in Table 3 is just the row sum, 
and it represents the mode constants in choice sets that have 
all four modes available. To get the constants in reduced sets, 
one simply has to sum across columns for those present. There 
are significant changes in these constants for different subsets. 

One way to interpret the availability cross effects is to ex­
amine the (relative) changes in mode share and odds ratios 
for different patterns of availability. Table 4 presents some 
of these shares and odds assuming that the total contribution 
to the utility of each mode from the attributes is zero. Table 
4 also presents the odds ratios for the MNL model that does 
not incorporate the effects of differences in choice set com­
position. Note that Table 4 only displays a few examples of 
varying choice set composition. The rows in Table 4 represent 
different choice set compositions, "----" indicating the non­
availability of that transport mode. The first five columns 
represent t'1e market share of each transport mode as pre­
dicted by the non-IIA model that includes the estimated avail­
ability effects. Thus, the market share of the car is predicted 
to be equal to 40 percent if all five transport modes are avail­
able. The market share of the car increases to 47.5 percent 

TABLE 3 Availability Effects (Off-Diagonal Elements) and Mode Constants (Diagonal 
Elements) 

CAR TRAIN CARPOOL BUS ALL PRESENT 

---------------------------------------------------------------
CAR 1.040 -.114 -.271 .075 .730 

TRAIN -.295 .792 -.427 .005 .075 

CARPOOL -.527 -.412 .909 -.179 -.209 

BUS -.500 -.571 -.463 .033 -1.501 
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TABLE 4 Mode Shares and Odds Ratios (All Else = Zero) 

NON-II A-MODEL 

MODE-SHARES 

SET CAR TRAIN CPOOL BUS BIKE 

1 .400 .208 .156 .043 .193 

2 .388 .216 .195 
____ 1 

.201 

3 .475 .288 .062 .175 

4 .470 .248 .080 .202 

5 .346 .328 .088 .239 

6 .488 .318 

7 .467 .317 .216 

8 .652 .134 .214 

9 .353 .402 

10 .583 .154 .263 

11 .557 .175 .268 

1non-available transport mode 

if the carpooling option is not available (Choice Set 3). Col· 
umns 6 to 8 represent the odds ratio for , respectively, car· 
train, car-carpooling, and train-carpooling as predicted by the 
model that includes the availability effects . Columns 9 to 11 
present the corresponding odds ratios for the conventional 
MNL model. Note that these odds ratios are not influenced 
by the composition of the choice set (IIA property). 

Examination of Table 4 then indicates that the odds ratio 
for share of car to train changes from 1.92 to 1.53, and car 
to carpool changes from 2.56 to 1.47 as the availability pattern 
changes. The odds ratio of train to carpool changes from 1.33 
to 0.88. The differential mode shifts in changing availability 
are thus captured by the cross effects included in the choice 
model. 

The MNL model predicts these odds ratios to be constant, 
independent of the availability of particular transport modes. 
A comparison of the ratios for the two models thus provides 
useful information about mode shifts. For example, the con­
ventional MNL model indicates a slight preference for the 
train relative to carpooling (odds ratio = 1.08). The ratios 
obtained for the model that includes the availability effects 
indicates that this ratio is higher (1.33) if all transport modes 
are available, but drops to 1.05 if the car is not available. 

MNL-MODEL 

ODDS-RATIOS ODDS-RATIOS 

C/TR C/CP TR/CP C/TR C/CP TR/CP 

1.92 2.56 1.33 1.56 1.68 1.08 

1.80 1.99 1.11 1.56 1.68 1.08 

1. 65 1.56 

1.89 1.68 

1.05 1.08 

1. 53 1. 56 

1. 47 1.68 

0.88 1.08 

Apparently, therefore, a substantial proportion of commuters 
says it will switch from car to carpooling rather than choose 
the train if the car is not available. This ratio drops further 
to 0.88 if both the car and the bus are not available . 

Similar patterns are observed for the odds ratio car-train. 
If all transport modes are available, this ratio is equal to 1.92. 
The ratio drops to 1.80 and 1.65 if the bus and carpooling, 
respectively, are not available. This result indicates that a 
larger proportion of commuters is predicted to switch to the 
train rather than to the car if the bus or carpooling are not 
available. Thus, these odds ratios provide useful information 
about the competitive structure among the transport modes. 

Goodness-of-Fit 

The goodness-of-fit of the model was satisfactory. The log 
likelihood for the null model was -250,716.781; the log like­
lihood for the estimated model was -204,074.141. The chi­
square statistic for the likelihood ratio test was 93,285 .28 with 
130 degrees of freedom. Thus, the estimated model signifi­
cantly improves the null model. 

The choice model was also estimated without the availa­
bility effects. The log likelihood for this case is -205,782.141. 
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The chi-square statistic for the likelihood ratio test was 3,416.00 
with 24 degrees of freedom. Thus, it can be concluded that 
the inclusion of availability effects significantly improves the 
performance of the choice model. 

CONCLUSION AND DISCUSSION 

This paper has focused on the extension of stated choice models 
in transportation analyses. It has been shown how the MNL 
model can be extended to include availability effects that 
represent the effect of the availability or nonavailability of 
some travel alternative on the utility of remaining alternatives 
in the choice set. The results of this study suggest that the 
inclusion of such effects in models of mode choice may con­
siderably improve the predictive success of the choice model. 
Such effects may account for departures from the IIA property 
underlying the MNL model. 

The ease of including availability effects in a choice model 
constitutes another advantage of using choice experiments 
rather than preference experiments typically used in stated 
preference studies in transportation contexts. As Louviere 
and Gaeth (38) have advocated, the major advantage of choice 
tasks over rating or ranking tasks is that they focus on choice 
and hence are probably closer to actual decision making. 
Moreover, one does not require ad hoc assumptions to relate 
preferences to choices . Also, choice tasks make it easy to 
examine much more of the statistical response surface than 
is usually possible with traditional full-profile stated prefer­
ence tasks . Finally , as has been illustrated by the present 
paper, choice experiments can be designed to accommodate 
a much wider variety of choice models and utility specifications. 

The approach outlined in this paper produces models that 
are compatible with existing discrete choice models. Hence, 
no specific abilities are required to implement these "avail­
ability effects" models. One only needs to know how to design 
choice experiments that allow availability effects to be esti­
mated. Especially for small-scale problems involving a limited 
set of attributes, such designs are easy to develop and ad­
minister, although choice experiments are more difficult to 
design than preference designs commonly applied in trans­
portation . 

From a substantive viewpoint, the results of this analysis 
indicate that people's habits to use the car for commuting will 
be difficult to change. People's preferences for the car only 
slightly decrease when its attributes deteriorate. Moreover, 
preferences for modes of public transport drop dramatically 
with less favorable attribute levels. It implies that the objec­
tives of the transportation planners may be difficult to achieve 
fully. The values and signs of the availability effects indicate 
the degree of substitution between transportation modes. These 
parameters reiterate the strength of the position of the car 
compared with other transport modes. 

We believe that transport mode models incorporating avail­
ability effects provide improved information to transportation 
planners. First, if the results of this application can be rep­
licated in other contexts, models that include availability ef­
fects provide better predictions of transport mode share. Sec­
ond, and perhaps more important, these non-IIA models 
provide transportation planners with the necessary informa­
tion that allows them to identify the competitive structure 
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among the transport modes. For example, in the present case 
the results of the model indicate that policies that aim at 
substantially reducing the market share of the car by intro­
ducing, stimulating, or expanding carpooling schemes or pub­
lic transportation are not likely to be very successful, because 
these modes primarily compete among one another rather 
than with the car. Such additional information would not be 
provided by conventional MNL or other IIA models , simply 
because these models are based on the assumption that the 
utilities and market shares of transport modes are not influ­
enced by the availability of any other transport mode in in­
dividuals' choice sets. 
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Procedure for the Calibration of a 
Semicompensatory Mode 
Choice Model 

E111 KAWAMOTO AND Jos:E REYNALDO SETTI 

A two-step method for the calibration o semicompensatory model 
i presented. To demonstrate the use of the me1h d, it is applied 
to a model that represents the process of choo ing mode for 
work trips. The calibraiion of semicompensatory model , such a 
the one presented here , is not a trivial process because it involves 
finding the best set of parameters for two functions while satis­
fying a series of inequalities. In the example shown here, the 
inequalities are used to determine whether the modal choice pre­
dicted by the model corresponds to the user's choice. The best 
set of parameters is that corresponding to the fewest differences 
be tween the bserved and predicted cli ices. The first stage in 
the proposed calibrat ion process is a preliminary fitcing, which 
attempt ' 10 find lhe maximum f a deterministic function using 
a process that resembles the maximum likelihood calibrati n 
method. The second stage uses the first parameters determined 
in the first stage as an initial solution and then tries to find the 
be t fit through an exhau ' live earch around the initial gu 
The justification f thi two-step procedure is that the efficiency 
of the calibration process will be incrna ed, since the technique 
u ed in the fir l stage is faster than that used in the second tage. 
The proposed procedure ensures that an accurate answer is ob­
tained in a reasonable time while allowing the user to determine 
the sensitivity of each calibration parameter. The calibrated model 
was able to correctly predict more than 85 percent of the modal 
choices observed. 

Semicompensatory models make up a class of disaggregated 
behavior models that may be used to represent the behavior 
of trip makers who are choosing travel modes and routes. 
Two other classes of disaggregated behavior models may be 
identified: compensatory and noncompensatory models. The 
main difference among these three types of models is the 
assumption about whether compensations can be made among 
the attributes that influence the trip maker's decision . The 
assumption of compensatoriety implies that a high level of 
satisfaction with one attribute offsets low levels of satisfaction 
with others (J). For example, some models assume that time 
and cost are compensatory attributes. In terms of the trip 
maker's perception of a mode's utility, this could mean that 
the higher cost of a particular mode may be offset by the 
reduction in travel time obtained when using that mode. 

The logit and probit models are two well-known compen­
satory models. In these models, some amount of utility is 
associated with each travel mode. The value of the utility of 
a particular travel mode may be calculated as a function of 
variables that characterize the socioeconomic situation of ho­
mogeneous groups of users, travel costs of the mode, and the 
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mode's attributes (such as comfort , safety, etc.) . In a com­
pensatory model , the probability of a user choosing a given 
mode increases as the relative utility of that mode increases. 

Noncompensatory models assume that choices are made on 
the basis of attribute-by-attribute comparisons of available 
alternatives and minimum thresholds of acceptability. Non­
compensatory models do not consider trade-offs among at­
tributes (J). Examples of noncompensatory models are the 
lexicographic, the conjunctive, and the disjunctive models 
(J-3), among others. Young has used the elimination-by­
aspect technique proposed by Tversky (3) in a residential 
locatioo-choice model, which is a good example of the ap­
plication of a noncompensatory model (4). 

Sernicompensatory models are based on the assumption 
that trip makers perceive and distinguish between two cate­
gories of utilities : (a) an intrinsic utility of a mode and (b) 
the utility of the money spent to use a given mode. The 
intrinsic utility of a mode is a function of its attributes (such 
as comfort, safety, travel time, etc.) , whereas the utility of 
the money spent to use this particular mode depends on the 
trip maker's socioeconomic characteristics. The model also 
assumes that compensatoriety is only admitted among attri­
butes classified in the same category (such as cost and income, 
or comfort and travel time) (5). 

MATHEMATICAL REPRESENTATION OF 
UTILITIES 

In the context where travel is considered an intermediate 
activity allowing access to other activities, it may be assumed 
that all trip makers want to minimize travel time, physical 
effort, and other inherent effects of locomotion. Therefore, 
the intrinsic utility of a mode increases as its level of comfort 
and rapidity increase-where rapidity is defined as the ratio 
between the origin-to-destination straight-line distance, raised 
to a certain exponent, and the travel time, raised to another 
exponent. 

The semicompensatory structure assumes that an individ­
ual's decision about the use of the mode perceived as having 
the greatest intrinsic utility depends on the individual's per­
ception of the utility of the amount of money required to use 
that particular mode, which is a function of the out-of-pocket 
cost associated with the mode and of socioeconomic factors 
such as income and number of dependents. If the intrinsic 
utility of a given mode is greater than the utility of its out­
of-pocket cost, that mode will be chosen for the trip; other­
wise, this model will be considered too expensive, and the 
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second-best alternative is taken into consideration in a simi­
lar way. 

