TRANSPORTATION RESEARCH RECORD 1364

37

Transportation Network Design Using a
Cumulative Genetic Algorithm and Neural

Network

YIHUA XIONG AND JERRY B. SCHNEIDER

Currently available algorithms for finding optimal solutions to
the discrete transportation network design problem are deficient
in two ways. First, their computing time requirements are very
large, which makes them infeasible for processing large networks.
Second, they cannot process multiple criteria simultaneously—
that is, only one objective value can be optimized in one run and,
therefore, only one final solution can be obtained. A neural net-
work in the optimal solution search process to replace the trip
assignment algorithm for the computation of total travel time is
employed. Before a neural network is used, it must be trained
and tested with solutions obtained from a user-equilibrium trip
assignment model. Experiments show that the trained neural net-
work can predict total travel times quickly and accurately. Next,
this neural network is used in combination with a genetic algo-
rithm to search for optimal network designs. The original genetic
algorithm did not work well for the problem. However, an anal-
ysis of its results suggested improvements that led to the creation
of a very powerful search algorithm: the cumulative genetic al-
gorithm. Experiments show that the cumulative genetic algorithm
can seek and find system optimal designs extremely fast, using
two criteria simultaneously. A full set of optimal solutions can
be obtained to construct a trade-off curve for the two criteria.
This trade-off curve, composed of optimal solutions, is the bound-
ary of one side of the entire solution space.

The discrete transportation network design problem (DTNDP)
involves the selection of new facilities (links) to add to a
transportation network or to determine a set of capacity en-
hancements for some existing links so that the system perfor-
mance and capital investment costs are optimal. Unfortu-
nately, DTNDP is very difficult to solve because it is NP-hard
(1). Currently available methods for finding optimal solutions
are deficient in two ways. First, their computing time require-
ments are very large, which seriously limits the size of the
network that can be processed (2). Some methods, such as
branch-and-bound, are effective but can handle only very
small networks. Heuristic algorithms can handle larger net-
works and have been used in many applications (3), but their
computing requirements are still high. The final solutions are
often locally but not globally optimal. Second, none of the
currently available methods can handle multiple objectives.
They try to minimize either the areawide total travel time on
the network under a nonadjustable budget limit or the con-
struction cost in relation to a specific total travel time goal.
A third approach is to define first a trade-off relation between
the total travel time and cost and then minimize the objective

Department of Civil Engineering, University of Washington, Seattle,
Wash. 98195.

function defined as a weighted sum of the two (4,5). Using
these methods, the overall relationships among the various
performance values associated with the optimal solutions can-
not be determined, because only one optimal or near-optimal
solution can be generated. Many optimal solutions should be
seen to obtain a general overview of the problem’s solution
space and to assist the search for a preferred network devel-
opment plan.

These difficulties can be greatly reduced by using some new
analytical techniques that have become available only re-
cently. The first problem can be addressed using a neural
network. An improved genetic algorithm that uses the neural
network is used to address the second problem.

Previous studies have shown that the user-equilibrium trip
assignment technique can produce a network flow pattern that
matches actual trip flows quite well (6). Most network design
studies have used this technique to compute the total travel
times. However, because the total travel must be calculated
for every possible solution encountered in the search process
and because the solution space is extremely large, the assign-
ment algorithm must be invoked again and again as alternative
network designs are generated and compared with previous
solutions. This multiple trip assignment computing require-
ment is a major bottleneck in the search for optimal designs
for networks of reasonable size.

To address this problem, a short list of some possible so-
lutions is generated, and a user-equilibrium trip assignment
model [the Frank-Wolfe (F-W) algorithm] is used to calculate
the total travel time for each of them. Then, this list is used
as a training set to train a neural network. Because a neural
network can respond much faster than the F-W algorithm, it
replaces the algorithm in the network design optimization
process. The tests of the trained neural network have shown
that its total travel time predictions become very accurate
after a reasonably long training period.

Next, using the neural network that had been trained and
tested, an improved genetic algorithm is employed to conduct
the network design process; it has been found capable of
processing multiple optimization criteria and reaching a set
of optimal solutions very quickly. By examining these solu-
tions, the overall relationship between the total travel time
and the project costs as well as the distribution of the optimal
solutions in the solution space can be understood clearly.
Thus, a better understanding of the basic properties of DTNDP
and the identification of a preferred network development
plan become possible.

