
TRANSPO RTATION RESEA RCH RECORD 1358 13

Advanced Traffic Management System:
Real-Time Network Traffic Simulation
Methodology with a Massively Parallel
Computing Architecture

THANAVAT }UNCHAYA, GANG-LEN CHANG, AND ALBERTO SANTIAGO

The advent of paralle l computing architectures presents an op­
portunity for lranspon a tion professionals 1 imulate a large- ca le
tra ffic ne twork with sufficienily fa t response time for rea l-time
opcrarion . Howeve r, ii neccssira tc ·.a fundamental change in the
modeling algorithm LO tuke full adva ntage of parallel computing.
• uch a methodology t imulare tra ffic n twork with the Con­
nection Machine , a massively parallel computer, is described . The
basic parallel computing architectures are introdu ed , along with
a list of commercia lly available parallel comput ers. This is fol­
lowed by an in-depth presentation of the proposed simulation
methodology with a massively paralle l computer. The propo ed
traffic simulation model ha. an inherent path-proces ing capa­
bilit y to represent drivers ' roure choice behavior at the individual­
vehicle level. It has been implemented on the Connection Ma­
chine with 16,384 proces ors. Preliminary simulation experiments
indicate that massively parallel computers are a practicable al­
ternarive for achieving real-time application. The exp riment shows
that the Connection Machine with 16k proces. ors can simulate
32,000 vehicles for 30 min at 2-sec intervals within 2 min of
running time .

Many metropolitan areas around the world face serious con­
gestion problems that threaten to deteriorate the quality of
life and increase air pollution . It was estimated that traffic con­
gestion in 1987 accounted for more than 2 billion vehicle-hr
of delay and 2.2 billion gal of excessive fuel consumption in
the United States (1). In the next decade, the unavoidable
dramatic increase in travel demand coupled with the dimin­
ishing construction of new transportation facilities will cer­
tainly worsen the traffic condition unless innovative congestion­
relief methods can be developed and implemented in time .

One area that seems most promising in alleviating conges­
tion is the development of intelligent vehicle-highway systems
(IVHSs), specifically in the form of advanced traveler infor­
mation systems (ATISs) and advanced traffic management
systems (ATMSs) . Significant improvements in mobility,
highway safety, and productivity can thus be achieved through
integrated applications of advanced technologies to surveil­
lance, communications, route guidance, and control process
(2). Research is being undertaken in such areas as adaptive
traffic control, incident detection , real-time traffic assign­
ment , and corridor optimization. Successful implementation

T. Junchaya, G. L. Chang, Department of Civil Engineering, Uni­
versity of Maryland , College Park , Md. 20742. A. Santiago, Federal
Highway Administration, McLean, Va . 22101.

of these ATMS developments would ensure optimal net­
workwise performance.

The anticipated benefits of these control methods depend
on the complex interactions among principal traffic system
components . These systems include driver behavior, level of
congestion, dynamic nature of traffic patterns , and the net­
work's geometric configuration . It is crucial to the design of
these strategies that a comprehensive understanding of the
complex interrelations between these key system components
be established . Because it is often difficult for theoretical
formulations to take all such complexities into account , traffic
simulation offers the unique capability to conduct perfor­
mance evaluations . In addition, an effective on-line simula­
tion model would enable the ATMS control center to project
promptly future traffic patterns considering any previously
implemented strategies in a real-time operating environment.
A graphical illustration of a traffic simulation model's function
in ATIS-ATMS implementation is presented in Figure 1.

Such a real-time network traffic simulation model is re­
quired to have at least the following features: (a) a realistic
representation of traffic characteristics and geometric config­
urations; (b) the capability to simulate both freeway and sur­
face street networks at different levels of detail; and (c) a
path-processing capability to represent drivers' route choice
behavior at the individual-vehicle level. In addition, in or­
der to be operational in a re al-time basis, the software
design must be efficient and well structured and maximize the
utility of the hosting hardware . A comprehensive literature
review clearly indicated that none of the existing simulation
and assignment models fully meets these functional require­
ments. A detailed discussion in thi s regard can be found else­
where (3) .

In terms of providing sufficiently fast response to simulate
a large-scale network, the use of advanced parallel comput­
ing architectures appears to be one of the most promising
methods . However, adoption of this posture may require a
fundamental change in the modeling algorithm. This cannot
be achieved through the existing traffic simulation metho­
dologies developed mainly for conventional computing
machines .