The intrinsic utility of a mode is expressed as a function of 
the following attributes: travel time, amount of physical effort 
required (a proxy for comfort), and straight-line distance be­
tween origin and destination. The utility of the money spent 
for using a mode is described as a function of out-of-pocket 
cost, household income, and number of dependents . 

These two utility functions have a multiplicative form , be­
cause previous studies have shown the adequacy of the mul­
tiplicative rule in representing the perception of a multiattri­
bute stimulus (6) and human judgment concerning travel 
behavior (5). In other words, the perception of a set of at­
tributes by a certain user may be represented by a multipli­
cative model in terms of actually measured values and not 
perceived values. For instance, the model uses "real" data 
for travel time or distance instead of values obtained from 
answers to questionnaires-which are affected by the respon­
dent's perception. Thus, the intrinsic utility of Travel Mode 
m is given by the expression 

(1) 

where 
Im intrinsic utility of Modem; 
D straight-line distance between origin and destination; 

T,., travel time by Modem; 
E,., physical effort required for traveling by Mode m, 

defined as the amount of bodily energy spent by the 
user when traveling by Mode m, given the travel 
time; and 

a, = calibration constants, which transform objective 
measurements into perceived values. 

Note that the level of comfort is taken into account by the 
model insofar as comfort is the inverse of physical energy, E, 
raised to some power. 

The second equation,, for the utility of the money required 
to use Mode m, is given by 

Sm = J3o . P~' . R~2 • N~3 

where 

Sm utility of the money required to use Modem; 
Pm = out-of-pocket cost for using Modem; 
R = household income; 

(2) 

N = number of people depending on the household in­
come; and 

J3, = calibration constants. 

A trip maker j chooses the mode for a trip by first ranking 
the available modes according to their intrinsic utilities: I~ > 
I~ > I{ > .... The intrinsic utility for the most preferred 
mode (Mode p) is then compared with the utility of the money 
required to use that mode: if I~> S~, then Mode pis chosen; 
otherwise, the second-highest-ranked mode is considered. 
Therefore, Mode q is chosen if I~ > S~ . If I~ < S~ , the 
process is repeated until a mode whose intrinsic utility is higher 
than the money utility is found. 

CALIBRATION OF THE SEMICOMPENSATORY 
MODEL 

The calibration of compensatory disaggregated behavior models 
uses the probability that an individual belonging to a homo-
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geneous group will choose a certain alternative, measured as 
the frequency of occurrence of each alternative. The main 
difficulty in calibration of semicompensatory models is the 
lack of a measurable variable linked directly to the choice of 
an alternative (e.g., the probability of choosing private car). 
However, this does not rule out probabilistic approaches to 
semicompensatory models-Kawamoto has proposed a prob­
abilistic structure for the semicompensatory model (7). The 
calibration of such a model would require observations of the 
frequency of mode utilization for homogeneous groups of 
users. 

The semicompensatory model, as proposed by Kawamoto 
(5), should be calibrated for each person in the data set through 
the comparison of observed and predicted choices. This is 
because it is almost impossible to determine individual pro­
pensities of choosing an alternative from observed individual 
choices. Although this deterministic approach may cause some 
operational difficulties, it allows for a better understanding 
of the process of mode selection because the underlying as­
sumptions about the structure of the trip maker's behavior 
are explicit. 

The multiple regression approach for the calibration of the 
model was discarded because of potential problems in the 
collection of accurate data. To use a multiple regression model, 
it would be necessary to know the points of indifference be­
tween the two utilities. Therefore, each subject interviewed 
would be required to state at least one combination of attri­
butes of a mode that would make that mode's intrinsic utility 
equivalent to the utility of the money required to use it (for 
instance, the price of fuel that would cause the trip maker to 
stop using a car, and so on). Responses to this type of question 
are usually not reliable because the subject must think about 
hypothetical situations and not about real ones. Furthermore, 
it would be necessary to assume that these stated combinations 
of attributes are really representative of the points of indif­
ference between utilities. 

Linear programming was also considered for the calibration 
of the model. The objective function would be some function 
that would reflect the difference between the predicted and 
observed choices, subject to the restrictions represented by 
the inequalities, which would also need to be linearized. The 
main problem with this approach is that a solution (or solu­
tions) for the problem would have to satisfy all restrictions , 
a condition that is equivalent to correctly predicting all ob­
served choices and that is very unlikely to occur. 

To avoid such pitfalls, Kawamoto has proposed that the 
best way to calibrate the model would be to use data on 
choices that people have actually made, given the available 
travel modes (8) . Each subject interviewed is asked to rank 
the available alternatives. It is then possible to find the rank 
of the mode each person in the sample actually used for his 
or her trip. For instance, if an individual has three alternative 
modes available for a trip, the person can rank the modes 
according to their perceived intrinsic utilities as well as in­
dicating which mode is actually used . Hence, it can be de­
termined whether the mode used is considered best, second­
best, or third-best. 

If the chosen alternative is the best of the three available, 
the value of its intrinsic utility (11) must not only be the great­
est among the three alternatives (11 > 12 > 13 , where 12 and 
13 are the intrinsic utilities of the modes ranked second and 
third, respectively) but the intrinsic utility of the selected 



68 

mode (the one ranked best) must also be greater than the 
utility of the amount corresponding to the out-of-pocket cost 
of this alternative (11 > S1). 

If the alternative used is the second-best, the following 
inequalities are valid: 

where S2 is the utility of the amount corresponding to the out­
of-pocket cost for the alternative ranked second. Finally, if the 
individual can only use the third-best alternative, the values 
of the intrinsic utilities must satisfy the following inequalities: 

The number of inequalities that must be verified for a par­
ticular trip maker depends on the number of alternatives and 
the rank of the alternative selected. 

The first stage in the two-stage calibration procedure tries 
to find values for the calibration constants o.; and p; such that 
most of the preceding inequalities are satisfied for the largest 
number of subjects in the sample. The procedure adopted in 
the first stage resembles the maximum likelihood method , 
although the utility functions used are deterministic. The sec­
ond stage uses the results of the first stage as an initial guess 
and tries , through exhaustive search , to find regions of optimal 
values around this starting point. 

First Stage 

The calibration of the semicompensatory model consists of 
finding a set of parameters that make the previously defined 
set of inequalities true for the maximum number of individuals 
in the calibration data set. The first step in the proposed two­
stage calibration technique tries to find an initial set of pa­
rameters V0 quickly through a process that resembles the 
maximum likelihood calibration technique, in spite of the 
deterministic nature of the functions used. 

Kawamoto (8) has used a technique for the calibration of 
semicompensatory models that involves two functions. The 
first function, f;k(V1), verifies whether the kth inequality is 
true for User j, given a parameter vector V1: 

(3) 

where Ux and Uv are utilities and e is a constant, usually the 
base of natural logarithms, 2.718 . ... 

This function ranges from 0 to 1: if f;k > 0.5, then UY < 
Ux; if f;k < 0.5, then UY > Ux. For each user j there is a 
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corresponding number of inequalities Ii to be checked, which 
depends on the number of alternatives and on the rank of the 
selected alternative. 

A second function, g(V1), is defined for a vector of cali­
bration parameters V1 as follows: 

(4) 

where 

f;k = function indicating whether a particular inequality is 
true (Equation 3) for User j, 

n = number of subjects in the sample used for calibration 
of the model, and 

ti = number of inequalities defined for User j. 

This function is submitted to a maximization procedure to 
find the best set of calibration exponents. 

Despite its computational efficiency, three problems are 
associated with this approach: 

1. The function f;k (Equation 3) used to check whether an 
inequality is true may distort the results because the results 
of the test are weighted . For instance, consider two situations, 
one where/= 0.9 and another where/ = 0.7 . Both represent 
situations where the inequalities are true (f > 0.5), but higher 
values off will generate higher values of g, distorting the 
results . 

2. The maximization of Function g corresponds to the max­
imization of the number of true inequalities. Unfortunately, 
the largest number of true inequalities may not correspond 
to the minimum difference between predicted and observed 
choices. 

3. Although the maximization of Function g produces a 
vector of calibration parameters V0 , there is no warranty that 
the minimum difference between predicted and observed 
choices corresponds to only one vector , V0 • In fact, given the 
discrete nature of the objective function (number of correctly 
predicted choices) , there may be several vectors that can yield 
the same degree of precision. 

The first stage in the calibration process presented here is 
largely based on Kawamoto's 1989 procedure. A critical change 
is that the function f;k is modified to avoid the introduction 
of distortions because of the weighting of the results of the 
inequality checks (Item 1). Thus, f;k has been changed to 

f, { 
1.0 

ik = 0.9 
if the inequality is true 
otherwise 

(5) 

This change eliminates the first of the problems with the 
former approach. To minimize the influence of the other two 
problems, the new process includes a second stage, which 
uses the calibration vector V0 determined in this first step as 
a starting point in the search for the best exponents for the 
utility expressions (described by Equations 1 and 2). 

Second Stage 

The procedure adopted for the second stage needs an initial 
"guess" for the calibration parameters-here , the exponents 
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obtained by the first stage. Through an exhaustive search 
procedure, small variations are introduced in these initial val­
ues , and the number of correctly predicted choices is calcu­
lated for each variation in each exponent. The number of 
correctly predicted choices is determined through the com­
putation of the utility functions values for each subject in the 
sample; if all inequalities for each subject are true, the pre­
dicted choice is correct. 

This procedure is computationally not efficient. For in­
stance, if the search is carried out for 10 values around the 
initial guess, there are 107 combinations of calibration param­
eters to be verified, and the number of correctly predicted 
choices has to be determined for each of these 107 vectors. 
The computational inefficiency of this procedure rules out the 
possibility of its sole use unless enough computing resources 
are available. 

DATA COLLECTION AND MODEL 
CALIBRATION RESULTS 

Data Collection 

The data used to demonstrate the model calibration procedure 
proposed here were collected in two medium-sized cities in 
Brazil (Sao Carlos and Campinas) in May 1989. Both cities 
are in the state of Sao Paulo in the southern region of the 
country. The population of Campinas is roughly 1 million; 
Campinas is 95 km northwest of the city of Sao Paulo . Sao 
Carlos is about 230 km northwest of Sao Paulo; the city's 
population is 160,000. Both Campinas and Sao Carlos are 
fairly industrialized and are major urban centers in the state. 

The method adopted for the data collection was to interview 
subjects at their workplaces. In Sao Carlos, interviews were 
carried out at the campus of the University of Sao Paulo 
(USP). In Campinas, data were collected at the Highway State 
Department Regional Headquarters (HSD). The choice of 
sites was based on their availability (the interviewers were 
known by the workers) and the fact that the reliability of 
certain responses (such as trip length, travel time, etc.) could 
be determined. 

The inclusion of data from Campinas was meant to avoid 
calibration based solely on short trips. Travel distances for 
USP workers range from 0.5 to 5 km, with a mean trip length 
of 2 km; most trip lengths for HSD workers range from 5 to 
10 km, with values as high as 18 km. Although these distances 
may seem short to the North American reader, any trip longer 
than 15 km is usually considered to be a long work trip for 
most Brazilians. 

The data collected in the interviews included residential 
address, workplace address, main mode used in the work trip, 
family income, work trip length, number of people dependent 
on the family income, travel time, out-of-pocket cost of the 
work trip, and how the subject would rank the available modes 
if no expenses were associated with their use. The inter­
viewees were asked to give their best estimates for travel time, 
distance and cost-the objective was to find "real" rather 
than subjective values for these variables . The responses to 
these items in the questionnaire were later checked against 
reliably calculated values ; whenever any significant inaccur­
acies were noticed in the subject's answers, the calculated 
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values replaced the subject's estimates. The use of this pro­
cedure can be justified by the multiplicative form of the model, 
which has been proved to be able to transform objective mea­
sured values into perceived magnitudes by Stevens (9) and 
Louviere (6), among others. The reader is referred to these 
authors for further details on multiplicative models. 

The sample consisted of 95 interviewees, 45 in Campinas 
and 50 in Sao Carlos. Data related to modes not actually used 
by the subjects were determined from other sources of in­
formation, such as observed bus and car speeds, bus headways 
and routes, and so forth. This procedure was adopted to avoid 

·errors introduced from any bias toward a particular mode­
subjects may not be able to give an accurate assessment of 
the attributes of the modes they do not use. 