38

Legend 5

project number (see Table 1)
node number

— == — possible new link

ble link imp

P

FIGURE 1 Test network.

DATA SET

Throughout this study, a synthetic network, with a fixed travel
demand matrix, and 20 proposed improvement projects, each
with a specific cost, have been used (Figure 1). This network
has been used as the test network in several previous papers
(7,8). The travel time along each link is computed using
FHWA'’s travel time delay function. That is, if the traffic
volume on the link / is v,, its travel time from the starting

TABLE 1 Link Parameters and Costs for Proposed Projects

f Cost
g Link a(xlolfgr;melte:?XIO‘S) (x$1000) New?

1 9-10 1.60 .0037 625 No
2 10-9 1.60 .0037 625 No
3 6-8 1.30 .1562 650 No
4 8-6 1.30 .1562 650 No
5 13-24 2.20 .2678 850 No
6 24-13 2.20 .2678 850 No
7 7-8 1.50 .0355 1000 No
8 B8-7 1.50 .0355 1000 No
9 10-16 2.70 .3240 1200 No
10 16-10 2.70 .3240 1200 No
11 6-7 3.00 .0321 1500 Yes
12 7-6 3.00 .0321 1500 Yes
13 19-22 1.00 L0042 1650 Yes
14 22-19 1.00 .0042 1650 Yes
15 11-15 1.50 .0411 1800 Yes
16 15-11 1.50 .0411 1800 Yes
17 9~11 2.14 .0028 1950 Yes
18 11-9 2.14 .0028 1950 Yes
19 13-14 1.00 .0160 2100 Yes
20 14-13 1.00 L0160 2100 Yes

TRANSPORTATION RESEARCH RECORD 1364

node to the end node of the link / will be

4
v) = to, - [1 +0.15 - <1’>] —a + b v Q)

¢

where t,, is link I’s travel time under free-flow condition.
LeBlanc gives the network link parameters (a’s and b’s)
and the travel demand between each possible node pair (7).
There are 20 proposed projects for this network: 10 are
new link constructions and 10 are existing-link improvements.
Table 1 presents their assumed (new) parameters and ex-
pected construction costs.

DEVELOPMENT OF NEURAL NETWORK TO
REPLACE USER-EQUILIBRIUM TRIP
ASSIGNMENT ALGORITHM

The neural network is a recently developed analytical tech-
nique that mathematically simulates the connections of the
biological neural system in the human brain with respect to
how it reacts to changes in the outside environment. A neural
network can be trained by giving it some examples (inputs)
and the corresponding responses (outputs) required. During
the training process, the neural network’s interior connections
are adjusted so that the network can gradually predict the
correct responses. The fundamentals of neural networks are
described in several books (9). To obtain the total travel time
for any network solution quickly, a neural network is used in
the search process as a replacement of the trip assignment
model. The neural network can respond much faster than the
F-W algorithm. Experimental results show that the trained
neural network performs very well in this role.

Neural Network Structure

To ensure a high level of accuracy, three layers in the neural
network have been used. There are 20 proposed projects, so
the neural network has 20 input variables, each of which can
be either 0 (not constructed or improved) or 1 (constructed
or improved). The first layer is the input layer: it distributes
each of the 20 input variables to each neuron in the second
layer. The second layer affects the neural network’s capacity
the most. Therefore, this layer includes 61 neurons, which
may be more than necessary. And, since there is only one
output (total travel time), the third layer (output layer) con-
tains only one neuron and its output is just the neural net-
work’s output. Each variable in the first layer is an input to
every neuron (except the last one) in the second layer, and
each neuron’s output in the second layer is an input to the
neuron in the third layer. The last neuron in the second layer
has no input; it is used to correct the bias on the output (10).
Altogether, there are 62 neurons and 1,261 weights in this
neural network (Figure 2).

