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Advanced Traffic Management System: 
Real-Time Network Traffic Simulation 
Methodology with a Massively Parallel 
Computing Architecture 

THANAVAT }UNCHAYA, GANG-LEN CHANG, AND ALBERTO SANTIAGO 

The advent of paralle l computing architectures presents an op­
portunity for lranspon a tion professionals 1 imulate a large- ca le 
tra ffic ne twork with sufficienily fa t response time for rea l-time 
opcrarion . Howeve r, ii neccssira tc ·.a fundamental change in the 
modeling algorithm LO tuke full adva ntage of parallel computing. 
• uch a methodology t imulare tra ffic n twork with the Con­
nection Machine , a massively parallel computer, is described . The 
basic parallel computing architectures are introdu ed , along with 
a list of commercia lly available parallel comput ers. This is fol­
lowed by an in-depth presentation of the proposed simulation 
methodology with a massively paralle l computer. The propo ed 
traffic simulation model ha. an inherent path-proces ing capa­
bilit y to represent drivers ' roure choice behavior at the individual­
vehicle level. It has been implemented on the Connection Ma­
chine with 16,384 proces ors. Preliminary simulation experiments 
indicate that massively parallel computers are a practicable al­
ternarive for achieving real-time application. The exp riment shows 
that the Connection Machine with 16k proces. ors can simulate 
32,000 vehicles for 30 min at 2-sec intervals within 2 min of 
running time . 

Many metropolitan areas around the world face serious con­
gestion problems that threaten to deteriorate the quality of 
life and increase air pollution . It was estimated that traffic con­
gestion in 1987 accounted for more than 2 billion vehicle-hr 
of delay and 2.2 billion gal of excessive fuel consumption in 
the United States (1). In the next decade, the unavoidable 
dramatic increase in travel demand coupled with the dimin­
ishing construction of new transportation facilities will cer­
tainly worsen the traffic condition unless innovative congestion­
relief methods can be developed and implemented in time . 

One area that seems most promising in alleviating conges­
tion is the development of intelligent vehicle-highway systems 
(IVHSs), specifically in the form of advanced traveler infor­
mation systems (ATISs) and advanced traffic management 
systems (ATMSs) . Significant improvements in mobility, 
highway safety, and productivity can thus be achieved through 
integrated applications of advanced technologies to surveil­
lance, communications, route guidance, and control process 
(2). Research is being undertaken in such areas as adaptive 
traffic control, incident detection , real-time traffic assign­
ment , and corridor optimization. Successful implementation 
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of these ATMS developments would ensure optimal net­
workwise performance. 

The anticipated benefits of these control methods depend 
on the complex interactions among principal traffic system 
components . These systems include driver behavior, level of 
congestion, dynamic nature of traffic patterns , and the net­
work's geometric configuration . It is crucial to the design of 
these strategies that a comprehensive understanding of the 
complex interrelations between these key system components 
be established . Because it is often difficult for theoretical 
formulations to take all such complexities into account , traffic 
simulation offers the unique capability to conduct perfor­
mance evaluations . In addition, an effective on-line simula­
tion model would enable the ATMS control center to project 
promptly future traffic patterns considering any previously 
implemented strategies in a real-time operating environment. 
A graphical illustration of a traffic simulation model's function 
in ATIS-ATMS implementation is presented in Figure 1. 

Such a real-time network traffic simulation model is re­
quired to have at least the following features: (a) a realistic 
representation of traffic characteristics and geometric config­
urations; (b) the capability to simulate both freeway and sur­
face street networks at different levels of detail; and (c) a 
path-processing capability to represent drivers' route choice 
behavior at the individual-vehicle level. In addition, in or­
der to be operational in a re al-time basis, the software 
design must be efficient and well structured and maximize the 
utility of the hosting hardware . A comprehensive literature 
review clearly indicated that none of the existing simulation 
and assignment models fully meets these functional require­
ments. A detailed discussion in thi s regard can be found else­
where (3) . 

In terms of providing sufficiently fast response to simulate 
a large-scale network, the use of advanced parallel comput­
ing architectures appears to be one of the most promising 
methods . However, adoption of this posture may require a 
fundamental change in the modeling algorithm. This cannot 
be achieved through the existing traffic simulation metho­
dologies developed mainly for conventional computing 
machines . 