The estimate of the out-of-pocket cost associated with use 
of a private car was made assuming that (a) the only cost 
actually perceived is the fuel cost, (b) the average gas mileage 
under normal urban traffic conditions is 7 km/L of fuel, and 
(c) the morning warm-up cycle consumes 0.3 L of fuel. Travel 
time for private car users was estimated considering that (a) 
the average morning warm-up cycle for an average car is 5 
min (since a large number of cars are fitted with ethanol­
powered engines whose warm-up cycle is longer than that of 
gas-powered engines), and (b) the average speed of a car, 
under normal traffic conditions, is 30 km/hr. 

Travel time for bus transit users was calculated on the basis 
of the following assumptions: (a) the average speed for buses 
is 15 km/hr under normal traffic conditions and (b) the total 
travel time for bus users is given by the sum of the time to 
walk from home to the bus stop, the wait at the bus stop (half 
the average headway), the in-vehicle time, and the time to 
walk from the bus stop to the workplace. Travel time asso­
ciated with walking was calculated assuming that the average 
walking speed is 5 km/hr. 

Although there may be some degree of correlation between 
travel time and out-of-pocket cost for automobile trips of 
these lengths , there is no such correlation between travel time 
and travel cost for the other two modes-transit fares are 
uniform for all routes in both cities, and the out-of-pocket 
cost for walking is nil. Therefore, it may be assumed that the 
effects of the correlation between travel time and cost are 
negligible considering that (a) the variable travel time is used 
in the intrinsic utility model (Equation 1) and the variable 
cost is used in the monetary utility model (Equation 2), and 
(b) that the data set used includes not only drivers but also 
walkers and public transit riders. 

Finally, Table 1 gives the level of physical effort associated 
with the use of each travel mode (JO). The physical effort 
used during a bus trip was estimated as the weighted average 
of the energy requirements for walking to and from the bus 
stop, standing at the stop, and riding a vehicle as a passenger. 

TABLE 1 Physical Effort Requirements by 
Mode (JO) 

Mode 

Driving 
Walking 

Energy expenditure (kcal/min) 

2.8 

4.5 

Riding a bus 2.5 
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Model Calibration Results 

The first stage produced the following calibration parameters: 

(6) 

(7) 

where distance is expressed in kilometers; travel time in min­
utes; energy consumption in kilocalories per minute; and out­
of-pocket cost and household income in American dollars. 
This model was able to correctly predict the choice of 85.3 
percent of the subjects in the data set (81 out of 95 cases). 
The signs of the calibration parameters obtained are consist­
ent with their expected signs. For instance, the greater the 
travel distance, the greater the utility of a mode, provided 
time and physical effort are fixed. If a mode allows a longer 
distance to be traveled with the same time and energy expen­
ditures as other modes, this mode is clearly superior. Simi­
larly, the utility of a given amount of money, perceived by a 
person whose family income is fixed, increases as family size 
increases. 

Although it is hard to comment on the absolute magnitude 
of the exponents, it is possible to verify that the relative mag­
nitude of the calibration parameters is also consistent with 
the observed behavior. For instance, the interviews indicate 
that the most important attribute in the perception of a mode's 
utility is its level of comfort. The calibrated model is consistent 
with this observation: the variable with the highest exponent 
is physical effort, a proxy variable for level of comfort. Sim­
ilarly, in the equation for the perception of the utility of an 
amount of money, the order of the attributes, in terms of 
their importance, is the magnitude of the amount itself, family 
income, and family size. This, also, is consistent with the 
observations. 

The second stage was conceived with the main purpose of 
improving the initial answer through an exhaustive search 
procedure. Yet, the number of correctly predicted choices did 
not increase from the first to the second stage. Instead of 
increasing the accuracy of forecast, the second step indicated 
that there are many combinations of exponents that can pro­
duce the same number of correctly predicted choices. Table 
2 gives exponents of eight models and their averages-the 
constant cx0 is assumed to equal 100. Any of these eight models, 
as well as the model with the average exponents, is able to 

TABLE 2 Calibration Parameters 

Ca.libra.tion para.meters 

Model Oo Po 01 P1 02 P2 03 {j3 

100 3400 0.990 l.llO -0.620 -0.820 -1.610 0.34~ 

2 100 3400 0.990 l.llO -0.620 -0.820 -1.610 0.360 

3 100 3500 0.990 l.llO -0.600 -0.820 -1.630 0.340 

4 100 3500 0.990 l.llO -0.600 -0.820 -1.630 0.360 

5 100 3500 0.990 l.llO -0.600 -0.820 -1.630 0.380 

6 100 3600 0.990 l.llO -0.620 -0.840 -1.670 0.340 
7 100 3600 0.990 l.llO -0.620 -0.840 -1.670 0.360 
8 100 3700 0.990 1.110 -0.620 -0.840 -1.630 0.360 
mean -· 3525 0.990 l.llO -0.613 -0.827 -1.635 0.355 

O' 103.510 0.000 0.000 0.010 0.010 0.0~3 0.014 
• 0<0 was assumed to be a constant. 
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correctly forecast the choices of 81 of the 95 subjects inter­
viewed. If smaller increments were used in the exhaustive 
search, other models would be found. 

The existence of multiple solutions able to produce the same 
number of correctly predicted choices is due to the discrete 
character of the objective function, the number of correctly 
forecasted choices. Although small variations in the calibra­
tion parameters (as given in Table 2) produce the same num­
ber of correct predictions, the set of subjects whose choice 
was correctly forecast is not the same for all the models. There 
may be a subset of subjects whose choice is correctly predicted 
by all models, but there may also be some subjects whose 
choice is correctly predicted by one model and not by the 
others. In fact, there is a group of 77 people whose choice is 
always correctly forecast by the models given in Table 2; the 
differences found among the results produced by the eight 
models are due exclusively to the composition of the remain­
ing subset (four people). Therefore, the semicompensatory 
model's results are stable for the majority of the people in 
the data set used. 

CONCLUSIONS 

The two-stage calibration procedure presented here was shown 
to be a feasible way for calibrating a semicompensatory mode 
choice model. The calibrated model is able to correctly predict 
more than 85 percent of the observed choices. A particular 
characteristic of the proposed calibration procedure is that it 
is able to come up with many models, each having the same 
degree of accuracy as measured by the number of correctly 
predicted choices. This characteristic is due to the discrete 
nature of the objective function. 

Because of the limitations of the data set used, it is not 
possible to say that the utility functions obtained in the cal­
ibration procedure represent the users' perceptions, although 
the authors believe that the exponents obtained are good 
approximations to the real ones. Larger data sets would im­
prove the accuracy of the calibration, but larger data sets 
would also need longer processing times. To analyze the spa­
tial and temporal transferability of the calibrated model, it 
would be necessary to calibrate the model using data sets 
collected in different regions and countries. 
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Daily Variability of Route and Trip 
Scheduling Decisions for the 
Evening Commute 

S. GREGORY HATCHER AND HANIS. MAHMASSANI 

The day-to-day variation of individual trip scheduling and route 
decisions for the evening commute is addressed on the basis of 
detailed 2-week diaries of actual commuting trips completed by 
a sample of automobile commuters in Austin, Texas. The poten­
tial impact of using alternative measures of variability in the con­
text of the daily commute is illustrated by comparing a "day-to­
day" with a "deviation from normal" approach to individual 
switching behavior. Models are presented to relate observed route 
and departure time switching patterns to the commuters' char­
acteristics, such as workplace conditions, socioeconomic attri­
butes, and traffic system characteristics. About 39 percent of all 
reported evening commutes contained at least one intermediate 
stop, highlighting the importance of trip linking in commuting 
behavior. These multipurpose trips are shown to significantly 
influence the route and joint switching behavior of the com­
muters . The emerging picture of evening commuting habits clearly 
suggests high variability of the daily departure time from work, 
in part due to the trip-scheduling flexibility associated with this 
trip. 

The trip decisions made by daily work commuters have a 
determining effect on urban traffic congestion and associated 
air quality. The effectiveness of several important approaches 
and policies aimed at alleviating these problems depends on 
commuters' responses to those measures and thus requires an 
understanding of commuter behavior processes and the de­
velopment of predictive models of these processes. Such ap­
proaches include peak spreading through flexible hours, trip 
reduction through telecommuting, and traffic management 
through the use of origin-based and in-vehicle real-time in­
formation (which falls under the IVHS umbrella). 

In the past few years, commuter behavior has been the 
subject of several studies, but with a rather limited scope. 
Most of these have focused on the morning home-to-work 
journey. Much less attention has been devoted to the evening 
return-home commute, which is a major factor in the for­
mation of congestion during the evening peak period. Man­
nering and Hamed (1,2) have studied the timing of the return­
home trip for a small sample of commuters in the Seattle area 
as well as the activity patterns of workers at the end of the 
work day (3). As limited as these studies have been, they still 
provide useful insights into this important aspect of commuter 
behavior, pointing in particular to the flexibility available to 
commuters in such decisions and the sociodemographic fac­
tors influencing this behavior. 

S. G. Hatcher, The MITRE Corporation, 600 Maryland Avenue, 
S.W., Suite 755, Washington, D.C. 20024. H. S. Mahmassani, De­
partment of Civil Engineering, The University of Texas at Austin, 
ECJ Hall 6.204, Austin, Tex. 78712. 

There appear to be virtually no published studies on the 
daily variability of actual trip timing and route choice decisions 
made by commuters with regard to their evening return-home 
commute. These aspects are significant for the following rea­
sons: (a) there appears to be good potential for influencing 
such decisions to improve traffic conditions and air quality, 
given the apparently greater degree of flexibility that workers 
have in the evening; (b) such influence is likely to be achiev­
able through emerging information technologies; (c) com­
muting trip patterns are generally assumed to be among the 
most temporally stable trip purposes, and the extent of their 
daily variability is not sufficiently documented; and (d) actual 
path choice decisions of individual commuters have not been 
documented in the past, certainly not from day to day. 

A major difficulty in studying the preceding aspects pertains 
to the observation of the actual behavior of commuters over 
time, especially in terms of specifying the actual paths traveled 
by commuters through the network. In previous work, Mah­
massani and coworkers have investigated these decisions pri­
marily through laboratorylike experiments under controlled 
conditions (4-6). In this study, commuter decisions are ob­
served in an uncontrolled environment, in which they are 
influenced by a multitude of interacting factors, including trip 
chaining considerations, which were controlled for in the lab­
oratory experiments. The study is based on a detailed 2-week 
diary of such decisions. 

DESCRIPTION OF SURVEY AND 
CHARACTERISTICS OF PARTICIPANTS 

This study is based on a survey of a sample of commuters in 
the northwest section of Austin, Texas, a moderately affluent 
suburban residential area adjacent to major technology-based 
manufacturing and R&D activities, with commuting patterns 
that include a large inter- and intrasuburb component. The 
survey was conducted in two stages: an initial short screening 
survey sent to 3,000 randomly selected households (all daily 
work commuters in a household were asked to complete sep­
arate survey forms), and a detailed trip diary. The first mailing 
was a short, one-page questionnaire on general commuting 
habits and tendencies. The second stage consisted of a 2-week 
work trip diary sent to 331 selected first phase respondents 
(all automobile commuters). A complete description of the . 
first-stage effort, which yielded 624 (in some cases partially) 
completed surveys, can be found in Caplice (7). Detailed 
analyses including the estimation of switching models com­
pleted in the first stage of the survey are presented in previous 
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work (7,8). These analyses are based on static stated responses 
regarding route and departure time switching in general. Data 
of this nature have well-known limitations with regard to cor­
respondence with actual behavior. 

These limitations were addressed in the second stage of the 
survey, which consisted of very detailed diaries of actual de­
parture and arrival times, street-by-street route descriptions, 
and intermediate stop (trip-chaining) information for both the 
morning and evening commuting trips for each day of the 
2-week period. In addition, the survey asked for the official 
work start time for the morning commute and the official 
work end time and target arrival time at home (if any) for 
the evening commute. This information can be used to mea­
sure daily travel time, schedule delay, and departure time 
switching. The routes were coded using a graph representation 
of the 1985 network of the Austin area (obtained from the 
Planning Division of the Texas State Department of Highways 
and Public Transportation). More details on the format of the 
second-stage trip diaries can be found in Hatcher (9). A total 
of 164 participants completed at least 3 days of the diary. The 
analysis was limited to those trips that begin and end with the 
usual work and home locations (for each commuter), resulting 
in 1,312 usable work-to-home trips. 