The objective of this paper is to introduce a real-time traffic
network simulation methodology that fully utilizes the ca­
pability of massively parallel machines. Some basic parallel
computing architectures are introduced along with a list of

14

FREEWAY

CONTROL

SYSTEM

TRANSPORTATION RESEARCH RECORD 1358

TRAFFIC

SIGNAL

SYSTEM

CENTRAL CONTROLLER
Ramp Control

Freeway Condition
Real·Ume Traffic
SlmulaUon Model Urban Street Condition

FREEWAY

INFORMATION

SYSTEM

0-D
Lt>c:ation
TravelTlma

Guidance

lnfonnatlon

URBAN STREET

INFORMATION

SYSTEM

FIGURE 1 ATIS-ATMS system component.

commercially available parallel computers. There is also an
in-depth presentation of the proposed simulation methodol­
ogy with a massively parallel computer, specifically the Con­
nection Machine , and some empirical results are given . On­
going research activities and potential integration with related
studies are also presented.

REVIEW OF PARALLEL PROCESSING
METHODOLOGY AND ARCHITECTURE

Prodigious advances in computer architectures and capabili­
ties have taken place in the past two decades. New technol­
ogies and innovative architectures will continue to appear in
addition to the already bewildering array of configurations.
However, it has become apparent to most researchers that
the most promising long-term approach to achieve affordable,
accessible supercomputing is parallel processing.

Parallel processing has been defined as follows:

Pa ra llel processing is 1111 elTicicnL form of infornrntion proccs ing
which emplrnsi1.c the exploitation o(concurren t event in the
computing procc s . oncurrcncy implies P• rallclism , simultane­
ity, and pipe lin ing. Parallel events may occur in n1u l1iple re­
sources during the same time simultaneous events may occur at
the same time instant ; and pipelined events may occur in over­
lapped time span . Thcst: concurrent event a re nltainable in a
compute r system al various processing lcv Is. Para llel processing
demands rnncurren l execution of many programs i11 the com­
pu.ter. It is in contrast to seque111ial processing . It is a cost­
effcctive means to improve system performance through con­
current activities in the computer . (4)

Classification of Parallel Processing Systems

Although no fully satisfactory taxonomy of multiprocessors
has been established, parallel processing systems can still be
classified according to their design alternatives (5) . These
include program control, interconnection methods, form of
information exchange , and processing element granularity.

Program Control

The most widely used classification scheme was proposed
by Flynn (6) . He classified computer architectures into four
categories:

1. Single instruction stream-single data stream (SISD): one
instruction at a time is performed on one piece of data.

2. Single instruction stream-multiple data stream (SIMD):
one type of instruction can be executed simultaneously on
multiple data.

3. Multiple instruction stream-single data stream (MISD):
different instructions can be performed simultaneously on the
same data.

4. Multiple instruction stream-multiple data stream (MIMD):
different instructions can be performed currently on multiple
data.

Interconnection Methods

One important factor in determining the performance of the
multiprocessor is the technique selected to connect the pro­
cessing elements. Several alternatives have been proposed for
the topology of the interconnection network in a multipro­
cessor (7) , depending on whether the interconnections are
dynamic or static. Dynamic networks , in which the intercon­
nections are under program control, include shuffle exchange
networks and the crossbar switch. Static topologies include
ring, star, nearest-neighbor mesh , systolic array , and hyper­
cube configuration.

Form of Information Exchange

There are two major forms of information exchange: shared
memory and distributed memory (message passing). In a shared
memory system , the processing elements have access to com­
mon memory resources and exchange data by successive read­
write operations . In a distributed memory or message-passing

Jun chaya et al.

systems, each processing element has its own local memory,
and elements exchange data by transmitting messages through
the interconnection network.

Processing Element Granularity

The number of processors in parallel computers ranges from
two elements to many thousands. Some computers have a few
very powerful processors (coarse-grain), such as Cray Y-MP;
others consist of a very large number of simple processors
(fine-grain), such as the Connection Machine.

Review of Existing Parallel Computers

Most supercomputers explore parallel processing in the SIMD
or MIMD mode. SIMD machines, the simpler of the two, use
either the array processor or the pipeline approach. The fun­
damental differences between the SIMD and MIMD ma­
chines can be summarized as follows:

•SIMD
-All processors are given the same instruction.
-Each processor operates on different data.

15

processor, features one control unit, multiple processors, mul­
tiple memories, and an interconnection network. The control
unit broadcasts instruction to all the processors, but only ac­
tive processors execute the same instruction at the same time
using the data taken from their local memory.