The objective of this paper is to introduce a real-time traffic 
network simulation methodology that fully utilizes the ca­
pability of massively parallel machines. Some basic parallel 
computing architectures are introduced along with a list of 
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FIGURE 1 ATIS-ATMS system component. 

commercially available parallel computers. There is also an 
in-depth presentation of the proposed simulation methodol­
ogy with a massively parallel computer, specifically the Con­
nection Machine , and some empirical results are given . On­
going research activities and potential integration with related 
studies are also presented. 

REVIEW OF PARALLEL PROCESSING 
METHODOLOGY AND ARCHITECTURE 

Prodigious advances in computer architectures and capabili­
ties have taken place in the past two decades. New technol­
ogies and innovative architectures will continue to appear in 
addition to the already bewildering array of configurations. 
However, it has become apparent to most researchers that 
the most promising long-term approach to achieve affordable, 
accessible supercomputing is parallel processing. 

Parallel processing has been defined as follows: 

Pa ra llel processing is 1111 elTicicnL form of infornrntion proccs ing 
which emplrnsi1.c the exploitation o( concurren t event in the 
computing procc s . oncurrcncy implies P• rallclism , simultane­
ity, and pipe lin ing. Parallel events may occur in n1u l1iple re­
sources during the same time simultaneous events may occur at 
the same time instant ; and pipelined events may occur in over­
lapped time span . Thcst: concurrent event a re nltainable in a 
compute r system al various processing lcv Is. Para llel processing 
demands rnncurren l execution of many programs i11 the com­
pu.ter. It is in contrast to seque111ial processing . It is a cost­
effcctive means to improve system performance through con­
current activities in the computer . (4) 

Classification of Parallel Processing Systems 

Although no fully satisfactory taxonomy of multiprocessors 
has been established, parallel processing systems can still be 
classified according to their design alternatives (5) . These 
include program control, interconnection methods, form of 
information exchange , and processing element granularity. 

Program Control 

The most widely used classification scheme was proposed 
by Flynn (6) . He classified computer architectures into four 
categories: 

1. Single instruction stream-single data stream (SISD): one 
instruction at a time is performed on one piece of data. 

2. Single instruction stream-multiple data stream (SIMD): 
one type of instruction can be executed simultaneously on 
multiple data. 

3. Multiple instruction stream-single data stream (MISD): 
different instructions can be performed simultaneously on the 
same data. 

4. Multiple instruction stream-multiple data stream (MIMD): 
different instructions can be performed currently on multiple 
data. 

Interconnection Methods 

One important factor in determining the performance of the 
multiprocessor is the technique selected to connect the pro­
cessing elements. Several alternatives have been proposed for 
the topology of the interconnection network in a multipro­
cessor (7) , depending on whether the interconnections are 
dynamic or static. Dynamic networks , in which the intercon­
nections are under program control, include shuffle exchange 
networks and the crossbar switch. Static topologies include 
ring, star, nearest-neighbor mesh , systolic array , and hyper­
cube configuration. 

Form of Information Exchange 

There are two major forms of information exchange: shared 
memory and distributed memory (message passing). In a shared 
memory system , the processing elements have access to com­
mon memory resources and exchange data by successive read­
write operations . In a distributed memory or message-passing 
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systems, each processing element has its own local memory, 
and elements exchange data by transmitting messages through 
the interconnection network. 

Processing Element Granularity 

The number of processors in parallel computers ranges from 
two elements to many thousands. Some computers have a few 
very powerful processors (coarse-grain), such as Cray Y-MP; 
others consist of a very large number of simple processors 
(fine-grain), such as the Connection Machine. 

Review of Existing Parallel Computers 

Most supercomputers explore parallel processing in the SIMD 
or MIMD mode. SIMD machines, the simpler of the two, use 
either the array processor or the pipeline approach. The fun­
damental differences between the SIMD and MIMD ma­
chines can be summarized as follows: 

•SIMD 
-All processors are given the same instruction. 
-Each processor operates on different data. 
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processor, features one control unit, multiple processors, mul­
tiple memories, and an interconnection network. The control 
unit broadcasts instruction to all the processors, but only ac­
tive processors execute the same instruction at the same time 
using the data taken from their local memory. 