In the neural network, if a neuron’s inputs are x; (i
= 1, ..., n) and their corresponding weights are w,, its
output will be

1
1L+ exp(-y)

z(y) @

Xiong and Schneider

Layer 3

Layer 1

C) — A neuron

o — A weight

FIGURE 2 Neural network structure used to make total travel
time predictions.

where

y = i XW; (3)

i=1

The output value of the neuron in the third layer is restricted
to interval [0.25, 0.75], the linear part in the middle of the
curve z = z(y). The transformation relation between the
output of this neuron and the total travel time it predicted is
set as a linear mapping:

[0.2.5, 0.75] < [fmin> tmax] 4)

Here, ¢, and t,,, are predefined minimum and maximum
possible values of the total travel time on this network. Al-
though the interval [0.25, 0.75] and linear mapping are used
here, it is not certain if they are the best selections.

Neural Network Training and Testing

There are 20 proposed projects, so there are 22° = 1,048,576
combinations. Each combination of projects is a solution (or
a design) in the solution space. To train the neural network,
2,500 solutions were selected at random and the F-W algo-
rithm was used to calculate their total travel times. The first
1,000 solutions were used for training, and the other 1,500
solutions were used for testing. Although 1,000 training so-
lutions were used here, a 100-solution training set can produce
a quite accurate neural network.

Note that there are two different errors involved here. First,
the F-W algorithm is an iterating procedure. The stable value
t for a solution can only be obtained after a large number of
iterations. But if we use the algorithm directly in the network
design optimization process, we can calculate only a few it-
erations and will obtain an approximate value, #,. Therefore,
the first error is computed as e = (1, — f)/t.

A second error describes the performance of the trained
neural network. Once a neural network has been trained, it
must be tested to evaluate its predictive accuracy. If the value

39
1000 3
2
800 —a&— Neural network
9 —&—— 12iterations
g —O— 4iterations
2 600 R
: T
a :
=]
B 400
L
g]
=
Z
200
\
ot S
-20 0 20 40 60 80

Error (percentage)

FIGURE 3 Neural network’s prediction error versus F-W trip
assignment algorithm’s error.

it predicts is t,,, this error will be e = (¢,, — t)/t. Obviously,
the neural network’s prediction error depends on how accu-
rate the training set is. Therefore, to decrease the neural
network’s prediction error, a highly accurate training set should
be used. In this study, the error for each solution in the
training and testing set has been reduced to almost zero (smaller
than 0.001 percent) by using a large number of iterations
(more than 25). These values, therefore, can be interpreted
as being true values (f).

After the training set was ready, the neural network was
trained using the back-propagation algorithm, a supervised
training program widely used in many applications (9). The
training algorithm applies each solution in the training set to
the neural network sequentially and adjusts its weights until its
prediction error is acceptable. Next, this neural network was
tested using the testing set. The results from the test are shown
in Figure 3, along with two other plots that represent the errors
obtained from the same 1,500 solutions but by using the F-W
algorithm directly with 4 and 12 iterations. The left plot shows
that the errors from the neural network are very small.

Training Time

Although the neural network’s predictive errors are very small,
it would not be worthwhile to devise it if the training time
was longer than the time required to use the F-W algorithm
in the search process directly. A neural network’s training
time depends on the neural network’s complexity defined by
the numbers of layers and neurons and their connectivity, the
size of the training set, and the precision requirement to de-
cide when to stop the training process. On an Apollo 4500
workstation (whose computing speed is much slower than a
mainframe computer), we used 7,200 sec for training. If added
with the training set generating time (3.1 - 1,000 sec) and the
predicting time (1,200 sec, used in the genetic algorithm as
described later), the total would be 7,200 + 3,100 + 1,200
= 11,500 sec.

Figure 3 shows that the neural network’s prediction pre-
cision (standard deviation = 1.00 percent, mean = 0.75 per-

40

cent) is equivalent to 12 iterations (standard deviation = 1.07
percent, mean = 6.10 percent) of the F-W algorithm. Ex-
periments show that each 12-iteration computation needs about
2.03 sec on an Apollo 4500. If the trip assignment algorithm
had been used in the genetic algorithm directly, the total
computing time would have been 2.03 - 80,000 = 162,400
sec, which is more than 15 times longer than using the neural
network. Here, 80,000 is the number of times the neural
network was called by the genetic algorithm. Since the F-W
algorithm computes very slowly, many previous studies have
employed only four iterations (/1), and the error (standard
deviation = 6.69 percent, mean = 41.26 percent) for such
results appears to be unacceptable.