MIMD machines consist of multiple processors with either
multiple memories (distributed) or shared memory, in which
each processor can follow an independent instruction stream.
Whereas many tightly coupled multiprocessors, such as the
Encore Multimax multiprocessor, use shared memory as a
major means of communication between processors, the Intel's
iPSC/860 and nCUBE's nCUBE2 are loosely coupled distrib­
uted memory multicomputers and employ the message pass­
ing communication mechanism. The shared-memory MIMD
allows the use of conventional programming methods with
which the user or compiler does not need to worry about the
location of data. For example, one can take conventional
FORTRAN code and obtain concurrency from parallel exe­
cution of DO loops automatically, with user directives, or
both. In contrast, distributed-memory MIMD machines re­
quire the communication among the processors to be made
explicitly by the user in programming.

-Some processors may "idle" during a sequence of

Several parallel computers and their key features are sum­
marized in Table 1. Of course, this is only a small portion of
existing systems, not a comprehensive list. A more detailed
review of parallel processing systems can be found in work
by Miller et al. (8) . A thorough review of SIMD machines
has been given by Hord (9).

instructions.
• MIMD

-Each processor runs its own instruction sequence.
-Each processor works on a different part of the problem.
- Each processor communicates data to the others .
-Some processors may have to wait for the results of Comparison of Programming Methods

processes being performed by other processors or for access
to data being used by other processors.

SIMD machines use a single instruction to act on many sets
of data simultaneously. This architecture, also called an array

TABLE I Examples of Parallel Computers

Maximum
number or

Model Program processing
ManufacLUrer Number contro l clcmenls

Alliant (10) l'X/2800 MIMD 28

Dfi"(I /) TC2000 MIMI) 5 12

Encorc(J2) 93 MIMD 32

l~'S(IJ) SystL-'1TI 500 MIMD 84

lntcl(/4) Il'SC/860 MIMD 128

NCUBE(l5) NCUBE 2 MIMD 8.192
Model 80

Thinking Connection SIMD 65,536
Machine(/6) Machine CM-2

MFLOPS = million Hoaling-point operalions per second
GFLOPS = gi11a FLOPS

Topology

Crossbar and

hus

Buucrny

switch

Bus

Bus

1 lypcrcubc

Hypercube

Hypercube

To run efficiently in a parallel environment, a sequential ap­
plication must be partitioned or decomposed into subsets.
This involves dividing the data or program code (or both)
among the available or allocated processors . It may also in-

lnlcrproccssor

commun1- Processor

cal ion tcchnology

Shared memory Intel
i860

Mcssasc ~otorola

passing 88 100

Shared memory \.1oloro la

88 100

SharcJ memory SPARC

Message "'"'' pass mg i860

Message Custom

pass ing

Message Custom

passing

MaKimum
memory Peak
capacily performance

1 GBytcs !000 MA-OPS

I Gbytcs 1260 MFLOPS

640 \.1ByLcs 128 MFLOl'S

I Cibytcs 6.7 Gl", Ol'S

8 Cibylcs 7.6 GH,Ol'S

\12 Gbytcs 27 GA-OPS

8 Gbytcs 10 GA-OPS

Operaling
system

Unix

Unix

Unix

Unix

Unix

Unix

Unix

Language

supported

Fortran-77

Pascal

c

Fortran

c

fort.nm
Pascal

c

f<ortran

c

Fortran

c

Fon.ran-77

c

Fortsarl

c

16

volve changing DO-loop limits, array dimensions, and sub­
routine parameters so that each processor can operate on a
subset of data.

The differences between the SIMD and MIMD machines
in this regard can be characterized by the two basic approaches
in partitioning: control parallelism and data parallelism.

Control Parallelism

Control parallelism breaks up a standard program into more
or less independent subsets of instructions and assigns one
such subset to each processor. It is used by vector supercom­
puters as well as by the many MIMD computers.

Though the multitasking method allows all processors to
work on different parts of the same problem, it has several
disadvantages. For instance, it is difficult to scale a very large
number of processors well into a massively parallel regime.
The breakdown of the instruction set into independent sub­
units is usually possible only to a certain level of granularity
beyond which no further division is possible . In most engi­
neering applications, the number of such independent sub­
units is typically measured in tens. Furthermore, synchroniz­
ation and load balancing between the different subunits often
become difficult tasks in program design.

Data Parallelism

The hardware and software paradigms that can scale well into
the massively parallel regime base the parallelization on a
program's data rather than on its instruction stream. Most
programs manipulate tens of millions of pieces of data; very
few programs have tens of millions of lines of code. This
approach is used mainly by the SIMD machines . In a data
parallel program, a single instruction can affect all elements
of a parallel data structure simultaneously . The same oper­
ation in a serial program, however , needs to be expressed as
a loop and executed sequentially for each element of the
array.