MIMD machines consist of multiple processors with either 
multiple memories (distributed) or shared memory, in which 
each processor can follow an independent instruction stream. 
Whereas many tightly coupled multiprocessors, such as the 
Encore Multimax multiprocessor, use shared memory as a 
major means of communication between processors, the Intel's 
iPSC/860 and nCUBE's nCUBE2 are loosely coupled distrib­
uted memory multicomputers and employ the message pass­
ing communication mechanism. The shared-memory MIMD 
allows the use of conventional programming methods with 
which the user or compiler does not need to worry about the 
location of data. For example, one can take conventional 
FORTRAN code and obtain concurrency from parallel exe­
cution of DO loops automatically, with user directives, or 
both. In contrast, distributed-memory MIMD machines re­
quire the communication among the processors to be made 
explicitly by the user in programming. 

-Some processors may "idle" during a sequence of 

Several parallel computers and their key features are sum­
marized in Table 1. Of course, this is only a small portion of 
existing systems, not a comprehensive list. A more detailed 
review of parallel processing systems can be found in work 
by Miller et al. (8) . A thorough review of SIMD machines 
has been given by Hord (9). 

instructions. 
• MIMD 

-Each processor runs its own instruction sequence. 
-Each processor works on a different part of the problem. 
- Each processor communicates data to the others . 
-Some processors may have to wait for the results of Comparison of Programming Methods 

processes being performed by other processors or for access 
to data being used by other processors. 

SIMD machines use a single instruction to act on many sets 
of data simultaneously. This architecture, also called an array 

TABLE I Examples of Parallel Computers 
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number or 

Model Program processing 
ManufacLUrer Number contro l clcmenls 
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To run efficiently in a parallel environment, a sequential ap­
plication must be partitioned or decomposed into subsets. 
This involves dividing the data or program code (or both) 
among the available or allocated processors . It may also in-
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volve changing DO-loop limits, array dimensions, and sub­
routine parameters so that each processor can operate on a 
subset of data. 

The differences between the SIMD and MIMD machines 
in this regard can be characterized by the two basic approaches 
in partitioning: control parallelism and data parallelism. 

Control Parallelism 

Control parallelism breaks up a standard program into more 
or less independent subsets of instructions and assigns one 
such subset to each processor. It is used by vector supercom­
puters as well as by the many MIMD computers. 

Though the multitasking method allows all processors to 
work on different parts of the same problem, it has several 
disadvantages. For instance, it is difficult to scale a very large 
number of processors well into a massively parallel regime. 
The breakdown of the instruction set into independent sub­
units is usually possible only to a certain level of granularity 
beyond which no further division is possible . In most engi­
neering applications, the number of such independent sub­
units is typically measured in tens. Furthermore, synchroniz­
ation and load balancing between the different subunits often 
become difficult tasks in program design. 

Data Parallelism 

The hardware and software paradigms that can scale well into 
the massively parallel regime base the parallelization on a 
program's data rather than on its instruction stream. Most 
programs manipulate tens of millions of pieces of data; very 
few programs have tens of millions of lines of code. This 
approach is used mainly by the SIMD machines . In a data 
parallel program, a single instruction can affect all elements 
of a parallel data structure simultaneously . The same oper­
ation in a serial program, however , needs to be expressed as 
a loop and executed sequentially for each element of the 
array. 

Features of Connection Machine 

The Connection Machine, a massively parallel SIMD super­
computer, has been used in scientific disciplines such as struc­
tural mechanics, molecular dynamics, and image processing 
(17). It consists of up to 65,536 bit-serial processors, each with 
1 Mbit of local memory, and 2,048 Weitek floating-point pro­
cessors when fully configured (16) . Every chip contains 16 
processors, and each pair of chips shares a Weitek processor. 
The chips are connected in a 12-dimensional hypercube; the 
processors on each chip are connected in a 4-dimensional 
hypercube . 