General commuting information for the diary participants 
is given in Table 1. The majority are males, are between the 
ages of 30 and 60, and own their place of residence. They 
prefer to arrive about 15 min on the average before their 
official work start time. About 43 percent of the commuters 
reported tolerance to lateness at the workplace in excess of 
5 min. The average travel time from work to home for the 
commuters on days with no intervening stops is 23.6 min . 
Comparisons of the distributions of the variables in Table 1 
with those in the first-stage survey indicate that the diary 
participants are representative of all first-stage respondents. 

TRIP-CHAINING BEHAVIOR 

The variability of trip-timing and route choice decisions can­
not be properly analyzed without considering the associated 
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trip-linking behavior of the commuters. During-work trip chains 
(beginning and ending at work) and home-based trip chains 
(beginning and ending at home), not recorded in our travel 
diaries, have been addressed by other authors , such as 
Kitamura et al. (10). The trip-chaining behavior addressed in 
this paper corresponds to the critical evening commuting pe­
riods. Since only after-work paths are considered, all trips 
begin at work and end at home. These trips may or may not 
have intermediate stops. 

Diary information available for each stop includes location, 
purpose, arrival time, and departure time. Stop locations were 
coded to the nearest node (or centroid) of the Austin network. 
Twenty-one initial stop purposes were coded, then subse­
quently combined into five major activity groups for analysis: 

• Serve passenger, 
•Personal business, 
•Food/recreational/social, 
• Shopping, and 
• Other (includes meetings, medical appointments, and work­

related errands). 

A total of 516 (39.3 percent) out of 1,312 commutes had 
one or more stops. About 11 percent of all evening trips had 
two or more stops. In total, 719 after-work stops were doc­
umented in the diaries. The relative frequency breakdown of 
activity types of these stops is as follows: personal business, 
24.2 percent; shopping, 23.8 percent; food/social/recreational, 
19.9 percent; serve passenger, 16.8 percent; and other, 15.3 
percent. 

For each commuter , a stops ratio was calculated by dividing 
the number of trips with stops by the total number of trips 
reported . For example , a stops ratio of 0.5 indicates that the 
commuter stopped on exactly half of the evening commutes. 
Only about 14 percent of the commuters did not report mak­
ing a stop on any of their commutes during the survey period 
(stops ratio = 0.0) . At the other extreme, about 5 percent 
of them made stops on every trip (stops ratio = 1.0) . A wide 
spread of values was observed for the stops ratio, a reflection 

TABLE 1 Characteristics of the 164 Diary Participants• 

Average Usable Trips per Commuter (164) 

Average Actual PM Travel Tune (No Scops) (156) 

Type of Work Hours (164) Regular Wen Houn 
Plcxiblc Work Hours 
Scheduled Shift Wen 
Oda' 

8.00 (10 is maximum) 

23.6 minutes 

84.8% 
10.3% 
4.3% 
0.6% 

Average Early PrefemdArrival Tune at the Work Place (159) 15.6 min 

Percentage with Lateness Tolerance (>5 min) at Wen (162) 42.6% 

Commuters Listening to Radio Traffic Reports (164) 67. 7% 

Gender (male) (164) 67.7% 

Age (164) Under 18 
18-29 
30-44 
45-60 
ovcr60 

Commuters Renting Their Residence (164) 

a Sample si7.C of diary pal1icipanrs for each response is in parentheses. 

0.0% 
4.3% 

48.8% 
42.6% 
4.3% 

8.5% 
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of both different commuter trip-linking habits and daily vari­
ability in the commuting pattern of each participant (both 
inter- and intrapersonal variability). 

Some workers routinely make a stop during their evening 
commute; for example, a parent may pick up a child at school 
or a day care center on the way home from work. The behavior 
of routine stoppers may vary significantly from that exhibited 
by those making nonroutine stops. With this in mind, the set 
of all stops was separated into routine and nonroutine stops. 
Though several definitions are possible, a stop was classified 
as routine if it is made (for a given commuter) (a) at the same 
location and (b) with a frequency of at least three in five 
commuting trips (the location had to be visited at least three 
times to be considered). This definition is based on the lo­
cation and not the purpose of the stops, although most stops 
at a given location will have the same purpose. Huff and 
Hanson (11) used "core stops" to describe a similar phenom­
enon and studied the effect of three core-stop definitions. 

By our definition, 115 (15.9 percent) of the evening stops 
are routine. Furthermore, 21.7 percent of the trips with stops 
contained routine stops. Sixteen commuters (9. 7 percent of 
all commuters, 11.3 percent of those with stops) had at least 
one routine stop (one had two). As expected, the majority 
of these routine stops are made to serve a passenger (62.6 
percent of all routine stops). More detail on the observed trip­
chaining characteristics can be found in related work (9,12). 

TRIP-SCHEDULING AND 
ROUTE DECISION VARIABILITY 

Critical to the modeling of commuter behavior are the mech­
anisms by which users choose routes and departure times, and 
the factors that determine the variability of these decisions 
from day to day. In this section, we analyze the departure 
times and street paths taken by each commuter for the evening 
work journey over the 2-week survey period. 

A departure time switch can be defined in several ways. In 
previous work, Mahmassani et al. ( 4) defined a departure 
time switch in a dynamically evolving context as a day-to-day 
change of a certain magnitude (e.g., 5 min). Mannering (13) 
described a time change as a deviation from a "normal" de­
parture time with the "intent of avoiding traffic congestion 
and/or decreasing travel time." In this study, we compare 
alternate switching definitions and thresholds and illustrate 
the dependence of certain behavioral conclusions on these 
definitional issues. Two ways of capturing departure time 
switching behavior are discussed here: (a) switching from a 
commuter's median departure time (median switching) and 
( b) switching from a user's previous day's departure time (day­
to-day switching). Median switching is intended to capture 
deviations from a usual daily routine. The median was chosen 
for this purpose instead of the mean to avoid the undue in­
fluence of outliers in a commuter diary. By the day-to-day 
definition, the current day is considered a switch from the 
previous day if the absolute difference between their respec­
tive departure times exceeds (or meets) some minimum 
threshold. This definition is important in modeling the day­
to-day evolution of flows in the commuting system and dy­
namic equilibrium processes (14). 
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We also explore two definitions of a route switch. First, we 
define a mode route switch as a deviation from the normal 
or mode (most frequently used) network route (a route is a 
unique sequence of network nodes), in which the commuter 
follows a "different than usual" set of nodes to arrive at work. 
This criterion recognizes the observed dominance of one route 
over all others for most commuters. Second, we define a day­
to-day route switch as a route that is different from the pre­
vious day's route. To minimize capturing trivial route switches, 
minor deviations around the trip ends (neighborhood streets) 
or a network node (e.g., a minor cutoff street to avoid an 
intersection) are not considered route switches. 

Results of the departure time and route switching analysis 
are presented in Table 2. Departure time switching thresholds 
of 3, 5, and 10 min are considered: deviations (absolute value) 
greater than or equal to the thresholds are considered switches. 
We attempt to control for departure time switching that is 
directly induced by a different work end time by limiting the 
analysis to commuter trips with the same work end time (for 
median switching, Definition 2) or trips in which the work 
end time is within 5 min of the previous work end time (for 
day-to-day switching, Definition 4). 

Table 2 clearly indicates that workers engage in a substantial 
amount of evening departure time switching. As expected, 
the day-to-day definition results in a higher percentage of 
switches than does the median definition. In fact, additional 
analysis indicates that more than 40 percent of these com­
mutes are 20-min day-to-day switches. The 3-min threshold 
tends to confound what may be considered "noise" with actual 
intended changes in departure time. The 5- and 10-min thresh­
olds appear to be the most plausible for the purpose of this 
study. These two thresholds are also appealing because they 
correspond better with clock times than the 3-min threshold. 

Route switching is not as frequent as departure time chang­
ing for the evening commutes. Less than two in five trips use 
a nonmode (i.e., other than the most frequent) route, sug­
gesting the existence of a usual route for most commuters. 
When trips with stops are excluded from the data (Definition 
2), nonmode trips account for only 12.7 percent of the re­
maining trips. Again, the day-to-day definition captures more 
switching than other definitions. The lower frequency of route 
switching relative to departure time switching is consistent 
with the results of stated preference experiments under sim­
ulated traffic conditions (5). 

A joint switch consists of both a departure time and route 
switch on a given trip. Two definitions of joint switching are 
explored (corresponding to the definitions for the individual 
choice dimensions). First, a median/mode joint switch is de­
fined as a median departure time switch together with a mode 
(all days) route switch. Second, a day-to-day joint switch is 
defined as a day-to-day departure time switch together with 
a day-to-day route switch. As shown, a significant amount of 
joint switching occurs during the evening commute. More 
than two in five evening commutes are joint 5-min day-to­
day switches. 

This variability at the individual level suggests a high po­
tential for variable aggregate temporal and spatial demand 
patterns during the evening peak period. In addition, the 
sensitivity of behavioral conclusions to definitional and mea­
surement issues is highlighted by these results. Note that our 
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TABLE 2 Results of Departure Time and Route Switching Analysis 

Percent of Trips that are Switches 

Departure Time Switching 

Switch Threshold (minutes) 

Definition 3 5 W N~~~Tris 

1. median 70.3 

2. median (WE()J) 63.8 

3. day-IO-day 85.7 

4. da -to-da 81.9 

63.0 

55.7 

79.8 

74.6 

50.0 

40.8 

65.8 

58.8 

1298 

961 

1136 

878 

Route Switching 

Definition 

1. mode (all days) 

2. mode (days with no stops only)b 

3. day-to-day 

% Switches 

36.1 

12.7 

53.2 

Number of Trios 

1312 

796 

1148 

Joint Switching 

Dep~ Time Switch Threshold (minutes) 

Definition 3 5 10 NumberofTri s 

1. median/moder 26.7 

2. median/mode (WEC) 24.8 

3. day-to-dayd 46.6 

4. da -to-da 44.9 

a WEC- wod< end cootrollcd 

24.3 

22.3 

43.9 

41.6 

19.3 

16.9 

37.6 

34.6 

1298 

961 

1136 

878 

b Mode routes were redermcd by selecling only days with no stops. 
c Median defmilion used for departure time switch, mode (all days) dermilion used for route switch. 
d Day-IO-day definition used for departure time and route switch. 

results correspond to actual decisions observed in the network 
regardless of the underlying motive . As such, these results 
provide a characterization of the natural variability of com­
muter decisions in a real system. 

Consistent with the stated preference experiments of Mah­
massani and Stephan (5), departure time and route switching 
decisions are not independent of each other, as confirmed by 
chi-squared tests for the various definitions. The tests confirm 
that the dependence increases as the departure time switch 
threshold increases (as reflected in higher computer chi-squared 
values) . 

The values in Table 2 do not highlight differences across 
individuals, especially since different commuters reported dif­
ferent numbers of trips during the survey period. Switching 
ratios were obtained by dividing the number of switches by 
the number of possible switches, for each individual, for each 
departure time and route switching definition (a ratio of 1.0 
indicates a switch on every possible day). Figure 1 shows the 
differences between departure time switching definitions by 
showing the cumulative relative frequency distributions (across 
commuters) of the alternative departure time switching ratios 
(for controlled work end times) . For example, the percentage 
of workers never switching departure time is approximately 
19 percent according to the 10-min median definition , 11 per­
cent by the 10-min day-to-day definition , 5 percent by the 
5-min median definition, or 3 percent by the 5-min day-to­
day definition. These discrepancies underscore the impor­
tance of definitional issues with regard to departure time 

switching. According to the conservative 10-min median def­
inition, 37 percent had a switch ratio of 0.5 or higher. The 
emerging picture of evening commuting habits clearly suggests 
high variability of the daily departure time from work. 