Features of Connection Machine

The Connection Machine, a massively parallel SIMD super­
computer, has been used in scientific disciplines such as struc­
tural mechanics, molecular dynamics, and image processing
(17). It consists of up to 65,536 bit-serial processors, each with
1 Mbit of local memory, and 2,048 Weitek floating-point pro­
cessors when fully configured (16) . Every chip contains 16
processors, and each pair of chips shares a Weitek processor.
The chips are connected in a 12-dimensional hypercube; the
processors on each chip are connected in a 4-dimensional
hypercube .

The CM-2 system consists of a parallel processing unit that
contains thousands of data processors, a front-end computer,
and an 1/0 system. The front-end computer broadcasts in­
structions to all processors in parallel. The instructions are
broadcast through a sequencer that decodes the front-end
instructions into a series of low-level microinstructions and
broadcasts them to individual processing elements .

TRANSPORTA TION RESEA RCH RECORD 1358

The CM-2 processors are interconnected by a high-speed
communication device called a router. The router allows gen­
eral communication in which processors can send data or
receive data from any other processors in parallel. It also
supports a faster but more structured form of communication
called grid communication, which allows processors to com­
municate with their neighbors in a multidimensional grid.

General communication involves the concept of parallel left
indexing (18) . A parallel left index rearranges the elements
of the parallel variable on the basis of values stored in the
elements of the index. Graphical illustrations of these two
operations are presented in Figure 2.

In this paper , the proposed modeling concept is tailored
for the SIMD machines-in particular, the Connection Ma­
chine CM-2, which uses the data parallel paradigm. A detailed
discussion of the simulation methodology on a MIMD ma­
chine is available elsewhere (19) .

MODELING METHODOLOGY FOR
TRAFFIC NETWORK SIMULATION

The massively parallel traffic simulation model is adapted
from the macroparticle traffic simulation (MPSM) approach
(20) with the addition of vehicle path-processing capability.
It follows a fixed time-step logic and uses macroscopic traffic
relations to approximate the prevailing speed in a given link.
Vehicles are then moved individually through the network
according to predetermined paths. Because each vehicle is
simulated individually, the proposed model can certainly in­
corporate microscopic features such as car-following and lane­
changing mechanisms in the simulation process . However, for

Send Operation [lndex]dest • source

0 2 3 4

Source 20 30 40

index 0 4 2

de st 40 10 30

Get Operation dest • [index)source

0 2 3 4

Source

index 0 4 2

de st 0 40 20

FIGURE 2 Examples of general
communication.

Junchaya et al.

simplicity of illustrating the data parallel modeling concept,
only the simple MPSM logic is discussed.

Modeling Concept

There are three basic data entities for a real-time traffic sim­
ulation model : (a) urban streets and highways network, (b)
traffic signal controls, and (c) vehicles . As an example, the
network in Figure 3 (top) can be normally structured into a
set of nodes and links as shown in Figure 3 (bottom). How­
ever, in an A TIS-ATMS application, the data structure for
vehicle must be able to support the vehicle path-processing
capability and to distinguish vehicles with and without access
to in-board A TIS systems. The first requirement is achieved
by explicitly embedding a predetermined path into each ve­
hicle for a given origin-destination (0-D). These paths can
be stored as a series of links or turning movements at each
intersection. The second requirement is easily accomplished
since each vehicle is simulated individually. Equipped vehicles
will periodically update their paths on the basis of the optimal
results of a real-time route assignment model, whereas the
unguided vehicles will essentially follow predetermined paths .

- --] ,D ·,0 ·[--- _,.,,,, ... ~,_
~ _. -- ~

--l "D "D "[- I I
' t

- ! I
' t

FIGURE 3 Example network: (top) street network;
(bottom) representation of network in nodes and links.

--

17

The integration with a real-time dynamic assignment model,
however, is beyond the scope of this paper, which concen­
trates on illustrating the massively parallel traffic simulation
concept. Thus , all vehicles will be considered as unguided and
will follow predetermined paths throughout the simulation
period.

One of the most important aspects of data parallel pro­
gramming is the choice of parallel data structure, since good
data organization can significantly simplify computations and
interprocessor communications. The aforementioned data en­
tities can be structured as parallel variables so that an oper­
ation can be applied to all data elements simultaneously.

Description of Principal Model Components

There are several ways to organize these data entities as par­
allel variables. The parallel variables presented here are sim­
ple, yet they can be used in more complex microscopic models
that use car-following and lane-changing mechanisms. Each
set of data entity-vehicle, link, and node-is kept as a sep­
arate set of parallel variables .