The CM-2 system consists of a parallel processing unit that 
contains thousands of data processors, a front-end computer, 
and an 1/0 system. The front-end computer broadcasts in­
structions to all processors in parallel. The instructions are 
broadcast through a sequencer that decodes the front-end 
instructions into a series of low-level microinstructions and 
broadcasts them to individual processing elements . 
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The CM-2 processors are interconnected by a high-speed 
communication device called a router. The router allows gen­
eral communication in which processors can send data or 
receive data from any other processors in parallel. It also 
supports a faster but more structured form of communication 
called grid communication, which allows processors to com­
municate with their neighbors in a multidimensional grid. 

General communication involves the concept of parallel left 
indexing (18) . A parallel left index rearranges the elements 
of the parallel variable on the basis of values stored in the 
elements of the index. Graphical illustrations of these two 
operations are presented in Figure 2. 

In this paper , the proposed modeling concept is tailored 
for the SIMD machines-in particular, the Connection Ma­
chine CM-2, which uses the data parallel paradigm. A detailed 
discussion of the simulation methodology on a MIMD ma­
chine is available elsewhere (19) . 

MODELING METHODOLOGY FOR 
TRAFFIC NETWORK SIMULATION 

The massively parallel traffic simulation model is adapted 
from the macroparticle traffic simulation (MPSM) approach 
(20) with the addition of vehicle path-processing capability. 
It follows a fixed time-step logic and uses macroscopic traffic 
relations to approximate the prevailing speed in a given link. 
Vehicles are then moved individually through the network 
according to predetermined paths. Because each vehicle is 
simulated individually, the proposed model can certainly in­
corporate microscopic features such as car-following and lane­
changing mechanisms in the simulation process . However, for 

Send Operation [lndex]dest • source 

0 2 3 4 

Source 20 30 40 

index 0 4 2 

de st 40 10 30 

Get Operation dest • [index)source 

0 2 3 4 

Source 

index 0 4 2 

de st 0 40 20 

FIGURE 2 Examples of general 
communication. 
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simplicity of illustrating the data parallel modeling concept, 
only the simple MPSM logic is discussed. 

Modeling Concept 

There are three basic data entities for a real-time traffic sim­
ulation model : (a) urban streets and highways network, (b) 
traffic signal controls, and (c) vehicles . As an example, the 
network in Figure 3 (top) can be normally structured into a 
set of nodes and links as shown in Figure 3 (bottom). How­
ever, in an A TIS-ATMS application, the data structure for 
vehicle must be able to support the vehicle path-processing 
capability and to distinguish vehicles with and without access 
to in-board A TIS systems. The first requirement is achieved 
by explicitly embedding a predetermined path into each ve­
hicle for a given origin-destination (0-D). These paths can 
be stored as a series of links or turning movements at each 
intersection. The second requirement is easily accomplished 
since each vehicle is simulated individually. Equipped vehicles 
will periodically update their paths on the basis of the optimal 
results of a real-time route assignment model, whereas the 
unguided vehicles will essentially follow predetermined paths . 

- --] ,D ·,0 ·[ --- ..... _,.,,,, ... ~ .... ..,_ 
~ _. -- ~ 

--l "D "D "[ - I I 
' t 

- ! I 
' t 

FIGURE 3 Example network: (top) street network; 
(bottom) representation of network in nodes and links. 
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The integration with a real-time dynamic assignment model, 
however, is beyond the scope of this paper, which concen­
trates on illustrating the massively parallel traffic simulation 
concept. Thus , all vehicles will be considered as unguided and 
will follow predetermined paths throughout the simulation 
period. 

One of the most important aspects of data parallel pro­
gramming is the choice of parallel data structure, since good 
data organization can significantly simplify computations and 
interprocessor communications. The aforementioned data en­
tities can be structured as parallel variables so that an oper­
ation can be applied to all data elements simultaneously. 

Description of Principal Model Components 

There are several ways to organize these data entities as par­
allel variables. The parallel variables presented here are sim­
ple, yet they can be used in more complex microscopic models 
that use car-following and lane-changing mechanisms. Each 
set of data entity-vehicle, link, and node-is kept as a sep­
arate set of parallel variables . 