The size of the neural network and its training time are
related to the number of proposed projects, not to the trans-
portation network size. This is a fundamental difference be-
tween a neural network and the conventional trip assignment
algorithm. Therefore, neural networks may be especially use-
ful in dealing with very large transportation networks that
have only a few potential projects that need to be examined.
This is often the type of problem encountered in practice.

DEVELOPMENT OF CUMULATIVE GENETIC
ALGORITHM FOR FINDING OPTIMAL
SOLUTIONS

A genetic algorithm is a general-purpose stochastic search
technique applicable to a broad range of optimization prob-
lems. Its development has been derived from the study on
natural evolution. During the search process, a genetic al-
gorithm works from solution set to solution set simultane-
ously, not just sequentially—from one solution to another—
as in conventional algorithms. Each solution set is called a
generation, and population size is the number of solutions in
the set. This generation-to-generation method enables the
search process to escape a local optimum and eventually reach
global optimum. There are three basic operations within a
genetic algorithm: reproduction, crossover, and mutation. Once
every operation has been applied sequentially to the current
generation, a new generation consisting of offspring will be
obtained. This new generation will replace the old entirely
and become the current generation; the three operations will
apply to it, and we will have another generation. In this re-
peating procedure, all generations are numbered sequentially
and will be called the generation number: for example, the
first generation, the second generation, and so forth. The
interested reader is referred to Goldberg’s book for a more
detailed description (12).

Original Genetic Algorithm

A genetic algorithm that uses the trained neural network de-
scribed previously was implemented on an Apollo 4500 [Fig-
ure 4 (top)]. Here, each solution is represented as a binary
string with a length of 20, which is the same as the input
variable format of the neural network. Each solution has a
construction cost and total travel time, but in the genetic
algorithm each solution can have only one objective (fitness)
to represent its performance. To use these two values to define

TRANSPORTATION RESEARCH RECORD 1364

oy

n-th Generation Fitness Computing
Cosls
| Reproduction l [Total Travel Times |
A
! ,
[Crossover I | Trained Neural Network I

| Neural Network |

|

* 1-u

I Reproduction |

Y

Y

l Total Travel Times]

Costs

Fitness Computing

Y

L Update HNDSS |

HNDSS

FIGURE 4 Genetic algorithms: top, original; bottom,
cumulative.

a solution’s fitness, the domination comparison method was
used. A solution v dominates solution w if v’s performance
values are not worse than w’s for both criteria. If a solution
is not dominated by any other solution, it is nondominated.
For each solution in a generation, a count is made of the
number of times that it is dominated by the other solutions
in the same generation. The more times it is dominated, the
lower its fitness value will be. Therefore, each solution’s fit-
ness value is calculated as

fitness = C — number of times dominated (5)

where C is the largest “number of times dominated” among
all the solutions in that generation. Obviously, the nondom-
inated solutions will have a fitness C. It is hoped that the
nondominated solution subsets within each generation im-
prove as the evolution proceeds and that the subset of non-

Xiong and Schneider

50 T T
First ganeration
48 100th generation |
400th generation
800th genaration
g 48 System optimal designs -
3
g 44
E
[_' s
42 porh
‘%_“-
40 =T
-
"“\.
38 + -
2500 5000 7500 10000 12500 15000 17500 20000

Cost

FIGURE 5 Solutions generated by original and cumulative
genetic algorithms.

dominated solutions from the last generation will be the final
optimal solutions.

However, this algorithm’s performance was unsatisfactory.
Figure 5 shows all the nondominated solutions in the 1st,
100th, 400th, and 800th generations, using a population size
of 100. We can see that many ‘‘best” solutions in the 100th,
400th, or even 800th generation are even worse than those in
the 1st generation. Even the 800th generation is not a clear
improvement on the 1st generation. This tells us that the
algorithm did not make progress during its search for optimal
solutions. Given such results, it is unknown whether the com-
puting process can find the optimal solutions or when the
search process can be stopped.

It was determined that this poor performance was due to
the fact that each generation passed some good chromosomes
to its offspring, but not all of them. And, after a number of
generations, some good chromosomes were found to have
totally disappeared. To solve this problem, the original ge-
netic algorithm was improved and a cumulative genetic al-
gorithm (CGA) was devised. The solutions obtained by using
CGA are clearly superior to the solutions from the original
genetic algorithm (Figure 5).