Vehicle Parallel Variable

The vehicle parallel variable (VPV AR) is shaped as a one­
dimension parallel variable with NV positions, where NV is
the maximum number of vehicles to be simulated in the net­
work at any time slice. Currently, the Connection Machine
requires the number of positions for parallel variable to be a

VPVAR (Vehicle)

LPVAR (Link)

0·1 2 3 4 5 6

vehicle Id
entry time
path
path index
current link
link position

NV

D

C Notation

0 1 2 3 4 5 6

length
no of lanes
capacity
free-flow speed
current no. ol vehicles
current speed
beginning - ending nodes
link parameters
signal control (green - red)

23

D

IPVAR (Intersection) 0 1 2 3 4 5 6 7 e

N

15 ~t
21

14

W~~~E
itt 20
s

node/links layout

cycle length
north enter/exit links - (8,21)
south enter/exit links - (20,9)
east enter/exit links - (14,3)
west enter/exi t links - (2, 15)

FIGURE 4 Graphical illustration of parallel variables.

18

power of two and must be some multiple of the number of
physical processors: NV for the CM with 8,192 (8k) processors
can be 8,192, 16,384, and so on. Other vehicles not yet entered
in the network are kept in the front-end computer and sent
to VPV AR at preset intervals. Each element in the VPV AR
keeps track of one vehicle's key characteristics in the network
[Figure 4 (top)], including its path, location, speed, and sched­
uled departure time. The scheduled departure time is used to
determine a vehicle's entry time to the network and the entry
order of vehicles in each link.

At each time step, a vehicle moves along a link by some
distance that depends on the link's prevailing speed and the
time increment. The time-dependent speed can be either com­
puted with the embedded speed-density function or governed
by a car-following mechanism. Once the vehicle reaches the
end of a link , it will be moved onto the next downstream link
in a path toward its destination. Upon arriving at its desti­
nation, the vehicle is removed from the network.

Notice that moving vehicles through the network requires
the VPV AR to communicate with the link parallel variable
via general communication (18). The first involves the send­
with-reduction operation, which combines communication and
computation. Each vehicle in the network sends a signal to
its current link in parallel. These signals are then combined
for each individual link, which is equal to the number of
vehicles currently traveling in its link. Such information allows
each link processor to compute the new prevailing speed with
an embedded speed-density function. The second communi­
cation step is the get operation, in which each vehicle receives
the speed information from its current link and updates its
current position accordingly. Once a vehicle reaches the end
of its current link, it will attempt to change to a downstream
link in its path provided that it has not reached its destination.
To determine whether such an action is possible, each vehicle
in the VPV AR will use the get operation to communicate
with the link parallel variable (LPVAR) in order to check
whether the signal controlling this link is green or red and
whether the downstream link volume is under capacity or not .
The vehicles that can satisfy both conditions can then update
their current link information.

The path structure of each vehicle has been developed to
take advantage of typical vehicle movements through the net­
work. In general, vehicles will travel along the same street in
one direction for several blocks, turn left or right, .and travel
several more blocks in the same fashion. The number of turns
that each vehicle makes tends to be relatively small in com­
parison with the number of links traveled. Suppose that we
limit the number of turns that each vehicle can make to x;
then we need to keep only x pairs of numbers. The first
number in a pair corresponds to direction: north, south, east ,
or west. The second number corresponds to the number of
links to be traveled in this direction. The trade-off required
for this type of path structure is for the node parallel variable
[Figure 4 (bottom)] to have indexes of entry-exit links for four
directions.

Link Parallel Variable

The LPV AR's main function is to compute current speed
according to the number of vehicles currently in the link using

TRANSPORTATION RESEARCH RECORD 1358

the macroscopic speed-density relationship. Each element in
the LPV AR contains information such as link type, capacity,
number of lanes, free-flow speed, and speed-density function
parameters. Because it has been declared as a parallel vari­
able, the operations for computing current speeds can be
applied to all LPV AR elements simultaneously.

Using the network shown in Figure 3, the corresponding
LPV AR and the intersection parallel variable (IPV AR) can
be constructed as shown in Figure 4 (middle, bottom). The
LPVAR is shaped as a one-dimension parallel variable.