The cumulative relative frequency distributions of the three 
route switching ratios are also shown in Figure 1. When all 
days are analyzed, only 15.5 percent of the users never switch 
routes during the p.m. commute. About 28.6 percent of com­
muters switch from this mode with a frequency of more than 
1 in 2 days. Significantly less switching relative to the mode 
route occurs if only no-stop routes are considered, because 
64.3 percent of the users never switch routes under these 
circumstances, and only 7.9 percent have a switch ratio greater 
than 0.5. Under the day-to-day definition, 52.9 percent of 
commuters have a switch ratio greater than 0.5. Clearly, the 
need to link one or more activities along the commute influ­
ences path selection and causes a substantial amount of route 
switching, even for those who would not change routes other­
wise. The variability in switching behavior exhibited by the 
commuters provided the impetus for the modeling efforts 
presented in the next section. 

SWITCHING FREQUENCY MODELS 

Insights into the factors that influence route and departure 
time switching behavior in connection with the evening com­
mute would contribute to the ability to develop and analyze 
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80 

80 

Cumulative % 
of Commuters 40 

Cumulative % 
of Commuters 

20 m =median 
d-d = day-ll>day 

o.f=::;!:~---..--..--.---.-~.--...----.-~ 
0.0 

80 

40 

0.2 0.4 0.6 0.8 

Depanure Time Switch Ratio (PM) 
(work end controlled case) 

1.0 

o+--.....---.---...---.-..--..--.....--..-........ ..--...---1 

0.0 0.2 0.4 0.6 0.8 1.0 

Route Switch Ratio (PM) 

FIGURE 1 Cumulative distributions of (top) departure time 
and (bottom) route switching ratios, by definition. 

demand management policies. In this section, we employ 
Poisson regression methodology to investigate the effect of 
the characteristics of the commuter and of the commuting 
environment on the observed departure time, route, and joint 
switching behavior. 

Background for Poisson Regression Models 

The development of the Poisson regression model of the num­
ber of daily switches made by commuters is described in this 
subsection. Given the nature of the process and the inherent 
randomness in the number of switches made by different com­
muters, the Poisson distribution is likely to provide a reason­
able description of the total number of switches made by a 
commuter during the study period. This distribution is par­
ticularly appropriate because the dependent variable naturally 
assumes nonnegative integer outcomes, including a relatively 
large number of commuters with zero switches (a problem 
that makes OLS regression biased). 

One difficulty encountered here and in surveys of this type 
is that participants may have completed an unequal number 
of days for analysis (e.g., some participants completed the 
full 10 diary trips, but for various reasons others completed 
only 8 or 9). Standard Poisson regression applications assume 
an equal number of trials. For this work, the model was de-
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rived for different numbers of observed days per commuter . 
For Commuter i, Jet d1 denote the total number of days re­
corded, y1 the total number of switches made, A.1 = E(y;), and 
a 1 the mean number of daily switches (i.e., a 1 = A./dJ. The 
model postulates that the mean daily switching frequency (or 
rate) for Commuter i can be related systematically to the 
characteristics of the commuter. Assuming a specification of 
the form 

log a 1 = px, 

then 

Jog A.1 = log a 1d1 = px, + log d1 

where p is a vector of estimable parameters and X1 is a vector 
of commuting and socioeconomic attributes for Individual i. 
Note that the value of exp(pX;) represents the mean daily 
number of switches for Individual i. Therefore, the probability 
of a commuter making y1 switches in d1 days is given by 

The parameter vector p can be estimated by the maximum 
likelihood method. The log-likelihood function for the pre­
ceding specification (substituting for A.;) is given by 

log L(p) = 2: [ - log y 1! - exp(pX1 + Jog d;) 
i 

+ y.(pX1 + log d;)J 

The change from the initial log-likelihood value (P = 0) to 
the final log-likelihood value (at convergence) provides an 
informal measure of the model's goodness of fit . The log­
likelihood value for a specification consisting of only a con­
stant term (i.e., assuming that all individuals in the sample 
have the same mean daily switching frequency) is also pro­
vided for each of the models in this section. In each of the 
calibrated models, the constant term is expected to be neg­
ative to compensate for the addition of the log d1 term required 
for the estimation of a mean daily frequency. 

The principal explanatory variables considered in the 
switching frequency models are given in Table 3. These in­
clude workplace, personal, commuting, and network varia­
bles. To show the effect of trip chaining, the stops ratio (num­
ber of trips with stops to total trips) was explored as a potential 
explanatory variable in the model specifications. Commuters 
with less than three trips or less than three switching oppor­
tunities were excluded from the following models, because 
(a) several essential explanatory variables could not be mean­
ingfully calculated for these users (e.g., the stops ratio and 
travel time variability measures), and ( b) the behavior of these 
individuals did not provide the multiday character that was 
intended by the specifications. Those left out of the models 
are a random subsample of the other commuters, since the 
factors that caused people to report fewer days were not cor­
related with the same characteristics that determine the mod­
eled behavior (e .g. , the individual was sick, on vacation, or 
on a business trip) . Therefore, the exclusions did not create 
endogeneity in the model specifications. 

Note that the developed models correspond to actual 
switching behavior and are not simply describing a propensity 
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TABLE 3 Independent Variables Tested in Evening Departure Time, Route, 
and Joint Switching Frequency Models 

to switch one's departure time or route, as in the models 
developed for the first-stage questionnaire of this research 
effort (7,8). General comparisons of the models developed 
here to describe actual behavior with those describing r¥­
ported propensity to switch (with traffic conditions in mind) 
will be made where appropriate. Some disagreement between 
switching propensity and actual switching frequency is ex­
pected. This disagreement will be a result of definitional issues 
as well as the complex human behavioral considerations (in­
cluding trip chaining) present in a real commuting system. 
Note that the models developed for the first-stage survey were 
calibrated for those with regular work hours only, whereas 
those developed here did not explicitly exclude other types 
of work hours. 

Departure Time Switching Frequency 

Because the alternative departure time definitions exhibit the 
same general trends, the model is presented only for the day­
to-day switches that exceed a 10-min threshold, for days with 
the usual work end time. The work end time is controlled 
here so that the observed switching behavior is not a result 
of different work schedules. Thus, some commuters with shift 
work hours were excluded from the estimation data set. 

Table 4 contains the attributes found to be important in 
the evening departure time switching frequency model (and 
the route and joint switching frequency models) and their 
corresponding parameter estimates and t-statistics. Work­
place attributes, individual characteristics, and traffic system 
characteristics influence departure time switching behavior in 
the evening. 

Lateness tolerance and travel time variability (expressed 
here as the coefficient of variation) increase the expected 
number of departure time switches of trip makers. It is in­
teresting that lateness tolerance increases the likelihood of 
p.m. time switching, even though it is generally used to de­
scribe flexibility in the a.m. work start time. This may be a 
result of workplace rules (in terms of working a specified 
number of hours). It may also be capturing other job char­
acteristics (such as job power or overall flexibility). The only 
other workplace variable included in the specification is a late 
work end time indicator, which can be interpreted as a traffic 
system characteristic. The negative coefficient indicates that 
those with work end times of 6:15 p.m. or later are expected 
to make fewer departure time switches than those whose work 
ends earlier. Therefore, those with late work end times are 
less willing to further delay their departure. Of course, there 
is no need for them to do so because the p.m. rush hour in 
Austin typically ends by 6:15 or 6:30. 

The socioeconomic and individual attributes included in the 
model correlate negatively with departure time switching. Those 
making at least one routine stop during the evening trip are 
likely to make fewer switches, probably because they are 
constrained by their stop (which is likely to be a serve pas­
senger stop). Males over 44 years of age also make fewer 
switches than others . This finding could be an indication that 
older males are inclined to be risk averse and creatures of 
habit and may have fewer household responsibilities that re­
quire deviating from an established routine. The home own­
ership indicator variable suggests that those renting make 
fewer evening time switches than those owning. Perhaps this 
variable is capturing a group of socioeconomic and life-style 
effects that determine risk aversion and habit persistence. 
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TABLE 4 Estimation Results for Poisson Regression Models of Daily Switching Frequency for P .M. Commute 
(Calibrated for Those with at Least Three Switching Opportunities) 

DBPARTIJRE TIMEG ROlJI'Eb JOINT< 

- Variable 

ccm1lld 

lllmllll tllienDce It workplace (1 if avs 5 min) 

lite worlt end limo IDdlcalOI" 
(1 if worlt end lime:!:: 6:1S) 

lalo PM peak 1D1r lndiclllX" 
(1lfwodtmdIsbetween5:46111116:15) 

PM peak period worlt md lime iDdlcllcr' 
(1 ifworlt end llmels between 5:15 ml 6:15) 

PM rouline sropper lndicalor 
(l If maba I rouilnutop OD PM commute) 

PM 11top1 rado, lflell than 0.75 (0.75 ifl'llio ~0.75) 

adclitional PM ~ ntlo ~ 0.75 
((ndo-0.75], mio :i:: 0.75) 

codlicir:lll ahlrilllanctncn-ttop PM r:nvel lime 
(ad. devilliaa bl\'lll tlmo / mem ll'lvel time) 

PM modo ltllllll medium lenl\h ttavel lime indi.cator 
(l If avenp U Is~ 20 and 30 mlnuLCS) 

home OIYllSllllp iDdkalor (1 if renting, O Olbcrwlse) 

male aver 44 iDdicalor (1 if male llld avs age 44) 

. He lndic;ala' (1 if UC iJ between 30 llld (J()) 

l.og-lmlihood It Ul'O 

Log~ far com1ant ooly 
l.og-llb:llbood 11 CUJvergeoce 
Number of abservlllians 
a IG-mlnu•day·l(Hiay dellrillon. wcdt ...S conlrolled 
b mode ""'"' 1wl1Ching (&II day1 dd"l11ilio1>) 

,,.,.........,.. 
CoefficleDl 

--0.730 

0.241 

--0.(J(J9 

--0.436 

1.595 

--0.431 

--0.150 

-335.38 

-263.71 

-244.82 

121 

c 10.mlnule day-llMlay (WEC) dq>ortun: lime and day-IO-day route definition 

t::5UID&IOO rswn&lCO 
t-ewislic Coefficient t-stalistlc Coefficient t-stalislic 

-7.01 -2.018 -18.02 -2.283 -8.35 

2.27 0.237 1.81 

-2.23 

0.534 2.26 

0.268 1.35 

-2.84 

2.190 8.41 1.724 6.08 

-2.295 -2.84 -4.159 -2.28 

2.82 0.930 1.Sl 

0.222 2.01 

-2.54 

-1.43 

0.332 1.35 

-700.76 -465.59 

-346.38 -243.07 

-289.33 -212.32 

160 121 

d Median PM dq>OJlllJo lime UJed for live individuals without official work end times (flexible hour.;). 

Surprisingly, job power, an indicator variable intended to 
capture the degree of schedule control, power, and respon­
sibility associated with a particular job title, was not found to 
significantly influence the p.m. departure time decision. It 
was thought that those with low-power jobs would make fewer 
switches than those with high-power jobs, but the hypothesis 
was not supported by the results. The effect of job type may 
have been confounded with other variables, such as age, gen­
der, and housing tenure. Perhaps a finer grouping of job type 
would have been necessary to detect such significance. Flex­
ible work hours also did not significantly influence the fre­
quency of switches, though the effect may already be captured 
by other related variables. 

Estimation results for the binary logit models of evening 
departure time and route-switching propensity from the first­
stage survey are given in Table 5 (7). Comparison of our 
results with the first-stage binary model of p.m. departure 
time switching propensity reveals two similarities. First, males 
have a lower propensity for switching than females in both 
models. Also, two p.m. peak-hour indicator variables in the 
first-stage model indicate an increased switching propensity 
for those with work end times between 4:45 and 6:15 p.m. 
This is consistent with the finding here that users with late 
work end times switch less frequently than others. The other 
three varibles in the first stage model are reported travel time 
(positive effect), an alternate routes indicator (positive ef­
fect), and preferred arrival time for those without lateness 
tolerance (negative effect). These three variables were found 
to have no significant influence on actual departure time 
switching frequency for the p.m. commute. 

Route Switching Frequency 

The route switching modeled here is obtained with the mode 
route (all days) definition, which captures switches relative 
to a commuter's usual route (regardless of the magnitude of 
the switches). Table 4 contains the attributes included in the 
specification of the route-switching frequency model, along 
with their corresponding coefficient estimates and t-statistics. 
The p.m. stops ratio is the most important explanator of route­
switching behavior. Two traffic system (or commute) attri­
butes are included in the specification: a late peak-hour in­
dicator and a medium length travel time indicator. 