Cumulative Genetic Algorithm

Transferring good chromosomes is just like transferring
knowledge to children. The knowledge transfer cannot be
expected to be based on oral communication only, because
even if everything new is remembered, other things are often
forgotten after a while. So, we often record our knowledge
in book form. In this way, children will be able to learn and
later review it if they forget. They can also modify the books
by adding new knowledge or updating the old. Now, the
children can learn either by reading the book or by asking
questions of members of their parent’s generation. These two
options make the process of accumulating knowledge more
efficient and faster; the book acts as a knowledge-accumu-
lation device. In this algorithm, the book concept was imple-
mented as a solution set called the historical nondominated
solution set (HNDSS). At any specific moment during the
search process, HNDSS includes all of the solutions that have

41

never been dominated (as compared with all of the solutions
generated by the algorithm up to that moment). This im-
proved genetic algorithm was named the CGA; its operation
procedure is shown in Figure 4 (bottom).

In CGA, the reproduction operation was modified so that
it picks up solutions randomly not only from the previous
generation (parents), but also from HNDSS. The probabilities
of being selected for the solutions in the previous generation
are proportional to their fitnesses, whereas the probability of
being selected for every solution among HNDSS is equal.
Then, after the reproduction, crossover, and mutation op-
erations, if some better solutions are found in the new gen-
eration, the algorithm will add them to HNDSS and delete
all old solutions that are dominated by the newcomers. When
CGA stops, the solutions in HNDSS, instead of those in the
last generation, will be the final results. Here another problem
is encountered: how much time should be spent on books
(HNDSS) and how much on communication with parents
(previous generation)? Nine possible proportion values ()
have been tested using a population size of 100. Since each
solution in HNDSS was contributed by a specific generation
in the search history, we call its generation number the so-
lution’s contributing generation number. The term “average
contributing generation number” is defined as the averaged
value of the contributing generation numbers of all solutions
in the final HNDSS. When « = 1.0; the algorithm becomes
the original genetic algorithm, and, as shown in Figure 6, the
average contributing generation numbers are closely related
to the total number of generations carried out. This reveals
that the solutions in HNDSS were almost evenly contributed
by all generations and thus the process cannot be stopped
after 800 generations. On the other hand, the best value is
clearly located around 0.5. Its average contributing generation
number is the lowest, which represents the shortest computing
time. Also, the average contributing generation numbers are
the same for both 800 and 1,600 generations. This means that
the second 800 generations have contributed no solutions to
HNDSS; all the optimal solutions have been generated by the
first 800 generations. Therefore, ¥ = 0.5 (half from the pre-
vious generation and half from HNDSS) has produced the
best results for this problem.

750 /
650 —e— 800 generations
~—0— 1600 generations /

N /

450 ‘ \ /]\T‘l/_{:

RENENNVINDES
/

150 T T

0.0 01 02 03 04 05 06 07 08 09 1.0
u value

Average contributing generation number

FIGURE 6 Contributing generation number for
different u-values.

42

Population Size Versus Number of Generations
Needed

To implement CGA for a DTNDP, there are still two param-
eters yet to be determined: population size (p) and the number
of generations (g) needed. To find the most suitable param-
eters for our network, population sizes of 10, 20, 40, 100,
200, 300, 500, and 2,000 have been tested sequentially; their
associated performance values are presented in Table 2. We
can see that the p has almost no impact on the algorithm’s
performance and that g is inversely proportional to the pop-
ulation size (p). This indicates that for a DTNDP, the com-
puting time (g - p) is constant.

As shown in Figure 7, the distribution of the number of
final solutions contributed by every generation matches a
Poisson distribution well, with their means and medians in-
versely proportional to population size. This shows again that
after a certain number of generations, most of the optimal
solutions have been generated and further searching becomes
unnecessary. For this problem, most of the final optimal so-
lutions are contributed by the first half of the entire search

TABLE 2 Various Population Sizes and
Their Contributing Generation Numbers
Using CGA

Contributing generation numbers

TRANSPORTATION RESEARCH RECORD 1364

I

50 -1

Populatlon slze = 10
Population slze = 20
Population size = 100
Population size = 300
Population size = 500

40 -

EmDSO

30

20 1

ATTLTLITIUI LTRSS

(172" 1P A -

Number of solutions contributed (in final HNDSS)

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
Contributing generation number (x10000/(population size))

FIGURE 7 Final optimal solutions in HNDSS: number from
every generation.

process; that is, if the population size is p, 40,000/p genera-
tions is enough to obtain 95 percent of the optimal solutions.