Intersection Parallel Variable

The IPV AR is shaped as a one-dimension parallel variable,
each element corresponding to an intersection and containing
information on the cycle length and entry and exit links for
four directions to each node [Figure 4 (bottom)]. At each time
increment, the IPV AR updates the signal settings for all in­
coming links by communicating with LPV AR simultaneously
using entry links as index for parallel left index operation. In
this paper, only pretimed signals are modeled for the network.
However, it can be extended to actuated signals by including
an additional send operation from the VPV AR whenever a
vehicle crosses the detector location.

Parallel Logic Flow Chart

Figure 5 illustrates the real-time traffic simulation logic. No­
tice that it can be used not only on a Connection Machine,
but also on other SIMD machines with minor modifications.
Basically, compared with the need of using three nested loops
in sequential computers, the proposed method contains only
one time loop and three stages of execution. In the first stage,
parallel variables for vehicles, links, and intersections are ini­
tialized from external files. These external files include (a)
traffic demands generated from an 0-D matrix of individual
vehicles with predetermined paths, and (b) network infor­
mation of nodes, links, and signal control. The second stage
involves the main simulation routine (Figures 6-8), which
consists of four steps: updating signals, counting vehicles and
updating link speeds, moving vehicles, and updating vehicles.
A summary of simulation statistics is generated in the last
stage.

The first step in the second stage is to update signal settings
at all incoming links at all intersections in parallel. As shown
in Figure 4 (middle), each link element contains signal infor­
mation of start green and red time. At each step, start-red is
checked against the system clock. If the start-red is less than
the system clock, both start-green and start-red are incre­
mented by cycle length from the IPV AR using the destination
node as the index in the parallel left index operation.

The second step of the main simulation loop is to update
the new prevailing speed for each link element in the LPV AR.
Figure 6 shows how to compute each link element's volume
and new prevailing speed at each time increment simultane­
ously. In Figure 6 (top), each vehicle element already in the
network sends a signal to its current link element. Each link
element then uses such information along with the speed­
density function to compute the new prevailing speed as shown
in Figure 6 (bottom).

Junchaya et al.

D Vehicle processor

Q Link processor

. , Intersection processor

Start

Setup & Initialize

Update Time Step

Final Statistics

End

19

Given the updated speed information, vehicles can then
move to their new positions in the link with their updated
speeds (Figure 7). In such a process, each vehicle element
will use its current link field as an index in general commu­
nication (i.e., GET operation) and to receive its new speed
information from the LPVAR. Vehicles that reach the end
of the link are eligible for changing links in the next step;
those that arrive at their destinations are removed from the
network.

The next step is to enter vehicles into the network and to
move them from link to link (Figure 8). As shown in Figure
8(a), it begins with a selection of vehicle elements that will
be involved in the computation. These elements include ve­
hicles that are about to enter the network and vehicles that
have reached the end of links and intend to move along their
own paths. All these identified vehicle elements will be ac­
tivated and ·moved according to the signal control and the
available link capacity. A graphical illustration of such a par­
allel moving process is presented in Figure 8 (b, c, and d).

Illustrative Example

In this example, although only the movement of one vehicle
(i.e., Vehicle 3) will be presented, the same computation will
be executed simultaneously for all vehicles in the simulation.
Assume that Vehicle 3 is already in the network and has the
following characteristics at time t:

Description

0-D
Path
Current link
Path index

Data

Node 0-Node 8
(1,2), (2,1), (1,2) (= Link 6, 2, 3, 11)
2
First link of second turn
1, 100 ft

FIGURE S Logic flow chart for massively parallel simulation
model.

Link position
Link length
Current speed
Next intersection

1,200 ft
25 mph
4

#of vehicles 0 2 2

Ll'IEUI : 1. Speed-density !unction parameter& !or each link

2. # o1 vehicles 0 2 2

QUIJ>UI: Speed 25 22 30 20 15

VPVAA

Actlvo lfOhlclo olomonto In VPVAA

"50 currwnt. Onk u an •nC1&.11C In
"Send wtth Reduction operallon"

to send number of vehlcles to each link

L.PVAA

L.PVAA

FIGURE 6 Graphical illustration of link-speed updating process: (top) each link
"counts" vehicles currently in its link in parallel; (bottom) each link element
computes the new speed in parallel.

20

Speed 25 22 30 20

lJllf'1lI : 1. Current poaldon, time Increment,

2. Speed 25 20 16 20 30

~-~9·?9
OUiel..IT: New poahlon In llnk

15

15

~

TRANSPORTATION RESEARCH RECORD 1358

VPVAA

Active vehicle elements In VPVAR
u.so OUfTOIJf /Ink u fnd.ex In
"Get operation" to receive
new speed Information from LPV AR

LPVAA

VPVAA

FIGURE 7 Graphical illustration of updating process for each vehicle
element's position and speed: (top) active vehicle elements inquire new speed
information in parallel; (bottom) active vehicle elements update link position.