As expected, the route-switching frequency increases as the 
stops ratio increases, up to a point (0.75 in this model) . Be­
yond this threshold, the likelihood of route switching actually 
decreases (as illustrated by the negative coefficient for the 
additional stops ratio), because routine stoppers (or others 
with a high stops ratio) may travel the same route on most 
trips. The late p.m. peak-hour indicator reveals that those 
having work end times between 5:46 and 6:15 make more 
route switches than other commuters. This is probably a re­
flection of the congestion experienced during this period, as 
commuters make more route switches in order to avoid delays. 
The last variable to display significance in the model is a mode 
route medium length travel time indicator , because those with 
travel times between 20 and 30 min switch more frequently 
than others. This variable may reflect the lack of opportunity 
in the network for significant improvements for very short or 
very long trips. It may also reflect a fundamental behavioral 
tendency: travelers with short trips may see no need for al-
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TABLE S Estimation Results for Binary Logit Models of Departure Time and 
Route Switching Propensity for the Evening Commute from Work to Home• 

PM SWITCHING PROPENSITY MODELS: (Stage I Sample) 

(values shown are the estimated coefficients) 

Independent DEPARltJRE 
Variable TIME ROUTE 

Constant -1.396• -1.227 

Reported Travel Time in Minutes (tt) 
(0 if tt< 10, tt if~ 10) 

0.025• 

Reti:ned Travel Time in Minutes (tt) 0.046• 
( if tt< 10, It if 10 s: tt s: 35, 35 if tt > 35) 

Approximated Travel Speed in mph (spd) -0.018 

Lateness tolerance at the Work Place 0.343 
(1 if unlimited tolerance, 0 Otherwise) 

Early PM Peak Holli' Indicaror (1 if work end time is 0.282 
between 4:45 and 5:45, 0 Otherwise) 

Late PM Peak Hour Indicator (1 if work end time is 0.854• 
between 5:46 and 6:15, 0 Otherwise) 

Preferred Arrival Time (pat) in minutes before worlc -0.017• 
starts for commuters with no lateness tolerance 
at the Work Place 
(PAT if no lateness tolerance, 0 Otherwise) 

Abundance of Alternate Routes Indicator 0.666• 0.744• 
(1 if available, 0 Otherwise) 

Age Group -0.185 
( 1 if age<18, 2 if 18S: age <30, 3 if 30Sage<45, 
4 if 45S: age S: 60, 5 if age >60 ) 

Radio Traffic Report Listening Indicator 1.311 • 
(1iflistens,0 Otherwise) 

Gender (1 if male, 0 if female) -0.557• 

Number of observations 393 365 

Log-likelihood at :zero -272.40 -253.00 

Lo1Hikelihood at conV""""'llCC -221.70 -223.01 

• Estimate has t-Slatistic of I.RS or higher. 
a Calibrated for commuters reporting regular woi1t bOlln only. 

Source: Caplice (1990). Tables 4.10 and 4.11. 

tering routes (small absolute time savings), whereas those with 
long trips may face too much uncertainty with regard to travel 
time variability to distinguish one route's superiority over 
another. Surprisingly, the alternate route availability and travel 
time variability attributes did not show significance by them­
selves or in combination with other variables. However, the 
effect of these attributes may have been confounded with that 
of the late p.m. peak-hour indicator. No other attributes were 
found to significantly influence route-switching behavior for 
p.m. trips (including route speed) . 

Comparison with the binary logit model of evening route­
switching propensity for the first-stage survey reveals no direct 
similarities (see Table 5). The most important variables in the 
first-stage model are travel time, availability of alternate routes, 
and the radio traffic report listening indicator, all exerting 
positive influence on route-switching propensity. These vari­
ables were not found to influence actual switching frequency . 
The only potential similarity in the model of actual switching 
frequency is to travel time, since the stops ratio is highly 
correlated with travel time (9). The other three variables in 
the first-stage model specification were approximate travel 
speed (negative effect), age (negative effect), and lateness 
tolerance at the workplace (positive effect). These three var-

iables also had no significant influence on route-switching 
frequency for the evening commute. 

Joint Route and Departure Time Switching Frequency 

A joint switch is modeled here by a day-to-day route switch 
and a 10-min day-to-day departure time switch (with con­
trolled work end times). Because the multinomial logit models 
developed for the joint departure time and route-switching 
propensity for the first stage contained no new variables other 
than those included in the individual models, no further com­
parisons are made between actual switching and reported pro­
pensity for joint switching. 

Estimation results fat the day-to-day joint switching fre­
quency model for evening commutes are also given in Table 
4. As expected, most of the explanatory variables in the joint 
model are derived from the two individual p.m. switching 
models . The stops ratio variable is specified as in the evening 
route-switching model, with similarly signed and equally sig­
nificant variables. The lateness tolerance indicator and coef­
ficient of variation of p.m . travel time (for trips without stops), 
significant in the evening departure time switching model , are 
moderately significant in the joint model. 
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The other transportation system and workplace attribute 
in the model is the p.m. peak period work end time indicator. 
Those with work end times between 5:15 and 6:15 are likely 
to make more joint switches than those with other work end 
times, although the coefficient is not strongly significant. This 
finding again stresses the importance of actual work end times, 
since those with these work end times find themselves re­
turning home during the peak p.m. traffic period, which may 
provoke them to seek alternate routes and departure times. 
The two individual p.m. switching models also contain a work 
end time indicator variable, in slightly different forms, which 
are consistent with the joint switching behavior captured here . 
The last and only other new variable is a socioeconomic at­
tribute: commuters between the ages of 30 and 60 tend to 
make more frequent joint switches than older or younger trip 
makers. This may reflect more complex activity and work 
patterns for middle-aged commuters, resulting in the need for 
more joint switching. 

The models presented in this section provide helpful insight 
into the factors affecting commuter switching behavior and 
peak-period variability. The workplace, commuter, and trans­
portation system variables exhibit plausible signs and signif­
icance in all three models . The significance of the stops ratio 
variable in the route and joint switching models emphasizes 
the need to understand trip-chaining behavior in a commuting 
context. A daily stop frequency model for the evening com­
mute, based on the Poisson techniques described here, can 
be found in Hatcher (9). 

CONCLUDING REMARKS 

This study has provided insight into the trip-scheduling and 
route choice behavior of commuters for the trip from work 
to home. The presentation focused on the observed variability 
of the work trip, which has traditionally been treated as a 
stable and repetitive phenomenon. About 39 percent of all 
reported commutes contained at least one intermediate stop, 
underswring the importance of trip linking in commuting 
behavior. Furthermore, trips with stops are much more likely 
to involve route or joint switching than trips without stops . 
Trip-scheduling flexibility for the evening commute appears 
to contribute to a substantial amount of departure time switch­
ing. In general, commuters tend to change departure times 
more frequently than routes, possibly a reflection of a limited 
route choice set in comparison with a broader set of available 
departure times. 

Emphasis was placed on the definitional issues that arise 
when studying these behaviors. The analysis used both a "day­
to-day" and a "deviation from normal" approach to switching 
behavior. The day-to-day definition captured a higher fre­
quency of switching than did other definitions. 

The models of daily switching frequency related the char­
acteristics of the commuter, workplace, and transportation 
system to the switching behavior exhibited by the users. The 
stops ratio is an important determinant in all of the switching 
models except the evening departure time switching model 
(in which a routine stopper indicator is contained). Com­
muting trip time variability is an important determinant in all 
of the reported switching models except the evening route­
switching model, where a medium length travel time indicator 

TRANSPORTATION RESEARCH RECORD 1357 

displayed significance without interacting with a variability 
indicator. 

Workplace variables such as lateness tolerance and work 
end time otherwise dominate evening departure time, route, 
and joint switching behavior. Socioeconomic variables such 
as gender, age, home ownership, and interaction variables 
containing gender also display explanatory power, but their 
effect is not as clear-cut. The lack of agreement and strong 
significance for socioeconomic variables indicates that they 
may not be as important in the models as the other variables. 
Other personal and household characteristics may be impor­
tant, but the limited availability of personal and socioeco­
nomic exogenous variables precludes their inclusion in the 
model specifications. Furthermore, some of these character­
istics may be indirectly reflected through their effect on trip­
chaining patterns, as well as commuter preference indicators. 

Although the data are somewhat limited, the behavioral 
insights gained from this study are important in that actual 
behavior was observed over a 2-week period rather than only 
1 or 2 days. Furthermore, the documentation of actual switch­
ing habits is subject to fewer problems than a phone or mail 
survey, which involves recall or stated intentions by the re­
spondent. Route and departure time switching were shown 
to be already taking place in actual systems, implying that 
users may be willing to shift commuting patterns if they were 
to benefit from these changes. In addition, this study has 
provided valuable confirmation of insights previously sug­
gested in stated preference experiments involving actual com­
muters in a simulated traffic system. These findings contribute 
to the increasingly important task of understanding commuter 
behavior in real systems. 

ACKNOWLEDGMENTS 

This paper is based on research initiated under the sponsor­
ship of the General Motors Research Laboratories and par­
tially funded through the Texas Advanced Technology Pro­
gram, the Texas State Department of Highways and Public 
Transportation, and the U.S. Department of Transportation 
through the Southwest Region University Transportation 
Centers Program. The authors are indebted to Christopher 
Caplice and Frank Newcomb for their contributions to this 
research. In addition, the authors have benefited from the 
suggestions of Robert Herman, Richard Rothery, C. Michael 
Walton, and Chee-Chung Tong. 

REFERENCES 

1. F. Mannering and H. Hamed. Analysis of Commuters' Work­
to-Home Departure Delay Decisions. Presented at the 68th An­
nual Meeting of the Transportation Research Board, Washing­
ton, D.C., 1989. 

2. F. Mannering and H . Hamed. Occurrence, Frequency and Du­
ration of Commuters' Work-to-Home Departure Delay. Trans­
portation Research, Vol. 24B, No. 2, 1990. 

3. H. Hamed and F. Mannering. Modeling Travelers' Post-Work 
Activity Involvement: Toward a New Methodology. Presented 
at the 70th Annual Meeting of the Transportation Research Board, · 
Washington, D.C., 1991. 

4. H. Mahmassani, G.-L. Chang, and R. Herman. Individual De­
cisions and Collective Effects in a Simulated Traffic System. 
Transportation Science, Vol. 20, 1986, pp. 362-384. 



Hatcher and Mahmassani 

5. H. Mahmassani and D. Stephan. Experimental Investigation of 
Route and Departure Time Dynamics of Urban Commuters. In 
Transportation Research Record 1203, TRB, National Research 
Council, Washington, D.C., 1988, pp. 69-84. 

6. H. Mahmassani and R. Herman. Interactive Experiments for the 
Study of Tripmaker Behaviour Dynamics in Congested Com­
muting Systems. In Developments in Dynamic and Activity-Based 
Approaches to Travel Analysis (P. Jones, ed.), Avebury, Alder­
shot, 1990, pp. 272-298. 

7. C. Caplice. Analysis of Urban Commuting Behavior: Switching 
Propensity, Use of Information and Preferred Arrival Time. M.S. 
thesis. University of Texas at Austin, Austin, 1990. 

8. H. Mahmassani, C. Caplice, and C. M. Walton. Characteristics 
of Urban Commuter Behavior: Switching Propensity and Use of 
Information. In Transportation Research Record 1285, TRB, Na­
tional Research Council, Washington, D.C., 1990, pp. 57-69. 

9. S. G. Hatcher. Daily Variations of Trip Chaining, Departure 
Time, and Route Selection of Urban Commuters. M.S. thesis. 
University of Texas at Austin, Austin, 1991. 

10. R. Kitamura, K. Nishii, and K. Goulias. Trip Chaining Behavior 
by Central City Commuters: A Causal Analysis of Time-Space 
Constraints. In Developments in Dynamic and Activity-Based Ap­
proaches to Travel Analysis (P. Jones, ed.), Avebury, Aldershot, 
1990, pp. 145-170. 