Vehicle Parallel Variable 

The vehicle parallel variable (VPV AR) is shaped as a one­
dimension parallel variable with NV positions, where NV is 
the maximum number of vehicles to be simulated in the net­
work at any time slice. Currently, the Connection Machine 
requires the number of positions for parallel variable to be a 
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LPVAR (Link) 
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path 
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current link 
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FIGURE 4 Graphical illustration of parallel variables. 
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power of two and must be some multiple of the number of 
physical processors: NV for the CM with 8,192 (8k) processors 
can be 8,192, 16,384, and so on. Other vehicles not yet entered 
in the network are kept in the front-end computer and sent 
to VPV AR at preset intervals. Each element in the VPV AR 
keeps track of one vehicle's key characteristics in the network 
[Figure 4 (top)], including its path, location, speed, and sched­
uled departure time. The scheduled departure time is used to 
determine a vehicle's entry time to the network and the entry 
order of vehicles in each link. 

At each time step, a vehicle moves along a link by some 
distance that depends on the link's prevailing speed and the 
time increment. The time-dependent speed can be either com­
puted with the embedded speed-density function or governed 
by a car-following mechanism. Once the vehicle reaches the 
end of a link , it will be moved onto the next downstream link 
in a path toward its destination. Upon arriving at its desti­
nation, the vehicle is removed from the network. 

Notice that moving vehicles through the network requires 
the VPV AR to communicate with the link parallel variable 
via general communication (18). The first involves the send­
with-reduction operation, which combines communication and 
computation. Each vehicle in the network sends a signal to 
its current link in parallel. These signals are then combined 
for each individual link, which is equal to the number of 
vehicles currently traveling in its link. Such information allows 
each link processor to compute the new prevailing speed with 
an embedded speed-density function. The second communi­
cation step is the get operation, in which each vehicle receives 
the speed information from its current link and updates its 
current position accordingly. Once a vehicle reaches the end 
of its current link, it will attempt to change to a downstream 
link in its path provided that it has not reached its destination. 
To determine whether such an action is possible, each vehicle 
in the VPV AR will use the get operation to communicate 
with the link parallel variable (LPVAR) in order to check 
whether the signal controlling this link is green or red and 
whether the downstream link volume is under capacity or not . 
The vehicles that can satisfy both conditions can then update 
their current link information. 

The path structure of each vehicle has been developed to 
take advantage of typical vehicle movements through the net­
work. In general, vehicles will travel along the same street in 
one direction for several blocks, turn left or right, .and travel 
several more blocks in the same fashion. The number of turns 
that each vehicle makes tends to be relatively small in com­
parison with the number of links traveled. Suppose that we 
limit the number of turns that each vehicle can make to x; 
then we need to keep only x pairs of numbers. The first 
number in a pair corresponds to direction: north, south, east , 
or west. The second number corresponds to the number of 
links to be traveled in this direction. The trade-off required 
for this type of path structure is for the node parallel variable 
[Figure 4 (bottom)] to have indexes of entry-exit links for four 
directions. 

Link Parallel Variable 

The LPV AR's main function is to compute current speed 
according to the number of vehicles currently in the link using 

TRANSPORTATION RESEARCH RECORD 1358 

the macroscopic speed-density relationship. Each element in 
the LPV AR contains information such as link type, capacity, 
number of lanes, free-flow speed, and speed-density function 
parameters. Because it has been declared as a parallel vari­
able, the operations for computing current speeds can be 
applied to all LPV AR elements simultaneously. 

Using the network shown in Figure 3, the corresponding 
LPV AR and the intersection parallel variable (IPV AR) can 
be constructed as shown in Figure 4 (middle, bottom). The 
LPVAR is shaped as a one-dimension parallel variable. 

Intersection Parallel Variable 

The IPV AR is shaped as a one-dimension parallel variable, 
each element corresponding to an intersection and containing 
information on the cycle length and entry and exit links for 
four directions to each node [Figure 4 (bottom)]. At each time 
increment, the IPV AR updates the signal settings for all in­
coming links by communicating with LPV AR simultaneously 
using entry links as index for parallel left index operation. In 
this paper, only pretimed signals are modeled for the network. 
However, it can be extended to actuated signals by including 
an additional send operation from the VPV AR whenever a 
vehicle crosses the detector location. 