The parallel simulation process from time t to t + M is
illustrated as follows:

For simulation time step t

Step

Update signal
settings

Enter network or
change links

Update link speed

Update vehicle
position

Update time step

Action

Signal setting information for each
movement in all elements of IPV AR is
updated.

The computation in this step affects
those vehicles that are entering the
network or changing links. Vehicle 3 is
already in the network, so it will not
be involved in the computation and
will remain idle until the next step.

First, all vehicles that are in the network
send signals to the current link using
link-ID as an index in parallel left
indexing. In this case, Vehicle 3 sends
a signal to Link 2 along with other
vehicles that are in Link 2. Link 2 then
uses this information to compute the
new prevailing speed.

Vehicle 3 receives the new average speed
information from Link 2 and updates
its new position. Suppose Vehicle 3
travels an additional 100 ft to reach the
end of Link 2 in this time step, which
.makes it eligible to change to a new
link in the next time step, t + ti.1.

Simulation time is increased by ti.t.

For simulation time step t + t::..t

Step Action

Update signal
settings

Enter network or
change link

Signal setting information for each
movement in all elements of IPV AR is
updated.

Vehicle 3 is now eligible to change to its
downstream link. First it uses general
communication to get signal
information from LPV AR using
current Link 2 as an index in a parallel
left indexing operation. It also uses
downstream Link 3 as an index in a
get operation to receive link capacity
information from LPV AR. If traffic
signal is green and there is no
spillback, Vehicle 3 is allowed to move
to Link 3.

The information currently stored in Vehicle 3 data elements
will be

Description

0-D
Path
Current link
Path index
Link position
Link length
Current speed
Next intersection

Data

Node 0-Node 8
(1,2), (2,1), (1,2) (= Link 6, 2, 3, 11)
3
Second link of second turn
0
1,500 ft
20 mph
5

These models have been implemented on the Connection
Machine in C* (18), an American National Standards Institute
C-standard with parallel extension. Several si1nulation ex­
periments have been carried out to test various factors af­
fecting the running time on the Connection Machine. The
results for these simulation experiments will be fully reported
later (21). However, from our preliminary simulation exper­
iments, we have been able to simulate 32,000 vehicles for 30
min at 2-sec increments within 2 min using the Connection
Machine with 16,384 processors.

ONGOING RESEARCH ACTIVITIES

This paper presents our preliminary research in evaluating
the applicability of massively parallel SIMD machines to sim­
ulate networkwide traffic in real time. The proposed model
is part of the ongoing research to develop a real-time traffic
simulation model for IVHS application. These research ac­
tivities and related studies can be categorized into three areas:
enhancement of SIMD models, development of traffic sim­
ulation methodology for MIMD machines, and integration
with a real-time dynamic assignment model.

Main enhancements to the proposed SIMD model are to
incorporate microscopic mechanisms such as car-following and
lane-changing logic. Such logic can be added to the model
using the same structure for parallel variables with some mod­
ifications. Further extensions of the model include the ca­
pability to model traffic incidents, lane closures, actuated sig­
nals, real-time surveillance systems, and ramp metering. The

Junc/111ya el al.

Vehldes entering the network &

Vehlctes changing llnk are made active

••o••oo ····· •
D Active element • Inactive element

VPVAR

A. Activate vehicle elemanla that are entering the network or changing to downstream llnka

VPVAR

Active elements of VPVAR ··:n··r ······ use current link aa an Index In
"Get operation• to receive

olgnol lnfonn&tlon ''°'" LPVAR

0 LPVAR

B. c"ommunlcate signal control lnrormaUon to all activated vehicle elements In para/Isl

.. L .. IJ i~E:~
I link capacity inronnalion from LPVAR

D D 6 [. D LPVAR

C. Communicate the capacity Information of downstream llnks to ell activated vehlde elements

lnparrtlfsl

~~9~~-···. ~~rf D

D. Update current llnk Information lo acUvated vehlcie elements

VPVAR

LPVAR

FIGURE 8 Graphical illustration of parallel vehicle moving
process.

initial simulation experiments have shown that interprocessor
communication constitutes the main fraction of running time
in massively parallel computers. Various optimization tech­
niques and data structure alternatives will be further explored
and compared. Trade-offs between different data structures,
programming methodology, and interprocessor communica­
tion need to be examined.