11. J. Huff and S. Hanson. Measurement of Habitual Behaviour: 

81 

Examining Systematic Variability in Repetitive Travel. Devel­
opments in Dynamic and Activity-Based Approaches to Travel 
Analysis (P. Jones, ed.), Avebury, Aldershot, 1990, pp. 229-
249. 

12. H. Mahmassani, S. G. Hatcher, and C. Caplice. Daily Variation 
of Trip Chaining, Scheduling, and Path Selection Behavior of 
Work Commuters. Methods for Understanding Travel Behavior 
in the 1990's. Proc., 6th International Conference on Travel Be­
haviour, IATB, Vol. 2, Quebec, Canada, 1991, pp. 29-45. 

13. F. Mannering. Poisson Analysis of Commuter Flexibility in 
Changing Routes and Departure Times. Transportation Re­
search, Vol. 23B, No. 1, 1989, pp. 53-60. 

14. H. Mahmassani. Dynamic Models of Commuter Behavior: Ex­
perimental Investigation and Application to the Analysis of Planned 
Traffic Disruptions. Transportation Research, Vol. 24A, No. 6, 
1990. 

This paper represents work done at the University of Texas at Austin. 
The analysis and views presented in this paper are solely those of the 
authors. 

Publication of this paper sponsored by Committee on Traveler Be­
havior and Values. 



82 TRANSPORTATION RESEARCH RECORD 1357 

Teleworking in the Netherlands: An 
Evaluation of Changes in Travel 
Behavior-Further Results 

REBECCA HAMER, ERIC KROES, AND HARRY v AN OosTSTROOM 

The first two teleworking experiments in the Netherlands are 
described, and the results of an analysis of the impact of tele­
working on the travel behavior of the participants and their house­
hold members during the experiments are presented. The mo­
bility evaluation was designed as a multiple panel with waves at 
approximately 3-month intervals. The two experiments were an­
alyzed and evaluated separately. Most important was the reduc­
tion of commuting trips ( -15 percent) found in both experiments. 
The reduction is somewhat lower than expected on the basis of 
the percentage of time used for teleworking (18 to 24 percent) 
due to the freedom given in arranging teleworking time. The first 
experiment showed a considerable reduction of peak-hour au­
tomobile traffic (26 percent), which explains most of the com­
muting reduction; in the second experiment the reduction of com­
muting trips was due to fewer bicycle trips and public transport 
trips in the later waves. Car use was not influenced at all in the 
second experiment. A final important difference between the 
results was the lack of mobility effects for the household members 
in the second experiment. The first experiment indicated a sur­
prising reduction of mobility not only for the teleworkers them­
selves but also for their household members. This result did not 
recur in the second experiment. Analysis of the dynamics of the 
process seems to indicate that a year may be too short a time 
span for monitoring such an experiment. 

The Second Transport Structure Plan (1) aims to combat the 
problems related to an increasing mobility of persons and 
goods with a comprehensive set of measures. One of those 
measures is to stimulate teleworking-working at home using 
computer, modem, and fax. Teleworking involves less com­
muting and provides workers with the flexibility to make use 
of the available traffic infrastructure outside of peak hours. 
The aim formulated in the Structure Plan is to reduce auto­
mobile traffic by 5 percent in peak hours by making use of 
the possibilities provided by telecommunication. According 
to the Ministry of Transport, " ... a substantial group of well­
educated workers with relatively little leisure time will em­
brace the opportunities offered for making times and tasks 
flexible by teleworking, at home or in regional work centres. 
The expenses related to traffic jams and the rising travel costs 
will stimulate this development even more." Another con­
clusion is that ". . . an experiment conducted by the Ministry 
of Transport will bolster the further adoption of teleworking" 
(1). To evaluate the effects of teleworking, the ministry has 
set up two small-scale, in-house experiments intended to de­
termine two types of effects. 

R. Hamer and E. Kroes, Hague Consulting Group, 4 Surinamestr, 
2585 GJ the Hague, Netherlands. H. van Ooststroom, Projectbureau 
for Integrated Transport Studies, the Hague, Netherlands. 

First, the operational effects of teleworking were carefully 
studied, because acceptance of teleworking will in large part 
depend on the effects it has on the quality and productivity 
of the completed work and company management aspects. 
Of course the evaluation of mobility effects is of primary 
importance in transport policy. The results of this evaluation 
are the subject of this report. The evaluation was commis­
sioned by the Project Bureau for Integrated Transport Studies 
and carried out by Hague Consulting Group (2 ,3). The goal 
of the evaluation was to trace changes in 

• The number of trips for both commuting and other rea-
sons, 

•Times of transportation (peak and off-peak hours), 
•The days of travel (workday versus weekend), and 
•The choice of mode (car, public transport, and bicycle). 

The evaluation was directed at both the teleworkers and their 
household members with the aim of determining direct as well 
as possible indirect effects. 

ORGANIZATION OF THE TELEWORKING 
EXPERIMENTS 

For both teleworking experiments a total of 60 participants 
were recruited, all employees of the Ministry of Transport. 
The 30 participants in the first experiment were selected from 
three departments based in Amsterdam, The Hague, and Rot­
terdam. All participants in the second experiment were em­
ployed in the same department in Rijswijk, a small town 
bordering The Hague. 

The selection of the employees was based on the following 
criteria: 

• The employee's work is suitable for teleworking and col­
leagues and supervisor agree to the experiment; 

• All levels within the organization are represented in the 
experiment; 

• The employee is willing to work a minimum of 20 percent 
and a maximum of 60 percent at home, the time to be or­
ganized at the teleworker's discretion; 

• The employee is committed to participating in all training 
sessions and evaluations connected with the experiment; and 

• In the first experiment, commuting is done by car, pref­
erably over long distances. 
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The selection was geared to maximizing mobility effects and 
simultaneously minimizing the experimental dropout. A con­
sequence of this selection is that the results of these studies 
cannot be generalized to other populations. 

All participants were provided with a PC, modem, fax, an 
extra telephone line, and special software. After a training 
session, the first experiment began on April 1, 1990, and the 
second on October 1, 1990. 

EVALUATION OF MOBILITY EFFECTS 

Method 

To assess the effects of teleworking on the travel behavior of 
the participants, a panel was established in which the tele­
workers and household members 18 years and older partici­
pated. Approximately every 3 months a mobility measure­
ment (wave) was carried out. During the first experiment, 
five waves were collected (in March, June, September, and 
November 1990 and March 1991); in the second experiment 
one wave less (in September and November 1990 and March 
and June 1991) . The setup, a multiwave panel, had a number 
of advantages over a simpler construction. First , the experi­
mental group was very small. Repeated measurements from 
this group can be combined for analysis, thus mimicking a 
larger group. Second, analysis of the waves separately can 
provide insight into the dynamics of a change. Moreover, a 
panel setup is extremely suitable for measuring changes in a 
population that, in principle, remains unchanged. 

No control group was established for this study. The ex­
pectation was that a control group, required to fill in a large 
number of forms without being "rewarded" with teleworking , 
would be substantially less motivated in participating in the 
evaluations and thus would obscure rather than clarify the 
results . 

Survey . Instrument 

The mobility data were collected using a self-administered 7-
day travel diary composed of two parts. The first part included 
personal questions, and the second consisted of a series of 
questions per trip. The personal questions dealt with age, 
gender, possession of driver's license, and ownership of means 
of transportation. The trip-related questions included date , 
origin, origin activity , time of departure, destination , desti­
nation activity, time of arrival , transportation mode (chain of 
up to seven modes), estimated total distance, and, if a car 
was used, the occupancy. 

Survey Procedure 

Both groups of 30 households were divided into six groups of 
approximately 5 households . Each group would begin a wave 
on a predetermined day of the week (Monday through Sat­
urday) . Thus , the procedure was carried out according to a 
staggered method to ensure that each weekday was equally 
well represented in the data. The participants were asked to 
record each trip during the following 7 days in the travel diary, 
so that each wave lasted a total of 2 weeks. 
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To maximize the response for all waves, the participants 
were provided with a great deal of information and received 
a personal letter before each wave. In addition, on the evening 
before their designated starting date, each household was 
contacted by telephone. This contact was mainly a reminder 
of the correct starting date and in later waves was used to 
correct ambiguities in previous diaries, but participants could 
also ask questions, and household members could be given 
extra motivation. The travel diaries were returned in pre­
stamped addressed envelopes. Reminders were carried out 
by telephone 14 days after each wave. 

Data Entry and Analysis 

Upon receipt, each travel diary was checked, and in the case 
of unclear data the respondent was consulted. The data were 
entered chronologically for each travel diary with the use of 
a program containing checks for inconsistencies. A number 
of derived variables were added . Next, the mobility data were 
aggregated for each respondent according to number of trips 
and the total kilometers traveled, broken down by the fol­
lowing criteria: 

•Time of day (peak versus off-peak), 
•Type of day (workday versus weekend), 
• Purpose (commuting, business related, and other rea­

sons), and 
• Main means of transport [public transport, car (driver), 

car (passenger), bicycle, and other]. 

For each wave a separate data set was constructed with 15 
trip categories , not all mutually exclusive. Considering the 
modest scope of the experiment, a further segmentation was 
not possible. The data from subsequent waves were then 
matched for each person to the mobility data from the first 
wave . In this matching of wave pairs, only those households 
were included that had experienced no unusual circumstances 
during either wave (usable diaries). This means that only 
mobility patterns were compared for those respondents who 
had participated in the first wave and had not moved, changed 
work, been ill, had a baby, and so forth in the later wave. If 
one household member had been ill, the whole household 
was deleted from the analysis on the assumption that the other 
members might change their mobility pattern to compensate. 

For the analysis of the pattern of mobility effects , each wave 
pair comparison was tested separately for each segment for 
changes in frequency and distance traveled. To determine the 
average mobility effects, the wave pair comparisons were 
combined and analyzed for each segment using a series of 
pairwise t-tests. Pairwise t-tests were used because they are 
extremely efficient in testing for differences between two re­
lated samples and make it possible to assess not only the 
direction of differences but also their size and confidence 
interval. However, the distribution of trip frequency is not 
normal and strictly speaking would require a nonparametric 
testing method . Therefore, in addition to a series of pairwise 
t-tests, an analogous series of Wilcoxon signed ranks tests was 
carried out. The results of both analyses were nearly identical 
and for the rest of the study the pairwise t-test was retained . 
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Response and Mobility 

The first experiment was launched on April 1, 1990, and the 
second experiment began 6 months later on October 1, 1990. 
Each experiment was preceded by the first wave, which served 
as the basis for an evaluation of the changes. For practical 
reasons the waves for the two experiments ran parallel as 
much as possible. Table 1 gives the response, which is unu­
sually high (almost 100 percent). 

More than half of all households consisted of families with 
one or more children (58 percent), and 12 percent of all tele­
workers lived alone. The first group included fewer families 
and more single persons than the second group. Only two 
households (3 percent) did not own a car, more than 70 per­
cent of the households had one car, and one household (1.5 
percent) had three cars. 

In both experiments the experimental group was 5 to 8 
percent more mobile than the average person in the Neth­
erlands ( 4). Compared with the national statistics, the panel 
members of the first group traveled more than double the 
distance an average person in the Netherlands travels in a 
day. The second group also covered 60 percent more kilo­
meters. The commuting distance in particular was greater (3 
to 4 times), and the greatest distance was covered by car 
drivers (1.5 to 2.5 times). The differences were primarily caused 
by teleworkers and are a logical consequence of the selection 
criteria. 

ANALYSIS OF MOBILITY EFFECTS 

In this section the results of the two experiments will be dis­
cussed. For the first analysis, all the wave pair data are pooled 
per experiment. The pooled sample becomes larger and, by 
extension, the statistical precision of the tests becomes greater. 
Underlying this procedure is the assumption that all respon­
dents are independent-in reality this is not the case-re­
sulting in an overestimation of the t-values. The results of this 
first pooled analysis prompted a short evaluative survey, which 
is also treated. 

The third analysis is based on a series of single wave pair 
comparisons. In a number of graphs the dynamics of the change 
process are visualized. Because of the changing comparison 
group per wave, all changes in trip frequency are calculated 
relative to an indexed base trip frequency (100 percent) . The 
statistical results of this analysis are available on request (1,2). 
For each wave comparison the group is small, and therefore 
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the precision of the statistics is lower , but because all respon­
dents are, in fact, independent, the t-values are correct . 