Parallel Logic Flow Chart 

Figure 5 illustrates the real-time traffic simulation logic. No­
tice that it can be used not only on a Connection Machine, 
but also on other SIMD machines with minor modifications. 
Basically, compared with the need of using three nested loops 
in sequential computers, the proposed method contains only 
one time loop and three stages of execution. In the first stage, 
parallel variables for vehicles, links, and intersections are ini­
tialized from external files. These external files include (a) 
traffic demands generated from an 0-D matrix of individual 
vehicles with predetermined paths, and (b) network infor­
mation of nodes, links, and signal control. The second stage 
involves the main simulation routine (Figures 6-8), which 
consists of four steps: updating signals, counting vehicles and 
updating link speeds, moving vehicles, and updating vehicles. 
A summary of simulation statistics is generated in the last 
stage. 

The first step in the second stage is to update signal settings 
at all incoming links at all intersections in parallel. As shown 
in Figure 4 (middle), each link element contains signal infor­
mation of start green and red time. At each step, start-red is 
checked against the system clock. If the start-red is less than 
the system clock, both start-green and start-red are incre­
mented by cycle length from the IPV AR using the destination 
node as the index in the parallel left index operation. 

The second step of the main simulation loop is to update 
the new prevailing speed for each link element in the LPV AR. 
Figure 6 shows how to compute each link element's volume 
and new prevailing speed at each time increment simultane­
ously. In Figure 6 (top), each vehicle element already in the 
network sends a signal to its current link element. Each link 
element then uses such information along with the speed­
density function to compute the new prevailing speed as shown 
in Figure 6 (bottom). 
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Given the updated speed information, vehicles can then 
move to their new positions in the link with their updated 
speeds (Figure 7). In such a process, each vehicle element 
will use its current link field as an index in general commu­
nication (i.e., GET operation) and to receive its new speed 
information from the LPVAR. Vehicles that reach the end 
of the link are eligible for changing links in the next step; 
those that arrive at their destinations are removed from the 
network. 

The next step is to enter vehicles into the network and to 
move them from link to link (Figure 8). As shown in Figure 
8(a), it begins with a selection of vehicle elements that will 
be involved in the computation. These elements include ve­
hicles that are about to enter the network and vehicles that 
have reached the end of links and intend to move along their 
own paths. All these identified vehicle elements will be ac­
tivated and ·moved according to the signal control and the 
available link capacity. A graphical illustration of such a par­
allel moving process is presented in Figure 8 (b, c, and d). 

Illustrative Example 

In this example, although only the movement of one vehicle 
(i.e., Vehicle 3) will be presented, the same computation will 
be executed simultaneously for all vehicles in the simulation. 
Assume that Vehicle 3 is already in the network and has the 
following characteristics at time t: 

Description 

0-D 
Path 
Current link 
Path index 

Data 

Node 0-Node 8 
(1,2), (2,1), (1,2) ( = Link 6, 2, 3, 11) 
2 
First link of second turn 
1, 100 ft 

FIGURE S Logic flow chart for massively parallel simulation 
model. 
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FIGURE 6 Graphical illustration of link-speed updating process: (top) each link 
"counts" vehicles currently in its link in parallel; (bottom) each link element 
computes the new speed in parallel. 
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Active vehicle elements In VPVAR 
u.so OUfTOIJf /Ink u fnd.ex In 
"Get operation" to receive 
new speed Information from LPV AR 

LPVAA 

VPVAA 

FIGURE 7 Graphical illustration of updating process for each vehicle 
element's position and speed: (top) active vehicle elements inquire new speed 
information in parallel; (bottom) active vehicle elements update link position. 

The parallel simulation process from time t to t + M is 
illustrated as follows: 

For simulation time step t 

Step 

Update signal 
settings 

Enter network or 
change links 

Update link speed 

Update vehicle 
position 

Update time step 

Action 

Signal setting information for each 
movement in all elements of IPV AR is 
updated. 

The computation in this step affects 
those vehicles that are entering the 
network or changing links. Vehicle 3 is 
already in the network, so it will not 
be involved in the computation and 
will remain idle until the next step. 