The second area of research involves the development of
a traffic simulation model for MIMD machines. Many MIMD
machines use control parallelism, which divides a standard
program into more or less independent subsets of instructions
and assigns one such subset to each processor. The traffic
simulation model for control parallelism may involve dividing
a program into vehicle, link, and traffic control subsets of
instruction and assigning each subset to each processor, or
dividing the network into several subnetworks and assigning
each subnetwork to each processor. The main computation
issues for the MIMD programming model are synchronization
and load balancing among processors. An exploration of using
the MIMD machines for real-time traffic simulation is being
conducted in parallel with the development of SIMD model
at the University of Maryland (17).

The third area of research involves integrating the real-time
simulation and real-time dynamic assignment, rather than simply
interfacing them. The integration is necessary for both models
to operate efficiently.

21

ACKNOWLEDGMENTS

The contributions of Hani S. Mahmassani and Stavros Zenios
are acknowledged. The authors would like to thank Jerry
Sobieski of the University of Maryland Institute of Advanced
Computer Studies for his valuable inputs and comments. This
research is partially supported by a FHW A project.

REFERENCES

1. J. Lindley. Urban Freeway Congestion Problems and Solutions:
An Update. !TE Journal, Vol. 59, No. 12, 1989, pp. 21-23.

2. G. Euler. Intelligent Vehicle/Highway Systems: Definitions and
Applications. !TE Journal, Vol. 60, No. 11, 1990, pp. 17-22 .

3. H. Mahmassani, S. Peeta, G. L. Chang, and T. Junchaya. A
Review of Dynamic Assignment and Traffic Simulation Models
for ADISIATMS Applications. Technical Report DTFH61-90-R-
0074-1. Center for Transportation Research, University of Texas,
Austin, 1991.

4. K. Hwang and F. A. Briggs. Computer Architecture and Parallel
Processing. McGraw-Hill, New York, N.Y., 1984.

5. W. J. Karplus. Vector Processors and Multiprocessors. In Parallel
Processing for Supercomputers and Artificial Intelligence (Hwang
and DeGroot, eds.). McGraw-Hill, New York, N.Y., 1989, Chapter
1.

6. M. J. Flynn. Some Computer Organizations and their Effective­
ness . IEEE Transactions on Computers, Vol. C-21, 1972, pp.
948-960.

7. T. Feng. A Survey of Interconnection Networks. In Supercom­
puters: Design and Applications (K. Hwang, ed.). IEEE Com­
puter Society Press, 1984.

8. R. K. Miller and T. C. Walker. Parallel Processing. Fairmont
Press, Lilburn, Ga., 1990.

9. M. R. Hord. Parallel Supercomputing in SIMD Architectures.
CRC Press, Boca Raton, Fla., 1990.

10. FX/2800 Produc/ Summary. Alliant Computer Systems Corp.,
Littleton, Mass.

11. TC2000 Technical Summary Rev. 2.0. BBN Advanced Com­
puters, Inc., Cambridge, Mass., 1989.

12. Product Overview. ENCORE Computer Corp., Fort Lauder­
dale, Fla.

13. Sys/em 500 SPARC Supercomputer Produc/ Overview. FPS Com­
puting, Beaverton, Oreg.

14. iPSC/860 Technical Summary. Intel Corp., Beaverton, Oreg.,
1990.

15. Technical Overview: Sys/em. nCUBE, Beaverton, Oreg.
16. Connection Machine Model CM-2 Technical Summary. Thinking

Machines Corp., Cambridge, Mass., 1991.
17. Proc., Conference on Scienlific Applicalions of the Connection

Machine (H. Simon, ed.). World Scientific, Teaneck, N.J., 1989.
18. The Connection Machine Sys/em, Programming in C*. Thinking

Machines Corp., Cambridge, Mass., 1990.
19. G. L. Chang. Development of A Dynamic Real-Time Traffic Sim­

ulation Model with a MIMD Computing Slructure. Waking Paper.
Transportation Studies Center, University of Maryland, College
Park, 1992 .

20. G. L. Chang, H. S. Mahmassani, and R. Herman. A Macro­
particle Traffic Simulation Model To Investigate Peak-Period
Commuter Decision Dynamics. In Transportation Research Rec·
ord 1005, TRB, National Research Council, Washington, D.C.,
1985, pp. 107-121.

21. T. Junchaya and G. L. Chang. Exploring Real-Time Traffic Sim­
ulation with Massively Parallel Computing Architeclures. Working
Paper. Transportation Studies Center, University of Maryland,
College Park, 1992.

Publicalion of this paper sponsored by Task Force on Advanced Vehicle
and Highway Technologies.