Final Optimal Solutions for Testing Transportation
Network Using Two Criteria

Using CGA, 117 optimal solutions were found in HNDSS
after 800 generations with a population size of 100 (Figure
8). Furthermore, additional runs were made using different
population size values and the final optimal solution sets were

Pop-size ; . . : .
Mean Median Std.dev found to be identical. This reveals that the final solutions
obtained are real system optimums, not just local optimums
10 1335 1006 1108 like those generated by heuristic algorithms.
20 685.4 542.5 568
40 373.2 308 313.6
DISCUSSION OF RESULTS
100 156.9 116 144.3
<00 S p 60228 If the original genetic algorithm had worked, a population
300 46.5 34 41.65 size larger than the number of total optimal solutions would
500 27.5 21 25.61 have been used, because the population size is fixed in the
2000 1.9 ; 5 33 process and .the last ge'neratlon must be capable of containing
all final optimal solutions. But, how can the number of op-
) 'M
50 b =
_(106\\\ —o— System optimal designs
48 7 Upper boundary i
o 107 /L_ 101 _‘-Lm-\‘-‘
g 46 v u-‘
3 102
E 44 Solution =
g
a2 Space " "L
40 L‘L‘\\‘\
38
Q—"&.
36
1] 5000 10000 15000 20000 25000

Cost

FIGURE 8 Final optimal solutions in HNDSS: location in solution space as

its lower boundary.

Xiong and Schneider

timal solutions be known, even an approximate one, before
the algorithm is run? CGA removes this question because the
size of HNDSS is not fixed during the search process.

If those solutions that have the highest costs or longest total
travel times can be found, a set of worst solutions using the
same CGA with an inverted domination comparison can be
obtained. These solutions form another curve, which shares
two end points with the optimal solution curve selecting-no-
project and selecting-all-projects. Together, these two curves
form the entire boundary of the solution space (Figure 8).

The selection of a preferred transportation network design
alternative is a complex process and will not normally be
limited to only two criteria (total travel time and cost), al-
though they are often the most important. If CGA is to be
capable of processing more performance criteria, the domi-
nation comparison method can be modified and more
performance comparisons included. If, for example, three
criteria are used, the solution space would be a solid in three-
dimensional space and the final optimal solution set will be
a surface of this solid.

For the network design problem, an examination of the
optimal solutions shows that the addition of some projects
can reduce the total travel time more than others while costing
less. These projects are the healthy chromosomes and are
contained in most optimal solutions. Among the 117 final
designs, Projects 15 and 16 both appear more than 100 times,
and Projects 7 and 8 appear only 6 and 4 times, respectively
(Figure 9). The addition of the healthy chromosomes will add
vertical segments to the solution curve, and the addition of
the bad chromosome will add horizontal segments. Therefore,
the left part of the curve is more vertical because there are
many ‘‘healthy” chromosomes left to select, and the right part
is more horizontal because all the healthy chromosomes have
already been included and only the bad chromosomes are left
to select. Also, the curve is smooth in most but not in all
locations. In Figure 8, Solution 101 is obtained by using Proj-
ect 15 to replace Project 11 in Solution 102. Because Project
15 is the healthiest and Project 11 is relatively unhealthy, this
replacement costs only $300,000 but saves 1.014 hr of travel
time. But, from Solution 107 to 106, the healthy Projects 3
and 16 are replaced by two relatively unhealthy projects, 11
and 12. This replacement costs $550,000 but saves only 0.171
hr of time. Thus, the former replacement is represented by
a relatively vertical line segment, and the latter replacement
is very horizontal.

8

Number of times appears
in the optimal solution set

0
1 2 3 4 5 6 7 8 9 10111213 1415186 17 18 19 20

Project number

FIGURE 9 Number of times each project appears in set of
final solutions.