Average Mobility Effects 

Table 2 gives the result of the analysis of the pooled wave 
pairs. In both experiments the mobility of teleworkers de­
creased the most. The number of commuting trips decreased 
by 15 percent. In contrast to the first experiment, in which 
the use of the car decreased sharply, the reduction in com­
muting trips in the second experiment is explained for 83 
percent by less public transport and bicycle trips , whereas 
travel by car was not reduced at all. 

In both experiments the reduction is distributed equally 
over movements in peak and off-peak periods. Travel during 
the weekend, which revealed a marked decline in the first 
experiment, did not change in the second experiment under 
the influence of teleworking. Moreover, in the second ex­
periment longer trips were made during the weekends . 

The first experiment indicated a significant reduction in the 
mobility of household members. This result is totally absent 
in the second experiment. 

Short Evaluative Survey 

In the first teleworking experiment the commuting mobility 
of the teleworkers was reduced significantly and all other 
purposes showed a lower mobility. Also the household mem­
bers displayed a lower mobility. In an effort to explain this 
finding, a short evaluative survey was carried out. In this 
survey all respondents were asked to describe their experi­
ences with teleworking (their own or that of their household 
member) . Teleworkers and their family members were all 
very positive in their evaluation. All hoped for a continuation 
of the experiment. The teleworkers had not perceived any 
change in their own mobility besides the elimination of certain 
commuting trips; neither had they noticed a change in the 
mobility of the family due to their teleworking. The household 
members were of a similar opinion. The panel members had 
not used teleworking for streamlining activities or major rear­
rangement of tasks. 

Pattern of Mobility Effects 

On the basis of the single pre-and postcomparisons, graphs 
were produced providing insight into the pattern of change . 

TABLE 1 Response to Mobility Evaluation Study or Two Telework Experiments 

First Teleworking Second Teleworking 
Month Experiment Experiment 
1990-
1991 Wave Response Usable diaries Wave Response Usable diaries 

March 1 60 (100%) 
June 2 62 (100%) 47 (76%) 
September 3 58 (100%) 45 (78%) 1 62 (95%) 
November 4 58 (100%) 48 (83%) 2 63 (97%) 47 (72%) 
March 5 56 ( 97%) 48 (83%) 3 58 (91 %) 42 (74%) 
June 4 60 (95%) 44 (70%) 
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TABLE 2 Results of Average Effects Analysis of Telework Experiments 

Segment 

Total 

Peak 
Off-Peak 

Weekday 
Weekend 

Commuting 
Business 
Other 

Public 
Transport 
Car (driver) 
Car (pass.) 
Bicycle 
Other 

Car/Peak 
Carl 
Off Peak 

First Teleworking 
Experiment (n = 188) 

trips• distance" 

-17% -9% -16% --· 

-19% -26% 
-15% -12% 

-18% -18% 
-13% -18% 

-15% 
-33% -49% +27% 
-14% -13% 

-18% 
-19% -19% 
-27% -19% 
-31 %' +35%' 

+55%' --

-26% -34% --
-17% 

Second Teleworking 
Experiment (n = 133) 

trips distance 

Tw Hm Tw Hm 

-10% 

-11 % 
-10% 

-13% 

-15% 

-15% 

-63%' 

-35% 

-14% 

-22% 

-25% 
+73% +137% 

-16% 

-55%' 

-40% 
+75% 

+46% 

+34% 

• Trips and Distance refer to trip frequency and total distance travelled per segment. 
b Tw and Hm refer to Teleworkers and Household members. 
• In absolute terms the change is small. 
-- Change is not significant on a 10% level. 

The graphs have been corrected for seasonal influences on 
the basis of the averaged monthly mobility over 5 years (1986 
to 1990). 

Figure 1 shows the observed total number of trips made by 
teleworkers and household members per wave pair for both 
experiments. The difference between the mobility of the tele-
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Total Trips 
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workers is immediately apparent. The mobility change in the 
first experiment is larger than in the second experiment. Even 
more obvious is the difference in behavior of the household 
members. In the first experiment the household members 
display a lower mobility, whereas in the second experiment 
the mobility of household members only starts to decrease in 
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FIGURE 1 Change in the total number of trips for teleworkers and household members. 
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the last wave. The latter may indicate that 1 year is too short 
a period to monitor for secondary effects . 

In comparing mobility by purpose (Figures 2 and 3), it 
becomes clear that in the second experiment the reduction in 
commute trips is fairly constant with a slight rise in the last 
wave. In the first experiment the dynamics were slightly dif­
ferent. Initially the teleworkers enthusiastically started work­
ing at home as much as they could; however, for a variety of 
reasons they returned to working in the office more (5). The 
decline leveled off at -10 percent in the later waves. In both 

% 
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experiments the mobility of household members is charac­
terized by much larger spreads expressed in clearly larger 
confidence intervals and an erratic pattern. The seemingly 
large increase in commuting trips made by household mem­
bers in June 1991 is not a result of increased employment, 
but rather a result of a low number of observations for this 
purpose. 

In Figures 4 and 5, the difference in the results between 
both experiments is clear. Figure 4 shows the changes in mode 
for the first experiment. Here the decline of car use is very 
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FIGURE 2 Changes in the number of trips by purpose (Teleworking 1). 
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FIGURE 3 Changes in the number of trips by purpose (Teleworking 2). 
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FIGURE 4 Change In the number of trips according to means of transportation (Teleworking 1). 
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FIGURE 5 Change in the number of trips according to means of transportation (Teleworking 2). 

obvious. By the second wave it had diminished by approxi­
mately 20 percent for the teleworkers and approximately 10 
percent for the household members . In Figure 5, which shows 
the same changes for the second experiment , one can see that 
the teleworker's car use remains almost constant at the orig­
inal level. The reduced mobility of the teleworkers in this 
experiment is explained almost totally by the elimination of 
public transport and bicycle trips. The mode pattern for the 
household members displays an even more erratic pattern 
after seasonal correction than before. The large increase in 
bicycle trips in March and the almost equally large reduction 

in June are apparent. This pattern emerged more clearly after 
seasonal correction and is due to an unusually warm March, 
leading to more trips by bicycle, and subsequently the coldest 
and wettest June in more than a century, leading to more 
transit use . 

ANN OTA TIO NS 

These results, encouraging as they may appear, call for careful 
evaluation. They may be in part the result of the experiment. 
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Because of the rigorous selection, especially in the case of 
the first experiment , these experiments are more likely to 
indicate a maximum result than an average one. This bias 
may be compounded, in the case of the first experiment, by 
an awareness of the importance of a reduction of mobility for 
the continuation of the experiment. 

Part of the results may be explained by the measurement 
method. To check the influence of the so-called panel effects, 
a number of checks of the diaries were undertaken. We found 
no evidence that the observed reduction of mobility is due to 
trip underreporting in later measurements. There was no sig­
nificant increase in average number of mistakes per trip , trip­
less days, or missing (return) trips indicating panel fatigue 
over the measurements. The reported mobility was almost 
level over all measurement days in all but one measurement. 
This feature may indicate almost no panel fatigue within each 
measurement and may also support the assumption of high 
motivation on the respondents' part to participate fully in all 
evaluations, adding credibility to the results. In the base mea­
surement of the first teleworking experiment, a slightly higher 
mobility was reported on only the first measurement day . This 
deviation explains in part the household members' observed 
reduced mobility in the first experiment, while only slightly 
reducing the mobility effects for the teleworkers in the first 
experiment without changing the results of the analysis sig­
nificantly. 

We also tested whether trip chaining explained part of the 
observed mobility effect. Perhaps respondents had stream­
lined their activities and merely rearranged their trips, sub­
stituting simple home-activity-home chains with longer and 
more complicated ones. In that case part of the mobility ef­
fects may be due to elimination of trips. However, household 
members did not increase their trip chain length. Teleworkers 
even reduced the average chain length by 12 percent. This 
means that trip chaining did not add to the mobility effects 
of teleworking. Furthermore, during the experiments, no large­
scale changes in policy were recorded that could account for 
a part of the mobility change. In fact the average (car) mobility 
in the Netherlands is still rising. 

And finally, we analyzed whether within the group of tele­
workers there were other characteristics that could give more 
insight into the mobility effects of teleworking. This analysis 
clearly indicated that commuting distance is important in as­
certaining the effects of teleworking. Car use, especially dur­
ing peak hours , is maximally reduced (20 to 40 percent) for 
commuting distances of 20 km or more . Shorter commuting 
distances lead to only slightly fewer commuting trips, and even 
then usually the bicycle trips are eliminated. Travel time, by 
the nature of things correlated with the distance, shows an 
even more clear pattern. Commuting times of 20 to 60 min 
show a clear reduction of commuting trips (20 to 30 percent), 
whereas even longer commute times also show a reduction in 
the low number of business-related trips. 

DISCUSSION OF RESULTS 

In a number of previous European studies, expected effects 
of telematics on mobility have been brought forward . Most 
expectations can be summarized with the phrase "some sub­
stitution of commuting traffic, but generation of mobility for 
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other purposes and [most important] increased use of the now 
available household car" (6-8) . These studies are for the rest 
mostly concerned with estimating the number of jobs suitable 
for teleworking. The results of both experiments treated here 
indicate that teleworking can indeed contribute to a reduction 
of the number of commuting trips. Furthermore, it contributes 
to distributing the use of the infrastructure, which is partic­
ularly scarce during peak hours. Finally, we found no indi­
cation of increased car use by household members. 

A second comparison can be made with other evaluation 
studies. At this time only one similar experiment in California 
is known to us (9) . The results of both Dutch and the Cali­
fornia experiments are very similar . In California, teleworking 
reduces the number of commuting trips, and no new trips are 
generated. Also a marked reduction in trip frequency for 
nonwork purposes is found. However, in the California case 
there are some indications that the reduced mobility of the 
household members is partly due to trip underreporting (10). 
In the Dutch experiments there is no indication of trip un­
derreporting. An extra survey, specifically undertaken to find 
an explanation for the reduced mobility of the household 
members, gave no insight into this phenomenon . However, 
during the selection of the participants for the first experi­
ment, special attention was given to the importance of re­
ducing car mobility. Perhaps this emphasis resulted in an in­
creased awareness and subsequent reluctance to use the 
household car. 

The experiments clearly indicate that teleworking can con­
tribute significantly to reducing commuting traffic, yielding 
an average of 15 percent fewer commuting trips from 20 per­
cent restriction-free teleworking time. However, in situations 
where there are competing modes, as in the Netherlands, the 
benefit of teleworking in reducing car traffic is less straight­
forward . The possibility of working at home will especially 
affect workers with relatively large resistances in their com­
muting trips . In the first experiment most participants traveled 
to work on the highways. They probably encountered resis­
tance regularly in the form of peak-hour congestion. In the 
second experiment most commute trips were also made by 
car, but usually the highways could be avoided. It is very 
possible that this group of teleworkers met relatively little 
peak-hour congestion. On the other hand the work location 
in Rijswijk is difficult to reach by public transport. The results 
clearly indicate that precisely these public transport trips were 
almost entirely eliminated. Furthermore, traveling by bicycle 
has a higher resistance , and such trips also tended to be can­
celed in favor of more comfortable trips by car. This means 
that work location, its facilities, and commuting travel time, 
including time lost in congestion, are important aspects de­
termining the benefits of teleworking for the reduction of car 
mobility. 

Possibly, the effects of teleworking in particular reducing 
car traffic will increase with larger commuting resistances (i.e., 
longer distances or travel times). Commuters who have a large 
commute mobility may be traveling above their preferred 
mobility budget, and therefore when commute trips are elim­
inated there is little chance of generating more trips for other 
purposes. Under these circumstances maximum effects are to 
be expected. The impression is that the selection of the par­
ticipants, in particular the first Dutch experiment, led to in­
cluding almost exclusively commuters who operate above their 
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travel budget. The mobility changes found in these experi­
ments are more probably maximum than average effects. 

Finally, a warning is appropriate: introducing more flexible 
work hours and work locations, for instance through tele­
working, may result in workers accepting even longer com­
mute distances for the remaining commutes. This long-term 
change might eventually even cancel out the initial positive 
traffic and environmental effects. In this sense the possibilities 
created by teleworking are comparable with those created by 
mass motorization. These long-term effects are not evaluated 
in this study. 
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