First, all vehicles that are in the network 
send signals to the current link using 
link-ID as an index in parallel left 
indexing. In this case, Vehicle 3 sends 
a signal to Link 2 along with other 
vehicles that are in Link 2. Link 2 then 
uses this information to compute the 
new prevailing speed. 

Vehicle 3 receives the new average speed 
information from Link 2 and updates 
its new position. Suppose Vehicle 3 
travels an additional 100 ft to reach the 
end of Link 2 in this time step, which 
.makes it eligible to change to a new 
link in the next time step, t + ti.1. 

Simulation time is increased by ti.t. 

For simulation time step t + t::..t 

Step Action 

Update signal 
settings 

Enter network or 
change link 

Signal setting information for each 
movement in all elements of IPV AR is 
updated. 

Vehicle 3 is now eligible to change to its 
downstream link. First it uses general 
communication to get signal 
information from LPV AR using 
current Link 2 as an index in a parallel 
left indexing operation. It also uses 
downstream Link 3 as an index in a 
get operation to receive link capacity 
information from LPV AR. If traffic 
signal is green and there is no 
spillback, Vehicle 3 is allowed to move 
to Link 3. 

The information currently stored in Vehicle 3 data elements 
will be 

Description 

0-D 
Path 
Current link 
Path index 
Link position 
Link length 
Current speed 
Next intersection 

Data 

Node 0-Node 8 
(1,2), (2,1), (1,2) ( = Link 6, 2, 3, 11) 
3 
Second link of second turn 
0 
1,500 ft 
20 mph 
5 

These models have been implemented on the Connection 
Machine in C* (18), an American National Standards Institute 
C-standard with parallel extension. Several si1nulation ex­
periments have been carried out to test various factors af­
fecting the running time on the Connection Machine. The 
results for these simulation experiments will be fully reported 
later (21). However, from our preliminary simulation exper­
iments, we have been able to simulate 32,000 vehicles for 30 
min at 2-sec increments within 2 min using the Connection 
Machine with 16,384 processors. 

ONGOING RESEARCH ACTIVITIES 

This paper presents our preliminary research in evaluating 
the applicability of massively parallel SIMD machines to sim­
ulate networkwide traffic in real time. The proposed model 
is part of the ongoing research to develop a real-time traffic 
simulation model for IVHS application. These research ac­
tivities and related studies can be categorized into three areas: 
enhancement of SIMD models, development of traffic sim­
ulation methodology for MIMD machines, and integration 
with a real-time dynamic assignment model. 

Main enhancements to the proposed SIMD model are to 
incorporate microscopic mechanisms such as car-following and 
lane-changing logic. Such logic can be added to the model 
using the same structure for parallel variables with some mod­
ifications. Further extensions of the model include the ca­
pability to model traffic incidents, lane closures, actuated sig­
nals, real-time surveillance systems, and ramp metering. The 
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FIGURE 8 Graphical illustration of parallel vehicle moving 
process. 

initial simulation experiments have shown that interprocessor 
communication constitutes the main fraction of running time 
in massively parallel computers. Various optimization tech­
niques and data structure alternatives will be further explored 
and compared. Trade-offs between different data structures, 
programming methodology, and interprocessor communica­
tion need to be examined. 

The second area of research involves the development of 
a traffic simulation model for MIMD machines. Many MIMD 
machines use control parallelism, which divides a standard 
program into more or less independent subsets of instructions 
and assigns one such subset to each processor. The traffic 
simulation model for control parallelism may involve dividing 
a program into vehicle, link, and traffic control subsets of 
instruction and assigning each subset to each processor, or 
dividing the network into several subnetworks and assigning 
each subnetwork to each processor. The main computation 
issues for the MIMD programming model are synchronization 
and load balancing among processors. An exploration of using 
the MIMD machines for real-time traffic simulation is being 
conducted in parallel with the development of SIMD model 
at the University of Maryland (17). 

The third area of research involves integrating the real-time 
simulation and real-time dynamic assignment, rather than simply 
interfacing them. The integration is necessary for both models 
to operate efficiently. 
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