43

CONCLUSIONS AND RECOMMENDATIONS

The neural network is shown to be a technique that can speed
up optimization computing dramatically, especially when the
accuracy requirement (compared with the user-equilibrium
trip assignment algorithm) is not very high (e.g., an error of
less than 2 percent). This method also establishes a way of
using other trip assignment models in the network evaluation
and design process. Since a neural network can be trained
with results from the F-W trip assignment model, it is certainly
possible to train it using results from other trip assignment
models. However, from our experience, if the requirement
for the predictive accuracy is very high (e.g., an error of less
than 0.2 percent), the neural network’s training time would
become much longer.

Although the performance of the original genetic algorithm
was not satisfactory, CGA worked very well for a DTNDP,
even using two criteria. This is a step forward, as multiple
criteria have not been used by previous algorithms, and a set
of optimal solutions, not just one, has never been generated
before. Using the results from CGA, it is clearly seen how
the solutions are distributed on the cost-travel time plane for
any transportation network. Further, the solutions generated
are system-optimal. The trade-off curve defined by these op-
timal solutions clearly illustrates how one performance value
changes when the other changes. This trade-off information
for the entire range of potential solutions can greatly assist a
decision-making process designed to identify a preferred al-
ternative.

However, this study is just a beginning. It is recommended
that further work be undertaken as follows:

1. Larger transportation networks of various shapes should
be used to test the performance of the method, including their
neural network training times and error characteristics, CGA
optimization speed, and the shape of their trade-off curves.

2. Methods for coping with various types of constraints may
be applied to the solution space, because constraints are very
common in practice. (For example, it might be stated that
Project X is not feasible unless Projects Y and Z are both
selected, or Project A and B cannot be both selected).

3. Methods should be devised for including other criteria
in the genetic algorithm (e.g., the link volume-capacity ratios)
and incorporating them in the analyses of the results.

4. Further efforts should be made to define the basic prop-
erties of DTNDP in relation to the specific characteristics of
a range of transportation network sizes and shapes.

REFERENCES

1. M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and
Co., San Francisco, Calif., 1979.

2. T. L. Magnanti and R. T. Wong. Network Design and Trans-
portation Planning: Models and Algorithms. Transportation Sci-
ence, Vol. 18, No. 1, 1984, pp. 1-55.

3. B.N. Janson, L. S. Buckels, and B. E. Peterson. Network Design
Programming of U.S. Highway Improvements. Journal of Trans-
portation Engineering, Vol. 117, No. 4, 1991, pp. 457-478.

4. B. N. Janson and A. Husaini. Heuristic Ranking and Selection
Procedures for Network Design Problems. Journal of Advanced
Transportation, Vol. 21, No. 1, 1987, pp. 17-46.

44

Sl

B. H. Immer and P. H. Mijjer. Optimization of Transport Net-
works. Presented at 20th International Scientific Conference on
Transport Planning and Traffic Engineering, Budapest, Hungary,
April 1989.

. D. M. Chang and G. B. Dresser. A Comparison of Traffic As-

signment Techniques. Research Report 1153-3. Texas Transpor-
tation Institute, Texas A&M University, College Station, 1990.

. L.J. LeBlanc, E. K. Morlok, and W. P. Pierskalla. An Efficient

Approach to Solving the Road Network Equilibrium Traffic As-
signment Problem. Transportation Research, Vol. 9, No. 5, 1975,
pp. 309-318.

. H. Poorzahedy and M. A. Turnquist. Approximate Algorithms

for the Discrete Network Design Problem. Transportation Re-
search, Vol. 16B, No. 1, 1982, pp. 45-55.

10.

11.

12.

TRANSPORTATION RESEARCH RECORD 1364

. P. D. Wasserman. Neural Computing: Theory and Practice. Van

Nostrand Reinhold, New York, N.Y., 1989.

P. K. Simpson. Artificial Neural Systems: Foundations, Para-
digms, Applications and Implementations. Pergamon Press, New
York, N.Y., 1990.

S.-I. R. Tung and J. B. Schneider. Designing Optimal Trans-
portation Networks: An Expert Systems Approach. In Trans-
portation Research Record 1145, TRB, National Research Coun-
cil, Washington, D.C., 1987, pp. 20-27.

D. E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, Reading, Mass., 1989.

Publication of this paper sponsored by Committee on Transportation
Programming, Planning, and Systems Evaluation.

